cache-dit 1.0.2__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cache-dit might be problematic. Click here for more details.

Files changed (29) hide show
  1. cache_dit/__init__.py +3 -0
  2. cache_dit/_version.py +2 -2
  3. cache_dit/cache_factory/__init__.py +8 -1
  4. cache_dit/cache_factory/cache_adapters/cache_adapter.py +90 -76
  5. cache_dit/cache_factory/cache_blocks/__init__.py +167 -17
  6. cache_dit/cache_factory/cache_blocks/pattern_0_1_2.py +10 -0
  7. cache_dit/cache_factory/cache_blocks/pattern_3_4_5.py +271 -36
  8. cache_dit/cache_factory/cache_blocks/pattern_base.py +286 -45
  9. cache_dit/cache_factory/cache_blocks/pattern_utils.py +55 -10
  10. cache_dit/cache_factory/cache_contexts/__init__.py +15 -2
  11. cache_dit/cache_factory/cache_contexts/cache_config.py +102 -0
  12. cache_dit/cache_factory/cache_contexts/cache_context.py +26 -89
  13. cache_dit/cache_factory/cache_contexts/cache_manager.py +7 -7
  14. cache_dit/cache_factory/cache_contexts/calibrators/taylorseer.py +78 -8
  15. cache_dit/cache_factory/cache_contexts/context_manager.py +29 -0
  16. cache_dit/cache_factory/cache_contexts/prune_config.py +69 -0
  17. cache_dit/cache_factory/cache_contexts/prune_context.py +155 -0
  18. cache_dit/cache_factory/cache_contexts/prune_manager.py +154 -0
  19. cache_dit/cache_factory/cache_interface.py +23 -14
  20. cache_dit/cache_factory/cache_types.py +19 -2
  21. cache_dit/cache_factory/params_modifier.py +7 -7
  22. cache_dit/cache_factory/utils.py +38 -27
  23. cache_dit/utils.py +191 -54
  24. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/METADATA +14 -7
  25. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/RECORD +29 -24
  26. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/WHEEL +0 -0
  27. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/entry_points.txt +0 -0
  28. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/licenses/LICENSE +0 -0
  29. {cache_dit-1.0.2.dist-info → cache_dit-1.0.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,102 @@
1
+ import torch
2
+ import dataclasses
3
+ from typing import Optional, Union
4
+ from cache_dit.cache_factory.cache_types import CacheType
5
+ from cache_dit.logger import init_logger
6
+
7
+ logger = init_logger(__name__)
8
+
9
+
10
+ @dataclasses.dataclass
11
+ class BasicCacheConfig:
12
+ # Default: Dual Block Cache with Flexible FnBn configuration.
13
+ cache_type: CacheType = CacheType.DBCache # DBCache, DBPrune, NONE
14
+
15
+ # Fn_compute_blocks: (`int`, *required*, defaults to 8):
16
+ # Specifies that `DBCache` uses the **first n** Transformer blocks to fit the information
17
+ # at time step t, enabling the calculation of a more stable L1 diff and delivering more
18
+ # accurate information to subsequent blocks. Please check https://github.com/vipshop/cache-dit/blob/main/docs/DBCache.md
19
+ # for more details of DBCache.
20
+ Fn_compute_blocks: int = 8
21
+ # Bn_compute_blocks: (`int`, *required*, defaults to 0):
22
+ # Further fuses approximate information in the **last n** Transformer blocks to enhance
23
+ # prediction accuracy. These blocks act as an auto-scaler for approximate hidden states
24
+ # that use residual cache.
25
+ Bn_compute_blocks: int = 0
26
+ # residual_diff_threshold (`float`, *required*, defaults to 0.08):
27
+ # the value of residual diff threshold, a higher value leads to faster performance at the
28
+ # cost of lower precision.
29
+ residual_diff_threshold: Union[torch.Tensor, float] = 0.08
30
+ # max_warmup_steps (`int`, *required*, defaults to 8):
31
+ # DBCache does not apply the caching strategy when the number of running steps is less than
32
+ # or equal to this value, ensuring the model sufficiently learns basic features during warmup.
33
+ max_warmup_steps: int = 8 # DON'T Cache in warmup steps
34
+ # warmup_interval (`int`, *required*, defaults to 1):
35
+ # Skip interval in warmup steps, e.g., when warmup_interval is 2, only 0, 2, 4, ... steps
36
+ # in warmup steps will be computed, others will use dynamic cache.
37
+ warmup_interval: int = 1 # skip interval in warmup steps
38
+ # max_cached_steps (`int`, *required*, defaults to -1):
39
+ # DBCache disables the caching strategy when the previous cached steps exceed this value to
40
+ # prevent precision degradation.
41
+ max_cached_steps: int = -1 # for both CFG and non-CFG
42
+ # max_continuous_cached_steps (`int`, *required*, defaults to -1):
43
+ # DBCache disables the caching strategy when the previous continous cached steps exceed this value to
44
+ # prevent precision degradation.
45
+ max_continuous_cached_steps: int = -1 # the max continuous cached steps
46
+ # enable_separate_cfg (`bool`, *required*, defaults to None):
47
+ # Whether to do separate cfg or not, such as Wan 2.1, Qwen-Image. For model that fused CFG
48
+ # and non-CFG into single forward step, should set enable_separate_cfg as False, for example:
49
+ # CogVideoX, HunyuanVideo, Mochi, etc.
50
+ enable_separate_cfg: Optional[bool] = None
51
+ # cfg_compute_first (`bool`, *required*, defaults to False):
52
+ # Compute cfg forward first or not, default False, namely, 0, 2, 4, ..., -> non-CFG step;
53
+ # 1, 3, 5, ... -> CFG step.
54
+ cfg_compute_first: bool = False
55
+ # cfg_diff_compute_separate (`bool`, *required*, defaults to True):
56
+ # Compute separate diff values for CFG and non-CFG step, default True. If False, we will
57
+ # use the computed diff from current non-CFG transformer step for current CFG step.
58
+ cfg_diff_compute_separate: bool = True
59
+
60
+ def update(self, **kwargs) -> "BasicCacheConfig":
61
+ for key, value in kwargs.items():
62
+ if hasattr(self, key):
63
+ setattr(self, key, value)
64
+ return self
65
+
66
+ def strify(self) -> str:
67
+ return (
68
+ f"{self.cache_type}_"
69
+ f"F{self.Fn_compute_blocks}"
70
+ f"B{self.Bn_compute_blocks}_"
71
+ f"W{self.max_warmup_steps}"
72
+ f"I{self.warmup_interval}"
73
+ f"M{max(0, self.max_cached_steps)}"
74
+ f"MC{max(0, self.max_continuous_cached_steps)}_"
75
+ f"R{self.residual_diff_threshold}"
76
+ )
77
+
78
+
79
+ @dataclasses.dataclass
80
+ class ExtraCacheConfig:
81
+ # Some other not very important settings for Dual Block Cache.
82
+ # NOTE: These flags maybe deprecated in the future and users
83
+ # should never use these extra configurations in their cases.
84
+
85
+ # l1_hidden_states_diff_threshold (`float`, *optional*, defaults to None):
86
+ # The hidden states diff threshold for DBCache if use hidden_states as
87
+ # cache (not residual).
88
+ l1_hidden_states_diff_threshold: float = None
89
+ # important_condition_threshold (`float`, *optional*, defaults to 0.0):
90
+ # Only select the most important tokens while calculating the l1 diff.
91
+ important_condition_threshold: float = 0.0
92
+ # downsample_factor (`int`, *optional*, defaults to 1):
93
+ # Downsample factor for Fn buffer, in order the save GPU memory.
94
+ downsample_factor: int = 1
95
+ # num_inference_steps (`int`, *optional*, defaults to -1):
96
+ # num_inference_steps for DiffusionPipeline, for future use.
97
+ num_inference_steps: int = -1
98
+
99
+
100
+ @dataclasses.dataclass
101
+ class DBCacheConfig(BasicCacheConfig):
102
+ pass # Just an alias for BasicCacheConfig
@@ -5,6 +5,11 @@ from typing import Any, DefaultDict, Dict, List, Optional, Union, Tuple
5
5
 
6
6
  import torch
7
7
 
8
+ from cache_dit.cache_factory.cache_contexts.cache_config import (
9
+ BasicCacheConfig,
10
+ ExtraCacheConfig,
11
+ DBCacheConfig,
12
+ )
8
13
  from cache_dit.cache_factory.cache_contexts.calibrators import (
9
14
  Calibrator,
10
15
  CalibratorBase,
@@ -15,96 +20,16 @@ from cache_dit.logger import init_logger
15
20
  logger = init_logger(__name__)
16
21
 
17
22
 
18
- @dataclasses.dataclass
19
- class BasicCacheConfig:
20
- # Dual Block Cache with Flexible FnBn configuration.
21
-
22
- # Fn_compute_blocks: (`int`, *required*, defaults to 8):
23
- # Specifies that `DBCache` uses the **first n** Transformer blocks to fit the information
24
- # at time step t, enabling the calculation of a more stable L1 diff and delivering more
25
- # accurate information to subsequent blocks. Please check https://github.com/vipshop/cache-dit/blob/main/docs/DBCache.md
26
- # for more details of DBCache.
27
- Fn_compute_blocks: int = 8
28
- # Bn_compute_blocks: (`int`, *required*, defaults to 0):
29
- # Further fuses approximate information in the **last n** Transformer blocks to enhance
30
- # prediction accuracy. These blocks act as an auto-scaler for approximate hidden states
31
- # that use residual cache.
32
- Bn_compute_blocks: int = 0
33
- # residual_diff_threshold (`float`, *required*, defaults to 0.08):
34
- # the value of residual diff threshold, a higher value leads to faster performance at the
35
- # cost of lower precision.
36
- residual_diff_threshold: Union[torch.Tensor, float] = 0.08
37
- # max_warmup_steps (`int`, *required*, defaults to 8):
38
- # DBCache does not apply the caching strategy when the number of running steps is less than
39
- # or equal to this value, ensuring the model sufficiently learns basic features during warmup.
40
- max_warmup_steps: int = 8 # DON'T Cache in warmup steps
41
- # max_cached_steps (`int`, *required*, defaults to -1):
42
- # DBCache disables the caching strategy when the previous cached steps exceed this value to
43
- # prevent precision degradation.
44
- max_cached_steps: int = -1 # for both CFG and non-CFG
45
- # max_continuous_cached_steps (`int`, *required*, defaults to -1):
46
- # DBCache disables the caching strategy when the previous continous cached steps exceed this value to
47
- # prevent precision degradation.
48
- max_continuous_cached_steps: int = -1 # the max continuous cached steps
49
- # enable_separate_cfg (`bool`, *required*, defaults to None):
50
- # Whether to do separate cfg or not, such as Wan 2.1, Qwen-Image. For model that fused CFG
51
- # and non-CFG into single forward step, should set enable_separate_cfg as False, for example:
52
- # CogVideoX, HunyuanVideo, Mochi, etc.
53
- enable_separate_cfg: Optional[bool] = None
54
- # cfg_compute_first (`bool`, *required*, defaults to False):
55
- # Compute cfg forward first or not, default False, namely, 0, 2, 4, ..., -> non-CFG step;
56
- # 1, 3, 5, ... -> CFG step.
57
- cfg_compute_first: bool = False
58
- # cfg_diff_compute_separate (`bool`, *required*, defaults to True):
59
- # Compute separate diff values for CFG and non-CFG step, default True. If False, we will
60
- # use the computed diff from current non-CFG transformer step for current CFG step.
61
- cfg_diff_compute_separate: bool = True
62
-
63
- def update(self, **kwargs) -> "BasicCacheConfig":
64
- for key, value in kwargs.items():
65
- if hasattr(self, key):
66
- setattr(self, key, value)
67
- return self
68
-
69
- def strify(self) -> str:
70
- return (
71
- f"DBCACHE_F{self.Fn_compute_blocks}"
72
- f"B{self.Bn_compute_blocks}_"
73
- f"W{self.max_warmup_steps}"
74
- f"M{max(0, self.max_cached_steps)}"
75
- f"MC{max(0, self.max_continuous_cached_steps)}_"
76
- f"R{self.residual_diff_threshold}"
77
- )
78
-
79
-
80
- @dataclasses.dataclass
81
- class ExtraCacheConfig:
82
- # Some other not very important settings for Dual Block Cache.
83
- # NOTE: These flags maybe deprecated in the future and users
84
- # should never use these extra configurations in their cases.
85
-
86
- # l1_hidden_states_diff_threshold (`float`, *optional*, defaults to None):
87
- # The hidden states diff threshold for DBCache if use hidden_states as
88
- # cache (not residual).
89
- l1_hidden_states_diff_threshold: float = None
90
- # important_condition_threshold (`float`, *optional*, defaults to 0.0):
91
- # Only select the most important tokens while calculating the l1 diff.
92
- important_condition_threshold: float = 0.0
93
- # downsample_factor (`int`, *optional*, defaults to 1):
94
- # Downsample factor for Fn buffer, in order the save GPU memory.
95
- downsample_factor: int = 1
96
- # num_inference_steps (`int`, *optional*, defaults to -1):
97
- # num_inference_steps for DiffusionPipeline, for future use.
98
- num_inference_steps: int = -1
99
-
100
-
101
23
  @dataclasses.dataclass
102
24
  class CachedContext:
103
25
  name: str = "default"
104
26
  # Buffer for storing the residuals and other tensors
105
27
  buffers: Dict[str, Any] = dataclasses.field(default_factory=dict)
106
28
  # Basic Dual Block Cache Config
107
- cache_config: BasicCacheConfig = dataclasses.field(
29
+ cache_config: Union[
30
+ BasicCacheConfig,
31
+ DBCacheConfig,
32
+ ] = dataclasses.field(
108
33
  default_factory=BasicCacheConfig,
109
34
  )
110
35
  # NOTE: Users should never use these extra configurations.
@@ -126,14 +51,14 @@ class CachedContext:
126
51
  # be double of executed_steps.
127
52
  transformer_executed_steps: int = 0
128
53
 
129
- # CFG & non-CFG cached steps
54
+ # CFG & non-CFG cached/pruned steps
130
55
  cached_steps: List[int] = dataclasses.field(default_factory=list)
131
- residual_diffs: DefaultDict[str, float] = dataclasses.field(
56
+ residual_diffs: DefaultDict[str, float | list] = dataclasses.field(
132
57
  default_factory=lambda: defaultdict(float),
133
58
  )
134
59
  continuous_cached_steps: int = 0
135
60
  cfg_cached_steps: List[int] = dataclasses.field(default_factory=list)
136
- cfg_residual_diffs: DefaultDict[str, float] = dataclasses.field(
61
+ cfg_residual_diffs: DefaultDict[str, float | list] = dataclasses.field(
137
62
  default_factory=lambda: defaultdict(float),
138
63
  )
139
64
  cfg_continuous_cached_steps: int = 0
@@ -281,7 +206,9 @@ class CachedContext:
281
206
  def get_cfg_calibrators(self) -> Tuple[CalibratorBase, CalibratorBase]:
282
207
  return self.cfg_calibrator, self.cfg_encoder_calibrator
283
208
 
284
- def add_residual_diff(self, diff):
209
+ def add_residual_diff(self, diff: float | torch.Tensor):
210
+ if isinstance(diff, torch.Tensor):
211
+ diff = diff.item()
285
212
  # step: executed_steps - 1, not transformer_steps - 1
286
213
  step = str(self.get_current_step())
287
214
  # Only add the diff if it is not already recorded for this step
@@ -346,5 +273,15 @@ class CachedContext:
346
273
  # CFG steps: 1, 3, 5, 7, ...
347
274
  return self.get_current_transformer_step() % 2 != 0
348
275
 
276
+ @property
277
+ def warmup_steps(self) -> List[int]:
278
+ return list(
279
+ range(
280
+ 0,
281
+ self.cache_config.max_warmup_steps,
282
+ self.cache_config.warmup_interval,
283
+ )
284
+ )
285
+
349
286
  def is_in_warmup(self):
350
- return self.get_current_step() < self.cache_config.max_warmup_steps
287
+ return self.get_current_step() in self.warmup_steps
@@ -14,7 +14,7 @@ from cache_dit.logger import init_logger
14
14
  logger = init_logger(__name__)
15
15
 
16
16
 
17
- class CacheNotExistError(Exception):
17
+ class ContextNotExistError(Exception):
18
18
  pass
19
19
 
20
20
 
@@ -36,14 +36,14 @@ class CachedContextManager:
36
36
  self._current_context = cached_context
37
37
  else:
38
38
  if cached_context not in self._cached_context_manager:
39
- raise CacheNotExistError("Context not exist!")
39
+ raise ContextNotExistError("Context not exist!")
40
40
  self._current_context = self._cached_context_manager[cached_context]
41
41
  return self._current_context
42
42
 
43
43
  def get_context(self, name: str = None) -> CachedContext:
44
44
  if name is not None:
45
45
  if name not in self._cached_context_manager:
46
- raise CacheNotExistError("Context not exist!")
46
+ raise ContextNotExistError("Context not exist!")
47
47
  return self._cached_context_manager[name]
48
48
  return self._current_context
49
49
 
@@ -482,7 +482,7 @@ class CachedContextManager:
482
482
 
483
483
  if calibrator is not None:
484
484
  # Use calibrator to update the buffer
485
- calibrator.update(buffer)
485
+ calibrator.update(buffer, name=prefix)
486
486
  else:
487
487
  if logger.isEnabledFor(logging.DEBUG):
488
488
  logger.debug(
@@ -513,7 +513,7 @@ class CachedContextManager:
513
513
  calibrator, _ = self.get_calibrator()
514
514
 
515
515
  if calibrator is not None:
516
- return calibrator.approximate()
516
+ return calibrator.approximate(name=prefix)
517
517
  else:
518
518
  if logger.isEnabledFor(logging.DEBUG):
519
519
  logger.debug(
@@ -551,7 +551,7 @@ class CachedContextManager:
551
551
 
552
552
  if encoder_calibrator is not None:
553
553
  # Use CalibratorBase to update the buffer
554
- encoder_calibrator.update(buffer)
554
+ encoder_calibrator.update(buffer, name=prefix)
555
555
  else:
556
556
  if logger.isEnabledFor(logging.DEBUG):
557
557
  logger.debug(
@@ -582,7 +582,7 @@ class CachedContextManager:
582
582
 
583
583
  if encoder_calibrator is not None:
584
584
  # Use calibrator to approximate the value
585
- return encoder_calibrator.approximate()
585
+ return encoder_calibrator.approximate(name=prefix)
586
586
  else:
587
587
  if logger.isEnabledFor(logging.DEBUG):
588
588
  logger.debug(
@@ -10,13 +10,12 @@ from cache_dit.logger import init_logger
10
10
  logger = init_logger(__name__)
11
11
 
12
12
 
13
- class TaylorSeerCalibrator(CalibratorBase):
13
+ class TaylorSeerState:
14
14
  def __init__(
15
15
  self,
16
16
  n_derivatives=1,
17
17
  max_warmup_steps=1,
18
18
  skip_interval_steps=1,
19
- **kwargs,
20
19
  ):
21
20
  self.n_derivatives = n_derivatives
22
21
  self.order = n_derivatives + 1
@@ -28,9 +27,8 @@ class TaylorSeerCalibrator(CalibratorBase):
28
27
  "dY_prev": [None] * self.order,
29
28
  "dY_current": [None] * self.order,
30
29
  }
31
- self.reset_cache()
32
30
 
33
- def reset_cache(self): # NEED
31
+ def reset(self):
34
32
  self.state: Dict[str, List[torch.Tensor]] = {
35
33
  "dY_prev": [None] * self.order,
36
34
  "dY_current": [None] * self.order,
@@ -38,6 +36,9 @@ class TaylorSeerCalibrator(CalibratorBase):
38
36
  self.current_step = -1
39
37
  self.last_non_approximated_step = -1
40
38
 
39
+ def mark_step_begin(self): # NEED
40
+ self.current_step += 1
41
+
41
42
  def should_compute(self, step=None):
42
43
  step = self.current_step if step is None else step
43
44
  if (
@@ -56,7 +57,7 @@ class TaylorSeerCalibrator(CalibratorBase):
56
57
  window = self.current_step - self.last_non_approximated_step
57
58
  if self.state["dY_prev"][0] is not None:
58
59
  if dY_current[0].shape != self.state["dY_prev"][0].shape:
59
- self.reset_cache()
60
+ self.reset()
60
61
 
61
62
  for i in range(self.n_derivatives):
62
63
  if self.state["dY_prev"][i] is not None and self.current_step > 1:
@@ -77,9 +78,6 @@ class TaylorSeerCalibrator(CalibratorBase):
77
78
  break
78
79
  return output
79
80
 
80
- def mark_step_begin(self): # NEED
81
- self.current_step += 1
82
-
83
81
  def update(self, Y: torch.Tensor): # NEED
84
82
  # Directly call this method will ingnore the warmup
85
83
  # policy and force full computation.
@@ -106,5 +104,77 @@ class TaylorSeerCalibrator(CalibratorBase):
106
104
  else:
107
105
  return self.approximate()
108
106
 
107
+
108
+ class TaylorSeerCalibrator(CalibratorBase):
109
+ def __init__(
110
+ self,
111
+ n_derivatives=1,
112
+ max_warmup_steps=1,
113
+ skip_interval_steps=1,
114
+ **kwargs,
115
+ ):
116
+ self.n_derivatives = n_derivatives
117
+ self.max_warmup_steps = max_warmup_steps
118
+ self.skip_interval_steps = skip_interval_steps
119
+ self.states: Dict[str, TaylorSeerState] = {}
120
+ self.reset_cache()
121
+
122
+ def reset_cache(self): # NEED
123
+ if self.states:
124
+ for state in self.states.values():
125
+ state.reset()
126
+
127
+ def maybe_init_state(
128
+ self,
129
+ name: str = "default",
130
+ ):
131
+ if name not in self.states:
132
+ self.states[name] = TaylorSeerState(
133
+ n_derivatives=self.n_derivatives,
134
+ max_warmup_steps=self.max_warmup_steps,
135
+ skip_interval_steps=self.skip_interval_steps,
136
+ )
137
+
138
+ def mark_step_begin(self, *args, **kwargs):
139
+ if self.states:
140
+ for state in self.states.values():
141
+ state.mark_step_begin()
142
+
143
+ def derivative(
144
+ self,
145
+ Y: torch.Tensor,
146
+ name: str = "default",
147
+ ) -> List[torch.Tensor]:
148
+ self.maybe_init_state(name)
149
+ state = self.states[name]
150
+ state.derivative(Y)
151
+ return state.state["dY_current"]
152
+
153
+ def approximate(
154
+ self,
155
+ name: str = "default",
156
+ ) -> torch.Tensor: # NEED
157
+ assert name in self.states, f"State '{name}' not found."
158
+ state = self.states[name]
159
+ return state.approximate()
160
+
161
+ def update(
162
+ self,
163
+ Y: torch.Tensor,
164
+ name: str = "default",
165
+ ): # NEED
166
+ self.maybe_init_state(name)
167
+ state = self.states[name]
168
+ state.update(Y)
169
+
170
+ def step(
171
+ self,
172
+ Y: torch.Tensor,
173
+ name: str = "default",
174
+ ):
175
+ self.maybe_init_state(name)
176
+ state = self.states[name]
177
+ return state.step(Y)
178
+
109
179
  def __repr__(self):
110
180
  return f"TaylorSeerCalibrator_O({self.n_derivatives})"
@@ -0,0 +1,29 @@
1
+ from cache_dit.cache_factory.cache_types import CacheType
2
+ from cache_dit.cache_factory.cache_contexts.cache_manager import (
3
+ CachedContextManager,
4
+ )
5
+ from cache_dit.cache_factory.cache_contexts.prune_manager import (
6
+ PrunedContextManager,
7
+ )
8
+ from cache_dit.logger import init_logger
9
+
10
+ logger = init_logger(__name__)
11
+
12
+
13
+ class ContextManager:
14
+ _supported_managers = (
15
+ CachedContextManager,
16
+ PrunedContextManager,
17
+ )
18
+
19
+ def __new__(
20
+ cls,
21
+ cache_type: CacheType,
22
+ name: str = "default",
23
+ ) -> CachedContextManager | PrunedContextManager:
24
+ if cache_type == CacheType.DBCache:
25
+ return CachedContextManager(name)
26
+ elif cache_type == CacheType.DBPrune:
27
+ return PrunedContextManager(name)
28
+ else:
29
+ raise ValueError(f"Unsupported cache_type: {cache_type}.")
@@ -0,0 +1,69 @@
1
+ import dataclasses
2
+ from typing import List
3
+ from cache_dit.cache_factory.cache_types import CacheType
4
+ from cache_dit.cache_factory.cache_contexts.cache_config import (
5
+ BasicCacheConfig,
6
+ )
7
+
8
+ from cache_dit.logger import init_logger
9
+
10
+ logger = init_logger(__name__)
11
+
12
+
13
+ @dataclasses.dataclass
14
+ class DBPruneConfig(BasicCacheConfig):
15
+ # Dyanamic Block Prune specific configurations
16
+ cache_type: CacheType = CacheType.DBPrune # DBPrune
17
+
18
+ # enable_dynamic_prune_threshold (`bool`, *required*, defaults to False):
19
+ # Whether to enable the dynamic prune threshold or not. If True, we will
20
+ # compute the dynamic prune threshold based on the mean of the residual
21
+ # diffs of the previous computed or pruned blocks.
22
+ # But, also limit mean_diff to be at least 2x the residual_diff_threshold
23
+ # to avoid too aggressive pruning.
24
+ enable_dynamic_prune_threshold: bool = False
25
+ # max_dynamic_prune_threshold (`float`, *optional*, defaults to None):
26
+ # The max dynamic prune threshold, if not None, the dynamic prune threshold
27
+ # will not exceed this value. If None, we will limit it to be at least 2x
28
+ # the residual_diff_threshold to avoid too aggressive pruning.
29
+ max_dynamic_prune_threshold: float = None
30
+ # dynamic_prune_threshold_relax_ratio (`float`, *optional*, defaults to 1.25):
31
+ # The relax ratio for dynamic prune threshold, the dynamic prune threshold
32
+ # will be set as:
33
+ # dynamic_prune_threshold = mean_diff * dynamic_prune_threshold_relax_ratio
34
+ # to avoid too aggressive pruning.
35
+ # The default value is 1.25, which means the dynamic prune threshold will
36
+ # be 1.25 times the mean of the residual diffs of the previous computed
37
+ # or pruned blocks.
38
+ # Users can tune this value to achieve a better trade-off between speedup
39
+ # and precision. A higher value leads to more aggressive pruning
40
+ # and faster speedup, but may also lead to lower precision.
41
+ dynamic_prune_threshold_relax_ratio: float = 1.25
42
+ # non_prune_block_ids (`List[int]`, *optional*, defaults to []):
43
+ # The list of block ids that will not be pruned, even if their residual
44
+ # diffs are below the prune threshold. This can be useful for the first
45
+ # few blocks, which are usually more important for the model performance.
46
+ non_prune_block_ids: List[int] = dataclasses.field(default_factory=list)
47
+ # force_reduce_calibrator_vram (`bool`, *optional*, defaults to True):
48
+ # Whether to force reduce the VRAM usage of the calibrator for Dynamic Block
49
+ # Prune. If True, we will set the downsample_factor of the extra_cache_config
50
+ # to at least 2 to reduce the VRAM usage of the calibrator.
51
+ force_reduce_calibrator_vram: bool = False
52
+
53
+ def update(self, **kwargs) -> "DBPruneConfig":
54
+ for key, value in kwargs.items():
55
+ if hasattr(self, key):
56
+ setattr(self, key, value)
57
+ return self
58
+
59
+ def strify(self) -> str:
60
+ return (
61
+ f"{self.cache_type}_"
62
+ f"F{self.Fn_compute_blocks}"
63
+ f"B{self.Bn_compute_blocks}_"
64
+ f"W{self.max_warmup_steps}"
65
+ f"I{self.warmup_interval}"
66
+ f"M{max(0, self.max_cached_steps)}"
67
+ f"MC{max(0, self.max_continuous_cached_steps)}_"
68
+ f"R{self.residual_diff_threshold}"
69
+ )