cache-dit 0.3.2__py3-none-any.whl → 1.0.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. cache_dit/__init__.py +37 -19
  2. cache_dit/_version.py +2 -2
  3. cache_dit/caching/__init__.py +36 -0
  4. cache_dit/{cache_factory → caching}/block_adapters/__init__.py +149 -18
  5. cache_dit/{cache_factory → caching}/block_adapters/block_adapters.py +91 -7
  6. cache_dit/caching/block_adapters/block_registers.py +118 -0
  7. cache_dit/caching/cache_adapters/__init__.py +1 -0
  8. cache_dit/{cache_factory → caching}/cache_adapters/cache_adapter.py +262 -123
  9. cache_dit/caching/cache_blocks/__init__.py +226 -0
  10. cache_dit/caching/cache_blocks/offload_utils.py +115 -0
  11. cache_dit/caching/cache_blocks/pattern_0_1_2.py +26 -0
  12. cache_dit/caching/cache_blocks/pattern_3_4_5.py +543 -0
  13. cache_dit/caching/cache_blocks/pattern_base.py +748 -0
  14. cache_dit/caching/cache_blocks/pattern_utils.py +86 -0
  15. cache_dit/caching/cache_contexts/__init__.py +28 -0
  16. cache_dit/caching/cache_contexts/cache_config.py +120 -0
  17. cache_dit/{cache_factory → caching}/cache_contexts/cache_context.py +29 -90
  18. cache_dit/{cache_factory → caching}/cache_contexts/cache_manager.py +138 -10
  19. cache_dit/{cache_factory → caching}/cache_contexts/calibrators/__init__.py +25 -3
  20. cache_dit/{cache_factory → caching}/cache_contexts/calibrators/foca.py +1 -1
  21. cache_dit/{cache_factory → caching}/cache_contexts/calibrators/taylorseer.py +81 -9
  22. cache_dit/caching/cache_contexts/context_manager.py +36 -0
  23. cache_dit/caching/cache_contexts/prune_config.py +63 -0
  24. cache_dit/caching/cache_contexts/prune_context.py +155 -0
  25. cache_dit/caching/cache_contexts/prune_manager.py +167 -0
  26. cache_dit/caching/cache_interface.py +358 -0
  27. cache_dit/{cache_factory → caching}/cache_types.py +19 -2
  28. cache_dit/{cache_factory → caching}/forward_pattern.py +14 -14
  29. cache_dit/{cache_factory → caching}/params_modifier.py +10 -10
  30. cache_dit/caching/patch_functors/__init__.py +15 -0
  31. cache_dit/{cache_factory → caching}/patch_functors/functor_chroma.py +1 -1
  32. cache_dit/{cache_factory → caching}/patch_functors/functor_dit.py +1 -1
  33. cache_dit/{cache_factory → caching}/patch_functors/functor_flux.py +1 -1
  34. cache_dit/{cache_factory → caching}/patch_functors/functor_hidream.py +2 -4
  35. cache_dit/{cache_factory → caching}/patch_functors/functor_hunyuan_dit.py +1 -1
  36. cache_dit/caching/patch_functors/functor_qwen_image_controlnet.py +263 -0
  37. cache_dit/caching/utils.py +68 -0
  38. cache_dit/metrics/__init__.py +11 -0
  39. cache_dit/metrics/metrics.py +3 -0
  40. cache_dit/parallelism/__init__.py +3 -0
  41. cache_dit/parallelism/backends/native_diffusers/__init__.py +6 -0
  42. cache_dit/parallelism/backends/native_diffusers/context_parallelism/__init__.py +164 -0
  43. cache_dit/parallelism/backends/native_diffusers/context_parallelism/attention/__init__.py +4 -0
  44. cache_dit/parallelism/backends/native_diffusers/context_parallelism/attention/_attention_dispatch.py +304 -0
  45. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_chroma.py +95 -0
  46. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_cogvideox.py +202 -0
  47. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_cogview.py +299 -0
  48. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_cosisid.py +123 -0
  49. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_dit.py +94 -0
  50. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_flux.py +88 -0
  51. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_hunyuan.py +729 -0
  52. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_ltxvideo.py +264 -0
  53. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_nunchaku.py +407 -0
  54. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_pixart.py +285 -0
  55. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_qwen_image.py +104 -0
  56. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_registers.py +84 -0
  57. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_plan_wan.py +101 -0
  58. cache_dit/parallelism/backends/native_diffusers/context_parallelism/cp_planners.py +117 -0
  59. cache_dit/parallelism/backends/native_diffusers/parallel_difffusers.py +49 -0
  60. cache_dit/parallelism/backends/native_diffusers/utils.py +11 -0
  61. cache_dit/parallelism/backends/native_pytorch/__init__.py +6 -0
  62. cache_dit/parallelism/backends/native_pytorch/parallel_torch.py +62 -0
  63. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/__init__.py +48 -0
  64. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_plan_flux.py +171 -0
  65. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_plan_kandinsky5.py +79 -0
  66. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_plan_qwen_image.py +78 -0
  67. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_plan_registers.py +65 -0
  68. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_plan_wan.py +153 -0
  69. cache_dit/parallelism/backends/native_pytorch/tensor_parallelism/tp_planners.py +14 -0
  70. cache_dit/parallelism/parallel_backend.py +26 -0
  71. cache_dit/parallelism/parallel_config.py +88 -0
  72. cache_dit/parallelism/parallel_interface.py +77 -0
  73. cache_dit/quantize/__init__.py +7 -0
  74. cache_dit/quantize/backends/__init__.py +1 -0
  75. cache_dit/quantize/backends/bitsandbytes/__init__.py +0 -0
  76. cache_dit/quantize/backends/torchao/__init__.py +1 -0
  77. cache_dit/quantize/{quantize_ao.py → backends/torchao/quantize_ao.py} +44 -30
  78. cache_dit/quantize/quantize_backend.py +0 -0
  79. cache_dit/quantize/quantize_config.py +0 -0
  80. cache_dit/quantize/quantize_interface.py +3 -16
  81. cache_dit/summary.py +593 -0
  82. cache_dit/utils.py +46 -290
  83. cache_dit-1.0.14.dist-info/METADATA +301 -0
  84. cache_dit-1.0.14.dist-info/RECORD +102 -0
  85. cache_dit-1.0.14.dist-info/licenses/LICENSE +203 -0
  86. cache_dit/cache_factory/__init__.py +0 -28
  87. cache_dit/cache_factory/block_adapters/block_registers.py +0 -90
  88. cache_dit/cache_factory/cache_adapters/__init__.py +0 -1
  89. cache_dit/cache_factory/cache_blocks/__init__.py +0 -72
  90. cache_dit/cache_factory/cache_blocks/pattern_0_1_2.py +0 -16
  91. cache_dit/cache_factory/cache_blocks/pattern_3_4_5.py +0 -238
  92. cache_dit/cache_factory/cache_blocks/pattern_base.py +0 -404
  93. cache_dit/cache_factory/cache_blocks/utils.py +0 -41
  94. cache_dit/cache_factory/cache_contexts/__init__.py +0 -14
  95. cache_dit/cache_factory/cache_interface.py +0 -217
  96. cache_dit/cache_factory/patch_functors/__init__.py +0 -12
  97. cache_dit/cache_factory/utils.py +0 -57
  98. cache_dit-0.3.2.dist-info/METADATA +0 -753
  99. cache_dit-0.3.2.dist-info/RECORD +0 -56
  100. cache_dit-0.3.2.dist-info/licenses/LICENSE +0 -53
  101. /cache_dit/{cache_factory → caching}/.gitignore +0 -0
  102. /cache_dit/{cache_factory → caching}/cache_contexts/calibrators/base.py +0 -0
  103. /cache_dit/{cache_factory → caching}/patch_functors/functor_base.py +0 -0
  104. /cache_dit/{custom_ops → kernels}/__init__.py +0 -0
  105. /cache_dit/{custom_ops → kernels}/triton_taylorseer.py +0 -0
  106. {cache_dit-0.3.2.dist-info → cache_dit-1.0.14.dist-info}/WHEEL +0 -0
  107. {cache_dit-0.3.2.dist-info → cache_dit-1.0.14.dist-info}/entry_points.txt +0 -0
  108. {cache_dit-0.3.2.dist-info → cache_dit-1.0.14.dist-info}/top_level.txt +0 -0
@@ -1,753 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: cache_dit
3
- Version: 0.3.2
4
- Summary: A Unified, Flexible and Training-free Cache Acceleration Framework for 🤗Diffusers.
5
- Author: DefTruth, vipshop.com, etc.
6
- Maintainer: DefTruth, vipshop.com, etc
7
- Project-URL: Repository, https://github.com/vipshop/cache-dit.git
8
- Project-URL: Homepage, https://github.com/vipshop/cache-dit.git
9
- Requires-Python: >=3.10
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Requires-Dist: packaging
13
- Requires-Dist: pyyaml
14
- Requires-Dist: torch>=2.7.1
15
- Requires-Dist: transformers>=4.55.2
16
- Requires-Dist: diffusers>=0.35.1
17
- Requires-Dist: scikit-image
18
- Requires-Dist: scipy
19
- Requires-Dist: lpips==0.1.4
20
- Requires-Dist: torchao>=0.12.0
21
- Requires-Dist: image-reward
22
- Provides-Extra: all
23
- Provides-Extra: metrics
24
- Requires-Dist: image-reward; extra == "metrics"
25
- Requires-Dist: pytorch-fid; extra == "metrics"
26
- Requires-Dist: lpips==0.1.4; extra == "metrics"
27
- Provides-Extra: dev
28
- Requires-Dist: pre-commit; extra == "dev"
29
- Requires-Dist: pytest<8.0.0,>=7.0.0; extra == "dev"
30
- Requires-Dist: pytest-html; extra == "dev"
31
- Requires-Dist: expecttest; extra == "dev"
32
- Requires-Dist: hypothesis; extra == "dev"
33
- Requires-Dist: transformers; extra == "dev"
34
- Requires-Dist: diffusers; extra == "dev"
35
- Requires-Dist: accelerate; extra == "dev"
36
- Requires-Dist: peft; extra == "dev"
37
- Requires-Dist: protobuf; extra == "dev"
38
- Requires-Dist: sentencepiece; extra == "dev"
39
- Requires-Dist: opencv-python-headless; extra == "dev"
40
- Requires-Dist: ftfy; extra == "dev"
41
- Requires-Dist: scikit-image; extra == "dev"
42
- Requires-Dist: pytorch-fid; extra == "dev"
43
- Dynamic: license-file
44
- Dynamic: provides-extra
45
- Dynamic: requires-dist
46
- Dynamic: requires-python
47
-
48
- <div align="center">
49
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cache-dit-logo.png height="120">
50
-
51
- <p align="center">
52
- A <b>Unified</b>, Flexible and Training-free <b>Cache Acceleration</b> Framework for <b>🤗Diffusers</b> <br>
53
- ♥️ Cache Acceleration with <b>One-line</b> Code ~ ♥️
54
- </p>
55
- <div align='center'>
56
- <img src=https://img.shields.io/badge/Language-Python-brightgreen.svg >
57
- <img src=https://img.shields.io/badge/PRs-welcome-9cf.svg >
58
- <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
59
- <img src=https://static.pepy.tech/badge/cache-dit >
60
- <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
61
- <img src=https://img.shields.io/badge/Release-v0.3-brightgreen.svg >
62
- </div>
63
- <p align="center">
64
- <b><a href="#unified">📚Unified Cache APIs</a></b> | <a href="#forward-pattern-matching">📚Forward Pattern Matching</a> | <a href="#automatic-block-adapter">📚Automatic Block Adapter</a><br>
65
- <a href="#hybird-forward-pattern">📚Hybrid Forward Pattern</a> | <a href="#dbcache">📚DBCache</a> | <a href="#taylorseer">📚TaylorSeer Calibrator</a> | <a href="#cfg">📚Cache CFG</a><br>
66
- <a href="#benchmarks">📚Text2Image DrawBench</a> | <a href="#benchmarks">📚Text2Image Distillation DrawBench</a>
67
- </p>
68
- <p align="center">
69
- 🎉Now, <b>cache-dit</b> covers almost <b>All</b> Diffusers' <b>DiT</b> Pipelines🎉<br>
70
- 🔥<a href="#supported">Qwen-Image</a> | <a href="#supported">FLUX.1</a> | <a href="#supported">Qwen-Image-Lightning</a> | <a href="#supported"> Wan 2.1 </a> | <a href="#supported"> Wan 2.2 </a>🔥<br>
71
- 🔥<a href="#supported">HunyuanImage-2.1</a> | <a href="#supported">HunyuanVideo</a> | <a href="#supported">HunyuanDiT</a> | <a href="#supported">HiDream</a> | <a href="#supported">AuraFlow</a>🔥<br>
72
- 🔥<a href="#supported">CogView3Plus</a> | <a href="#supported">CogView4</a> | <a href="#supported">LTXVideo</a> | <a href="#supported">CogVideoX</a> | <a href="#supported">CogVideoX 1.5</a> | <a href="#supported">ConsisID</a>🔥<br>
73
- 🔥<a href="#supported">Cosmos</a> | <a href="#supported">SkyReelsV2</a> | <a href="#supported">VisualCloze</a> | <a href="#supported">OmniGen 1/2</a> | <a href="#supported">Lumina 1/2</a> | <a href="#supported">PixArt</a>🔥<br>
74
- 🔥<a href="#supported">Chroma</a> | <a href="#supported">Sana</a> | <a href="#supported">Allegro</a> | <a href="#supported">Mochi</a> | <a href="#supported">SD 3/3.5</a> | <a href="#supported">Amused</a> | <a href="#supported"> ... </a> | <a href="#supported">DiT-XL</a>🔥
75
- </p>
76
- </div>
77
- <div align='center'>
78
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/wan2.2.C0_Q0_NONE.gif width=124px>
79
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/wan2.2.C1_Q0_DBCACHE_F1B0_W2M8MC2_T1O2_R0.08.gif width=124px>
80
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/hunyuan_video.C0_L0_Q0_NONE.gif width=126px>
81
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/hunyuan_video.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.12_S27.gif width=126px>
82
- <p><b>🔥Wan2.2 MoE</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.0x↑🎉 | <b>HunyuanVideo</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.1x↑🎉</p>
83
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image.C0_Q0_NONE.png width=160px>
84
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image.C1_Q0_DBCACHE_F8B0_W8M0MC0_T1O4_R0.12_S23.png width=160px>
85
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux.C0_Q0_NONE_T23.69s.png width=90px>
86
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux.C0_Q0_DBCACHE_F1B0_W4M0MC0_T1O2_R0.15_S16_T11.39s.png width=90px>
87
- <p><b>🔥Qwen-Image</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.8x↑🎉 | <b>FLUX.1-dev</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.1x↑🎉</p>
88
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux-kontext-cat.C0_L0_Q0_NONE.png width=100px>
89
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux-kontext.C0_L0_Q0_NONE.png width=100px>
90
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux-kontext.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S10.png width=100px>
91
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux-kontext.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.12_S12.png width=100px>
92
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/flux-kontext.C0_L0_Q0_DBCACHE_F1B0_W2M0MC2_T0O2_R0.15_S15.png width=100px>
93
- <p><b>🔥FLUX-Kontext-dev</b> | Baseline | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.3x↑🎉 | 1.7x↑🎉 | 2.0x↑ 🎉</p>
94
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image-lightning.4steps.C0_L1_Q0_NONE.png width=160px>
95
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image-lightning.4steps.C0_L1_Q0_DBCACHE_F16B16_W2M1MC1_T0O2_R0.9_S1.png width=160px>
96
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/hunyuan-image-2.1.C0_L0_Q1_fp8_w8a16_wo_NONE.png width=90px>
97
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/hunyuan-image-2.1.C0_L0_Q1_fp8_w8a16_wo_DBCACHE_F8B0_W8M0MC2_T1O2_R0.12_S25.png width=90px>
98
- <p><b>🔥Qwen...Lightning</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.14x↑🎉 | <b>HunyuanImage</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.7x↑🎉</p>
99
- <img src=https://github.com/vipshop/cache-dit/raw/main/examples/data/bear.png width=125px>
100
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image-edit.C0_L0_Q0_NONE.png width=125px>
101
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image-edit.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S18.png width=125px>
102
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/qwen-image-edit.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.12_S24.png width=125px>
103
- <p><b>🔥Qwen-Image-Edit</b> | Input w/o Edit | Baseline | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.6x↑🎉 | 1.9x↑🎉 </p>
104
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/hidream.C0_L0_Q0_NONE.png width=100px>
105
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/hidream.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.08_S24.png width=100px>
106
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview4.C0_L0_Q0_NONE.png width=100px>
107
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview4.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S15.png width=100px>
108
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview4.C0_L0_Q0_DBCACHE_F1B0_W4M0MC4_T0O2_R0.2_S22.png width=100px>
109
- <p><b>🔥HiDream-I1</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.9x↑🎉 | <b>CogView4</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.4x↑🎉 | 1.7x↑🎉</p>
110
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview3_plus.C0_L0_Q0_NONE.png width=100px>
111
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview3_plus.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S15.png width=100px>
112
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cogview3_plus.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.08_S25.png width=100px>
113
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/chroma1-hd.C0_L0_Q0_NONE.png width=100px>
114
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/chroma1-hd.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.08_S20.png width=100px>
115
- <p><b>🔥CogView3</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.5x↑🎉 | 2.0x↑🎉| <b>Chroma1-HD</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.9x↑🎉</p>
116
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/mochi.C0_L0_Q0_NONE.gif width=125px>
117
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/mochi.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S34.gif width=125px>
118
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/skyreels_v2.C0_L0_Q0_NONE.gif width=125px>
119
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/skyreels_v2.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.12_S17.gif width=125px>
120
- <p><b>🔥Mochi-1-preview</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.8x↑🎉 | <b>SkyReelsV2</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.6x↑🎉</p>
121
- <img src=https://github.com/vipshop/cache-dit/raw/main/examples/data/visualcloze/00555_00.jpg width=100px>
122
- <img src=https://github.com/vipshop/cache-dit/raw/main/examples/data/visualcloze/12265_00.jpg width=100px>
123
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_NONE.png width=100px>
124
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S15.png width=100px>
125
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.08_S18.png width=100px>
126
- <p><b>🔥VisualCloze-512</b> | Model | Cloth | Baseline | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.4x↑🎉 | 1.7x↑🎉 </p>
127
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/ltx-video.C0_L0_Q0_NONE.gif width=144px>
128
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/ltx-video.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.15_S13.gif width=144px>
129
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/cogvideox1.5.C0_L0_Q0_NONE.gif width=105px>
130
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/cogvideox1.5.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.12_S22.gif width=105px>
131
- <p><b>🔥LTX-Video-0.9.7</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.7x↑🎉 | <b>CogVideoX1.5</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.0x↑🎉</p>
132
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/omingen-v1.C0_L0_Q0_NONE.png width=100px>
133
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/omingen-v1.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S24.png width=100px>
134
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/omingen-v1.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T1O2_R0.08_S38.png width=100px>
135
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/lumina2.C0_L0_Q0_NONE.png width=100px>
136
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/lumina2.C0_L0_Q0_DBCACHE_F1B0_W2M0MC2_T0O2_R0.12_S14.png width=100px>
137
- <p><b>🔥OmniGen-v1</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.5x↑🎉 | 3.3x↑🎉 | <b>Lumina2</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.9x↑🎉</p>
138
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/allegro.C0_L0_Q0_NONE.gif width=117px>
139
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/allegro.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.26_S27.gif width=117px>
140
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/auraflow.C0_L0_Q0_NONE.png width=133px>
141
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/auraflow.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.08_S28.png width=133px>
142
- <p><b>🔥Allegro</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.36x↑🎉 | <b>AuraFlow-v0.3</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.27x↑🎉 </p>
143
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/sana.C0_L0_Q0_NONE.png width=100px>
144
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/sana.C0_L0_Q0_DBCACHE_F8B0_W8M0MC2_T0O2_R0.25_S6.png width=100px>
145
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/sana.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.3_S8.png width=100px>
146
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/pixart-sigma.C0_L0_Q0_NONE.png width=100px>
147
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/pixart-sigma.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S28.png width=100px>
148
- <p><b>🔥Sana</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.3x↑🎉 | 1.6x↑🎉| <b>PixArt-Sigma</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.3x↑🎉</p>
149
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/pixart-alpha.C0_L0_Q0_NONE.png width=100px>
150
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/pixart-alpha.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.05_S27.png width=100px>
151
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/pixart-alpha.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S32.png width=100px>
152
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/sd_3_5.C0_L0_Q0_NONE.png width=100px>
153
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/sd_3_5.C0_L0_Q0_DBCACHE_F1B0_W8M0MC3_T0O2_R0.12_S30.png width=100px>
154
- <p><b>🔥PixArt-Alpha</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.6x↑🎉 | 1.8x↑🎉| <b>SD 3.5</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:2.5x↑🎉</p>
155
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/amused.C0_L0_Q0_NONE.png width=100px>
156
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/amused.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.34_S1.png width=100px>
157
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/amused.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.38_S2.png width=100px>
158
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/dit-xl.C0_L0_Q0_NONE.png width=100px>
159
- <img src=https://github.com/vipshop/cache-dit/raw/main/assets/dit-xl.C0_L0_Q0_DBCACHE_F1B0_W8M0MC2_T0O2_R0.15_S11.png width=100px>
160
- <p><b>🔥Asumed</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.1x↑🎉 | 1.2x↑🎉 | <b>DiT-XL-256</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.8x↑🎉
161
- <br>♥️ Please consider to leave a <b>⭐️ Star</b> to support us ~ ♥️</p>
162
- </div>
163
-
164
- ## 🔥News
165
-
166
- - [2025-09-10] 🎉Day 1 support [**HunyuanImage-2.1**](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1) with **1.7x↑🎉** speedup! Check this [example](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_hunyuan_image_2.1.py).
167
- - [2025-09-08] 🔥[**Qwen-Image-Lightning**](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_qwen_image_lightning.py) **7.1/3.5 steps🎉** inference with **[DBCache: F16B16](https://github.com/vipshop/cache-dit)**.
168
- - [2025-09-03] 🎉[**Wan2.2-MoE**](https://github.com/Wan-Video) **2.4x↑🎉** speedup! Please refer to [run_wan_2.2.py](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_wan_2.2.py) as an example.
169
- - [2025-08-19] 🔥[**Qwen-Image-Edit**](https://github.com/QwenLM/Qwen-Image) **2x↑🎉** speedup! Check the example: [run_qwen_image_edit.py](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_qwen_image_edit.py).
170
- - [2025-08-11] 🔥[**Qwen-Image**](https://github.com/QwenLM/Qwen-Image) **1.8x↑🎉** speedup! Please refer to [run_qwen_image.py](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_qwen_image.py) as an example.
171
- - [2025-07-13] 🎉[**FLUX.1-dev**](https://github.com/xlite-dev/flux-faster) **3.3x↑🎉** speedup! NVIDIA L20 with **[cache-dit](https://github.com/vipshop/cache-dit)** + **compile + FP8 DQ**.
172
-
173
- <details>
174
- <summary> Previous News </summary>
175
-
176
- - [2025-09-08] 🎉First caching mechanism in [Qwen-Image-Lightning](https://github.com/ModelTC/Qwen-Image-Lightning) with **[cache-dit](https://github.com/vipshop/cache-dit)**, check this [PR](https://github.com/ModelTC/Qwen-Image-Lightning/pull/35).
177
- - [2025-09-08] 🎉First caching mechanism in [Wan2.2](https://github.com/Wan-Video/Wan2.2) with **[cache-dit](https://github.com/vipshop/cache-dit)**, check this [PR](https://github.com/Wan-Video/Wan2.2/pull/127) for more details.
178
- - [2025-08-12] 🎉First caching mechanism in [QwenLM/Qwen-Image](https://github.com/QwenLM/Qwen-Image) with **[cache-dit](https://github.com/vipshop/cache-dit)**, check this [PR](https://github.com/QwenLM/Qwen-Image/pull/61).
179
- - [2025-09-01] 📚[**Hybird Forward Pattern**](#unified) is supported! Please check [FLUX.1-dev](https://github.com/vipshop/cache-dit/raw/main/examples/run_flux_adapter.py) as an example.
180
- - [2025-08-10] 🔥[**FLUX.1-Kontext-dev**](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev) is supported! Please refer [run_flux_kontext.py](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_flux_kontext.py) as an example.
181
- - [2025-07-18] 🎉First caching mechanism in [🤗huggingface/flux-fast](https://github.com/huggingface/flux-fast) with **[cache-dit](https://github.com/vipshop/cache-dit)**, check the [PR](https://github.com/huggingface/flux-fast/pull/13).
182
-
183
- </details>
184
-
185
- ## 📖Contents
186
-
187
- <div id="contents"></div>
188
-
189
- - [⚙️Installation](#️installation)
190
- - [🔥Benchmarks](#benchmarks)
191
- - [🔥Supported Pipelines](#supported)
192
- - [🎉Unified Cache APIs](#unified)
193
- - [📚Forward Pattern Matching](#forward-pattern-matching)
194
- - [♥️Cache with One-line Code](#%EF%B8%8Fcache-acceleration-with-one-line-code)
195
- - [🔥Automatic Block Adapter](#automatic-block-adapter)
196
- - [📚Hybird Forward Pattern](#automatic-block-adapter)
197
- - [📚Implement Patch Functor](#implement-patch-functor)
198
- - [🤖Cache Acceleration Stats](#cache-acceleration-stats-summary)
199
- - [⚡️Dual Block Cache](#dbcache)
200
- - [🔥TaylorSeer Calibrator](#taylorseer)
201
- - [⚡️Hybrid Cache CFG](#cfg)
202
- - [⚙️Torch Compile](#compile)
203
- - [🛠Metrics CLI](#metrics)
204
-
205
- ## ⚙️Installation
206
-
207
- <div id="installation"></div>
208
-
209
- You can install the stable release of `cache-dit` from PyPI:
210
-
211
- ```bash
212
- pip3 install -U cache-dit
213
- ```
214
- Or you can install the latest develop version from GitHub:
215
-
216
- ```bash
217
- pip3 install git+https://github.com/vipshop/cache-dit.git
218
- ```
219
-
220
- ## 🔥Supported Pipelines
221
-
222
- <div id="supported"></div>
223
-
224
- Currently, **cache-dit** library supports almost **Any** Diffusion Transformers (with **Transformer Blocks** that match the specific Input and Output **patterns**). Please check [🎉Examples](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline) for more details. Here are just some of the tested models listed.
225
-
226
- ```python
227
- >>> import cache_dit
228
- >>> cache_dit.supported_pipelines()
229
- (30, ['Flux*', 'Mochi*', 'CogVideoX*', 'Wan*', 'HunyuanVideo*', 'QwenImage*', 'LTX*', 'Allegro*',
230
- 'CogView3Plus*', 'CogView4*', 'Cosmos*', 'EasyAnimate*', 'SkyReelsV2*', 'StableDiffusion3*',
231
- 'ConsisID*', 'DiT*', 'Amused*', 'Bria*', 'Lumina*', 'OmniGen*', 'PixArt*', 'Sana*', 'StableAudio*',
232
- 'VisualCloze*', 'AuraFlow*', 'Chroma*', 'ShapE*', 'HiDream*', 'HunyuanDiT*', 'HunyuanDiTPAG*'])
233
- ```
234
-
235
- <details>
236
- <summary> Show all pipelines </summary>
237
-
238
- - [🚀HunyuanImage-2.1](https://github.com/vipshop/cache-dit/raw/main/examples)
239
- - [🚀Qwen-Image-Lightning](https://github.com/vipshop/cache-dit/raw/main/examples)
240
- - [🚀Qwen-Image-Edit](https://github.com/vipshop/cache-dit/raw/main/examples)
241
- - [🚀Qwen-Image](https://github.com/vipshop/cache-dit/raw/main/examples)
242
- - [🚀FLUX.1-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
243
- - [🚀FLUX.1-Fill-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
244
- - [🚀FLUX.1-Kontext-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
245
- - [🚀CogView4](https://github.com/vipshop/cache-dit/raw/main/examples)
246
- - [🚀Wan2.2-T2V](https://github.com/vipshop/cache-dit/raw/main/examples)
247
- - [🚀HunyuanVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
248
- - [🚀HiDream-I1-Full](https://github.com/vipshop/cache-dit/raw/main/examples)
249
- - [🚀HunyuanDiT](https://github.com/vipshop/cache-dit/raw/main/examples)
250
- - [🚀Wan2.1-T2V](https://github.com/vipshop/cache-dit/raw/main/examples)
251
- - [🚀Wan2.1-FLF2V](https://github.com/vipshop/cache-dit/raw/main/examples)
252
- - [🚀SkyReelsV2](https://github.com/vipshop/cache-dit/raw/main/examples)
253
- - [🚀Chroma1-HD](https://github.com/vipshop/cache-dit/raw/main/examples)
254
- - [🚀CogVideoX1.5](https://github.com/vipshop/cache-dit/raw/main/examples)
255
- - [🚀CogView3-Plus](https://github.com/vipshop/cache-dit/raw/main/examples)
256
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples)
257
- - [🚀VisualCloze](https://github.com/vipshop/cache-dit/raw/main/examples)
258
- - [🚀LTXVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
259
- - [🚀OmniGen](https://github.com/vipshop/cache-dit/raw/main/examples)
260
- - [🚀Lumina2](https://github.com/vipshop/cache-dit/raw/main/examples)
261
- - [🚀mochi-1-preview](https://github.com/vipshop/cache-dit/raw/main/examples)
262
- - [🚀AuraFlow-v0.3](https://github.com/vipshop/cache-dit/raw/main/examples)
263
- - [🚀PixArt-Alpha](https://github.com/vipshop/cache-dit/raw/main/examples)
264
- - [🚀PixArt-Sigma](https://github.com/vipshop/cache-dit/raw/main/examples)
265
- - [🚀NVIDIA Sana](https://github.com/vipshop/cache-dit/raw/main/examples)
266
- - [🚀SD-3/3.5](https://github.com/vipshop/cache-dit/raw/main/examples)
267
- - [🚀ConsisID](https://github.com/vipshop/cache-dit/raw/main/examples)
268
- - [🚀Allegro](https://github.com/vipshop/cache-dit/raw/main/examples)
269
- - [🚀Amused](https://github.com/vipshop/cache-dit/raw/main/examples)
270
- - [🚀DiT-XL](https://github.com/vipshop/cache-dit/raw/main/examples)
271
- - ...
272
-
273
- </details>
274
-
275
- ## 🔥Benchmarks
276
-
277
- <div id="benchmarks"></div>
278
-
279
- cache-dit will support more mainstream Cache acceleration algorithms in the future. More benchmarks will be released, please stay tuned for update. Here, only the results of some precision and performance benchmarks are presented. The test dataset is **DrawBench**. For a complete benchmark, please refer to [📚Benchmarks](https://github.com/vipshop/cache-dit/raw/main/bench/).
280
-
281
- ### 📚Text2Image DrawBench: FLUX.1-dev
282
-
283
- Comparisons between different FnBn compute block configurations show that **more compute blocks result in higher precision**. For example, the F8B0_W8MC0 configuration achieves the best Clip Score (33.007) and ImageReward (1.0333). **Device**: NVIDIA L20. **F**: Fn_compute_blocks, **B**: Bn_compute_blocks, 50 steps.
284
-
285
-
286
- | Config | Clip Score(↑) | ImageReward(↑) | PSNR(↑) | TFLOPs(↓) | SpeedUp(↑) |
287
- | --- | --- | --- | --- | --- | --- |
288
- | [**FLUX.1**-dev]: 50 steps | 32.9217 | 1.0412 | INF | 3726.87 | 1.00x |
289
- | F8B0_W4MC0_R0.08 | 32.9871 | 1.0370 | 33.8317 | 2064.81 | 1.80x |
290
- | F8B0_W4MC2_R0.12 | 32.9535 | 1.0185 | 32.7346 | 1935.73 | 1.93x |
291
- | F8B0_W4MC3_R0.12 | 32.9234 | 1.0085 | 32.5385 | 1816.58 | 2.05x |
292
- | F4B0_W4MC3_R0.12 | 32.8981 | 1.0130 | 31.8031 | 1507.83 | 2.47x |
293
- | F4B0_W4MC4_R0.12 | 32.8384 | 1.0065 | 31.5292 | 1400.08 | 2.66x |
294
-
295
- The comparison between **cache-dit: DBCache** and algorithms such as Δ-DiT, Chipmunk, FORA, DuCa, TaylorSeer and FoCa is as follows. Now, in the comparison with a speedup ratio less than **3x**, cache-dit achieved the best accuracy. Please check [📚How to Reproduce?](https://github.com/vipshop/cache-dit/raw/main/bench/) for more details.
296
-
297
- | Method | TFLOPs(↓) | SpeedUp(↑) | ImageReward(↑) | Clip Score(↑) |
298
- | --- | --- | --- | --- | --- |
299
- | [**FLUX.1**-dev]: 50 steps | 3726.87 | 1.00× | 0.9898 | 32.404 |
300
- | [**FLUX.1**-dev]: 60% steps | 2231.70 | 1.67× | 0.9663 | 32.312 |
301
- | Δ-DiT(N=2) | 2480.01 | 1.50× | 0.9444 | 32.273 |
302
- | Δ-DiT(N=3) | 1686.76 | 2.21× | 0.8721 | 32.102 |
303
- | [**FLUX.1**-dev]: 34% steps | 1264.63 | 3.13× | 0.9453 | 32.114 |
304
- | Chipmunk | 1505.87 | 2.47× | 0.9936 | 32.776 |
305
- | FORA(N=3) | 1320.07 | 2.82× | 0.9776 | 32.266 |
306
- | **[DBCache(F=4,B=0,W=4,MC=4)](https://github.com/vipshop/cache-dit)** | 1400.08 | **2.66×** | **1.0065** | 32.838 |
307
- | **[DBCache+TaylorSeer(F=1,B=0,O=1)](https://github.com/vipshop/cache-dit)** | 1153.05 | **3.23×** | **1.0221** | 32.819 |
308
- | DuCa(N=5) | 978.76 | 3.80× | 0.9955 | 32.241 |
309
- | TaylorSeer(N=4,O=2) | 1042.27 | 3.57× | 0.9857 | 32.413 |
310
- | **[DBCache(F=1,B=0,W=4,MC=6)](https://github.com/vipshop/cache-dit)** | 944.75 | **3.94×** | 0.9997 | 32.849 |
311
- | **[DBCache+TaylorSeer(F=1,B=0,O=1)](https://github.com/vipshop/cache-dit)** | 944.75 | **3.94×** | **1.0107** | 32.865 |
312
- | **[FoCa(N=5): arxiv.2508.16211](https://arxiv.org/pdf/2508.16211)** | 893.54 | **4.16×** | **1.0029** | **32.948** |
313
-
314
- <details>
315
- <summary> Show all comparison </summary>
316
-
317
- | Method | TFLOPs(↓) | SpeedUp(↑) | ImageReward(↑) | Clip Score(↑) |
318
- | --- | --- | --- | --- | --- |
319
- | [**FLUX.1**-dev]: 50 steps | 3726.87 | 1.00× | 0.9898 | 32.404 |
320
- | [**FLUX.1**-dev]: 60% steps | 2231.70 | 1.67× | 0.9663 | 32.312 |
321
- | Δ-DiT(N=2) | 2480.01 | 1.50× | 0.9444 | 32.273 |
322
- | Δ-DiT(N=3) | 1686.76 | 2.21× | 0.8721 | 32.102 |
323
- | [**FLUX.1**-dev]: 34% steps | 1264.63 | 3.13× | 0.9453 | 32.114 |
324
- | Chipmunk | 1505.87 | 2.47× | 0.9936 | 32.776 |
325
- | FORA(N=3) | 1320.07 | 2.82× | 0.9776 | 32.266 |
326
- | **[DBCache(F=4,B=0,W=4,MC=4)](https://github.com/vipshop/cache-dit)** | 1400.08 | **2.66×** | **1.0065** | 32.838 |
327
- | DuCa(N=5) | 978.76 | 3.80× | 0.9955 | 32.241 |
328
- | TaylorSeer(N=4,O=2) | 1042.27 | 3.57× | 0.9857 | 32.413 |
329
- | **[DBCache+TaylorSeer(F=1,B=0,O=1)](https://github.com/vipshop/cache-dit)** | 1153.05 | **3.23×** | **1.0221** | 32.819 |
330
- | **[DBCache(F=1,B=0,W=4,MC=6)](https://github.com/vipshop/cache-dit)** | 944.75 | **3.94×** | 0.9997 | 32.849 |
331
- | **[DBCache+TaylorSeer(F=1,B=0,O=1)](https://github.com/vipshop/cache-dit)** | 944.75 | **3.94×** | **1.0107** | 32.865 |
332
- | **[FoCa(N=5): arxiv.2508.16211](https://arxiv.org/pdf/2508.16211)** | 893.54 | **4.16×** | **1.0029** | **32.948** |
333
- | [**FLUX.1**-dev]: 22% steps | 818.29 | 4.55× | 0.8183 | 31.772 |
334
- | FORA(N=4) | 967.91 | 3.84× | 0.9730 | 32.142 |
335
- | ToCa(N=8) | 784.54 | 4.74× | 0.9451 | 31.993 |
336
- | DuCa(N=7) | 760.14 | 4.89× | 0.9757 | 32.066 |
337
- | TeaCache(l=0.8) | 892.35 | 4.17× | 0.8683 | 31.704 |
338
- | **[DBCache(F=4,B=0,W=4,MC=10)](https://github.com/vipshop/cache-dit)** | 816.65 | 4.56x | 0.8245 | 32.191 |
339
- | TaylorSeer(N=5,O=2) | 893.54 | 4.16× | 0.9768 | 32.467 |
340
- | **[FoCa(N=7): arxiv.2508.16211](https://arxiv.org/pdf/2508.16211)** | 670.44 | **5.54×** | **0.9891** | **32.920** |
341
- | FORA(N=7) | 670.14 | 5.55× | 0.7418 | 31.519 |
342
- | ToCa(N=12) | 644.70 | 5.77× | 0.7155 | 31.808 |
343
- | DuCa(N=10) | 606.91 | 6.13× | 0.8382 | 31.759 |
344
- | TeaCache(l=1.2) | 669.27 | 5.56× | 0.7394 | 31.704 |
345
- | **[DBCache(F=1,B=0,W=4,MC=10)](https://github.com/vipshop/cache-dit)** | 651.90 | **5.72x** | 0.8796 | **32.318** |
346
- | TaylorSeer(N=7,O=2) | 670.44 | 5.54× | 0.9128 | 32.128 |
347
- | **[FoCa(N=8): arxiv.2508.16211](https://arxiv.org/pdf/2508.16211)** | 596.07 | **6.24×** | **0.9502** | **32.706** |
348
-
349
- NOTE: Except for DBCache, other performance data are referenced from the paper [FoCa, arxiv.2508.16211](https://arxiv.org/pdf/2508.16211).
350
-
351
- </details>
352
-
353
- ### 📚Text2Image Distillation DrawBench: Qwen-Image-Lightning
354
-
355
- Surprisingly, cache-dit: DBCache still works in the extremely few-step distill model. For example, **Qwen-Image-Lightning w/ 4 steps**, with the F16B16 configuration, the PSNR is 34.8163, the Clip Score is 35.6109, and the ImageReward is 1.2614. It maintained a relatively high precision.
356
-
357
- | Config | PSNR(↑) | Clip Score(↑) | ImageReward(↑) | TFLOPs(↓) | SpeedUp(↑) |
358
- |----------------------------|-----------|------------|--------------|----------|------------|
359
- | [**Lightning**]: 4 steps | INF | 35.5797 | 1.2630 | 274.33 | 1.00x |
360
- | F24B24_W2MC1_R0.8 | 36.3242 | 35.6224 | 1.2630 | 264.74 | 1.04x |
361
- | F16B16_W2MC1_R0.8 | 34.8163 | 35.6109 | 1.2614 | 244.25 | 1.12x |
362
- | F12B12_W2MC1_R0.8 | 33.8953 | 35.6535 | 1.2549 | 234.63 | 1.17x |
363
- | F8B8_W2MC1_R0.8 | 33.1374 | 35.7284 | 1.2517 | 224.29 | 1.22x |
364
- | F1B0_W2MC1_R0.8 | 31.8317 | 35.6651 | 1.2397 | 206.90 | 1.33x |
365
-
366
- ## 🎉Unified Cache APIs
367
-
368
- <div id="unified"></div>
369
-
370
- ### 📚Forward Pattern Matching
371
-
372
- Currently, for any **Diffusion** models with **Transformer Blocks** that match the specific **Input/Output patterns**, we can use the **Unified Cache APIs** from **cache-dit**, namely, the `cache_dit.enable_cache(...)` API. The **Unified Cache APIs** are currently in the experimental phase; please stay tuned for updates. The supported patterns are listed as follows:
373
-
374
- ![](https://github.com/vipshop/cache-dit/raw/main/assets/patterns-v1.png)
375
-
376
- ### ♥️Cache Acceleration with One-line Code
377
-
378
- In most cases, you only need to call **one-line** of code, that is `cache_dit.enable_cache(...)`. After this API is called, you just need to call the pipe as normal. The `pipe` param can be **any** Diffusion Pipeline. Please refer to [Qwen-Image](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_qwen_image.py) as an example.
379
-
380
- ```python
381
- import cache_dit
382
- from diffusers import DiffusionPipeline
383
-
384
- # Can be any diffusion pipeline
385
- pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image")
386
-
387
- # One-line code with default cache options.
388
- cache_dit.enable_cache(pipe)
389
-
390
- # Just call the pipe as normal.
391
- output = pipe(...)
392
-
393
- # Disable cache and run original pipe.
394
- cache_dit.disable_cache(pipe)
395
- ```
396
-
397
- ### 🔥Automatic Block Adapter
398
-
399
- But in some cases, you may have a **modified** Diffusion Pipeline or Transformer that is not located in the diffusers library or not officially supported by **cache-dit** at this time. The **BlockAdapter** can help you solve this problems. Please refer to [🔥Qwen-Image w/ BlockAdapter](https://github.com/vipshop/cache-dit/raw/main/examples/adapter/run_qwen_image_adapter.py) as an example.
400
-
401
- ```python
402
- from cache_dit import ForwardPattern, BlockAdapter
403
-
404
- # Use 🔥BlockAdapter with `auto` mode.
405
- cache_dit.enable_cache(
406
- BlockAdapter(
407
- # Any DiffusionPipeline, Qwen-Image, etc.
408
- pipe=pipe, auto=True,
409
- # Check `📚Forward Pattern Matching` documentation and hack the code of
410
- # of Qwen-Image, you will find that it has satisfied `FORWARD_PATTERN_1`.
411
- forward_pattern=ForwardPattern.Pattern_1,
412
- ),
413
- )
414
-
415
- # Or, manually setup transformer configurations.
416
- cache_dit.enable_cache(
417
- BlockAdapter(
418
- pipe=pipe, # Qwen-Image, etc.
419
- transformer=pipe.transformer,
420
- blocks=pipe.transformer.transformer_blocks,
421
- forward_pattern=ForwardPattern.Pattern_1,
422
- ),
423
- )
424
- ```
425
- For such situations, **BlockAdapter** can help you quickly apply various cache acceleration features to your own Diffusion Pipelines and Transformers. Please check the [📚BlockAdapter.md](https://github.com/vipshop/cache-dit/raw/main/docs/BlockAdapter.md) for more details.
426
-
427
- ### 📚Hybird Forward Pattern
428
-
429
- Sometimes, a Transformer class will contain more than one transformer `blocks`. For example, **FLUX.1** (HiDream, Chroma, etc) contains transformer_blocks and single_transformer_blocks (with different forward patterns). The **BlockAdapter** can also help you solve this problem. Please refer to [📚FLUX.1](https://github.com/vipshop/cache-dit/raw/main/examples/adapter/run_flux_adapter.py) as an example.
430
-
431
- ```python
432
- # For diffusers <= 0.34.0, FLUX.1 transformer_blocks and
433
- # single_transformer_blocks have different forward patterns.
434
- cache_dit.enable_cache(
435
- BlockAdapter(
436
- pipe=pipe, # FLUX.1, etc.
437
- transformer=pipe.transformer,
438
- blocks=[
439
- pipe.transformer.transformer_blocks,
440
- pipe.transformer.single_transformer_blocks,
441
- ],
442
- forward_pattern=[
443
- ForwardPattern.Pattern_1,
444
- ForwardPattern.Pattern_3,
445
- ],
446
- ),
447
- )
448
- ```
449
-
450
- Even sometimes you have more complex cases, such as **Wan 2.2 MoE**, which has more than one Transformer (namely `transformer` and `transformer_2`) in its structure. Fortunately, **cache-dit** can also handle this situation very well. Please refer to [📚Wan 2.2 MoE](https://github.com/vipshop/cache-dit/raw/main/examples/pipeline/run_wan_2.2.py) as an example.
451
-
452
- ```python
453
- from cache_dit import ForwardPattern, BlockAdapter, ParamsModifier, BasicCacheConfig
454
-
455
- cache_dit.enable_cache(
456
- BlockAdapter(
457
- pipe=pipe,
458
- transformer=[
459
- pipe.transformer,
460
- pipe.transformer_2,
461
- ],
462
- blocks=[
463
- pipe.transformer.blocks,
464
- pipe.transformer_2.blocks,
465
- ],
466
- forward_pattern=[
467
- ForwardPattern.Pattern_2,
468
- ForwardPattern.Pattern_2,
469
- ],
470
- # Setup different cache params for each 'blocks'. You can
471
- # pass any specific cache params to ParamModifier, the old
472
- # value will be overwrite by the new one.
473
- params_modifiers=[
474
- ParamsModifier(
475
- cache_config=BasicCacheConfig(
476
- max_warmup_steps=4,
477
- max_cached_steps=8,
478
- ),
479
- ),
480
- ParamsModifier(
481
- cache_config=BasicCacheConfig(
482
- max_warmup_steps=2,
483
- max_cached_steps=20,
484
- ),
485
- ),
486
- ],
487
- has_separate_cfg=True,
488
- ),
489
- )
490
- ```
491
- ### 📚Implement Patch Functor
492
-
493
- For any PATTERN not in {0...5}, we introduced the simple abstract concept of **Patch Functor**. Users can implement a subclass of Patch Functor to convert an unknown Pattern into a known PATTERN, and for some models, users may also need to fuse the operations within the blocks for loop into block forward.
494
-
495
- ![](https://github.com/vipshop/cache-dit/raw/main/assets/patch-functor.png)
496
-
497
- Some Patch functors have already been provided in cache-dit: [📚HiDreamPatchFunctor](https://github.com/vipshop/cache-dit/raw/main/src/cache_dit/cache_factory/patch_functors/functor_hidream.py), [📚ChromaPatchFunctor](https://github.com/vipshop/cache-dit/raw/main/src/cache_dit/cache_factory/patch_functors/functor_chroma.py), etc. After implementing Patch Functor, users need to set the `patch_functor` property of **BlockAdapter**.
498
-
499
- ```python
500
- @BlockAdapterRegistry.register("HiDream")
501
- def hidream_adapter(pipe, **kwargs) -> BlockAdapter:
502
- from diffusers import HiDreamImageTransformer2DModel
503
- from cache_dit.cache_factory.patch_functors import HiDreamPatchFunctor
504
-
505
- assert isinstance(pipe.transformer, HiDreamImageTransformer2DModel)
506
- return BlockAdapter(
507
- pipe=pipe,
508
- transformer=pipe.transformer,
509
- blocks=[
510
- pipe.transformer.double_stream_blocks,
511
- pipe.transformer.single_stream_blocks,
512
- ],
513
- forward_pattern=[
514
- ForwardPattern.Pattern_0,
515
- ForwardPattern.Pattern_3,
516
- ],
517
- # NOTE: Setup your custom patch functor here.
518
- patch_functor=HiDreamPatchFunctor(),
519
- **kwargs,
520
- )
521
- ```
522
-
523
- ### 🤖Cache Acceleration Stats Summary
524
-
525
- After finishing each inference of `pipe(...)`, you can call the `cache_dit.summary()` API on pipe to get the details of the **Cache Acceleration Stats** for the current inference.
526
- ```python
527
- stats = cache_dit.summary(pipe)
528
- ```
529
-
530
- You can set `details` param as `True` to show more details of cache stats. (markdown table format) Sometimes, this may help you analyze what values of the residual diff threshold would be better.
531
-
532
- ```python
533
- ⚡️Cache Steps and Residual Diffs Statistics: QwenImagePipeline
534
-
535
- | Cache Steps | Diffs Min | Diffs P25 | Diffs P50 | Diffs P75 | Diffs P95 | Diffs Max |
536
- |-------------|-----------|-----------|-----------|-----------|-----------|-----------|
537
- | 23 | 0.045 | 0.084 | 0.114 | 0.147 | 0.241 | 0.297 |
538
- ```
539
-
540
- ## ⚡️DBCache: Dual Block Cache
541
-
542
- <div id="dbcache"></div>
543
-
544
- ![](https://github.com/vipshop/cache-dit/raw/main/assets/dbcache-v1.png)
545
-
546
- **DBCache**: **Dual Block Caching** for Diffusion Transformers. Different configurations of compute blocks (**F8B12**, etc.) can be customized in DBCache, enabling a balanced trade-off between performance and precision. Moreover, it can be entirely **training**-**free**. Please check [DBCache.md](https://github.com/vipshop/cache-dit/raw/main/docs/DBCache.md) docs for more design details.
547
-
548
- - **Fn**: Specifies that DBCache uses the **first n** Transformer blocks to fit the information at time step t, enabling the calculation of a more stable L1 diff and delivering more accurate information to subsequent blocks.
549
- - **Bn**: Further fuses approximate information in the **last n** Transformer blocks to enhance prediction accuracy. These blocks act as an auto-scaler for approximate hidden states that use residual cache.
550
-
551
- ```python
552
- import cache_dit
553
- from diffusers import FluxPipeline
554
-
555
- pipe_or_adapter = FluxPipeline.from_pretrained(
556
- "black-forest-labs/FLUX.1-dev",
557
- torch_dtype=torch.bfloat16,
558
- ).to("cuda")
559
-
560
- # Default options, F8B0, 8 warmup steps, and unlimited cached
561
- # steps for good balance between performance and precision
562
- cache_dit.enable_cache(pipe_or_adapter)
563
-
564
- # Custom options, F8B8, higher precision
565
- from cache_dit import BasicCacheConfig
566
-
567
- cache_dit.enable_cache(
568
- pipe_or_adapter,
569
- cache_config=BasicCacheConfig(
570
- max_warmup_steps=8, # steps do not cache
571
- max_cached_steps=-1, # -1 means no limit
572
- Fn_compute_blocks=8, # Fn, F8, etc.
573
- Bn_compute_blocks=8, # Bn, B8, etc.
574
- residual_diff_threshold=0.12,
575
- ),
576
- )
577
- ```
578
-
579
- <div align="center">
580
- <p align="center">
581
- DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
582
- </p>
583
- </div>
584
-
585
- |Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
586
- |:---:|:---:|:---:|:---:|:---:|:---:|
587
- |24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
588
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
589
-
590
- ## 🔥TaylorSeer Calibrator
591
-
592
- <div id="taylorseer"></div>
593
-
594
- We have supported the [TaylorSeers: From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers](https://arxiv.org/pdf/2503.06923) algorithm to further improve the precision of DBCache in cases where the cached steps are large, namely, **Hybrid TaylorSeer + DBCache**. At timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, significantly harming the generation quality.
595
-
596
- $$
597
- \mathcal{F}\_{\text {pred }, m}\left(x_{t-k}^l\right)=\mathcal{F}\left(x_t^l\right)+\sum_{i=1}^m \frac{\Delta^i \mathcal{F}\left(x_t^l\right)}{i!\cdot N^i}(-k)^i
598
- $$
599
-
600
- **TaylorSeer** employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. The TaylorSeer implemented in cache-dit supports both hidden states and residual cache types. That is $\mathcal{F}\_{\text {pred }, m}\left(x_{t-k}^l\right)$ can be a residual cache or a hidden-state cache.
601
-
602
- ```python
603
- from cache_dit import BasicCacheConfig, TaylorSeerCalibratorConfig
604
-
605
- cache_dit.enable_cache(
606
- pipe_or_adapter,
607
- # Basic DBCache w/ FnBn configurations
608
- cache_config=BasicCacheConfig(
609
- max_warmup_steps=8, # steps do not cache
610
- max_cached_steps=-1, # -1 means no limit
611
- Fn_compute_blocks=8, # Fn, F8, etc.
612
- Bn_compute_blocks=8, # Bn, B8, etc.
613
- residual_diff_threshold=0.12,
614
- ),
615
- # Then, you can use the TaylorSeer Calibrator to approximate
616
- # the values in cached steps, taylorseer_order default is 1.
617
- calibrator_config=TaylorSeerCalibratorConfig(
618
- taylorseer_order=1,
619
- ),
620
- )
621
- ```
622
-
623
- > [!Important]
624
- > Please note that if you have used TaylorSeer as the calibrator for approximate hidden states, the **Bn** param of DBCache can be set to **0**. In essence, DBCache's Bn is also act as a calibrator, so you can choose either Bn > 0 or TaylorSeer. We recommend using the configuration scheme of **TaylorSeer** + **DBCache FnB0**.
625
-
626
- <div align="center">
627
- <p align="center">
628
- <b>DBCache F1B0 + TaylorSeer</b>, L20x1, Steps: 28, <br>"A cat holding a sign that says hello world with complex background"
629
- </p>
630
- </div>
631
-
632
- |Baseline(L20x1)|F1B0 (0.12)|+TaylorSeer|F1B0 (0.15)|+TaylorSeer|+compile|
633
- |:---:|:---:|:---:|:---:|:---:|:---:|
634
- |24.85s|12.85s|12.86s|10.27s|10.28s|8.48s|
635
- |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C0_DBCACHE_F1B0S1W0T0ET0_R0.12_S14_T12.85s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C0_DBCACHE_F1B0S1W0T1ET1_R0.12_S14_T12.86s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C0_DBCACHE_F1B0S1W0T0ET0_R0.15_S17_T10.27s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C0_DBCACHE_F1B0S1W0T1ET1_R0.15_S17_T10.28s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/U0_C1_DBCACHE_F1B0S1W0T1ET1_R0.15_S17_T8.48s.png width=105px>|
636
-
637
- ## ⚡️Hybrid Cache CFG
638
-
639
- <div id="cfg"></div>
640
-
641
- cache-dit supports caching for **CFG (classifier-free guidance)**. For models that fuse CFG and non-CFG into a single forward step, or models that do not include CFG (classifier-free guidance) in the forward step, please set `enable_separate_cfg` param to **False (default, None)**. Otherwise, set it to True. For examples:
642
-
643
- ```python
644
- from cache_dit import BasicCacheConfig
645
-
646
- cache_dit.enable_cache(
647
- pipe_or_adapter,
648
- cache_config=BasicCacheConfig(
649
- ...,
650
- # CFG: classifier free guidance or not
651
- # For model that fused CFG and non-CFG into single forward step,
652
- # should set enable_separate_cfg as False. For example, set it as True
653
- # for Wan 2.1/Qwen-Image and set it as False for FLUX.1, HunyuanVideo,
654
- # CogVideoX, Mochi, LTXVideo, Allegro, CogView3Plus, EasyAnimate, SD3, etc.
655
- enable_separate_cfg=True, # Wan 2.1, Qwen-Image, CogView4, Cosmos, SkyReelsV2, etc.
656
- # Compute cfg forward first or not, default False, namely,
657
- # 0, 2, 4, ..., -> non-CFG step; 1, 3, 5, ... -> CFG step.
658
- cfg_compute_first=False,
659
- # Compute separate diff values for CFG and non-CFG step,
660
- # default True. If False, we will use the computed diff from
661
- # current non-CFG transformer step for current CFG step.
662
- cfg_diff_compute_separate=True,
663
- ),
664
- )
665
- ```
666
-
667
- ## ⚙️Torch Compile
668
-
669
- <div id="compile"></div>
670
-
671
- By the way, **cache-dit** is designed to work compatibly with **torch.compile.** You can easily use cache-dit with torch.compile to further achieve a better performance. For example:
672
-
673
- ```python
674
- cache_dit.enable_cache(pipe)
675
-
676
- # Compile the Transformer module
677
- pipe.transformer = torch.compile(pipe.transformer)
678
- ```
679
- However, users intending to use **cache-dit** for DiT with **dynamic input shapes** should consider increasing the **recompile** **limit** of `torch._dynamo`. Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
680
- ```python
681
- torch._dynamo.config.recompile_limit = 96 # default is 8
682
- torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
683
- ```
684
-
685
- Please check [perf.py](https://github.com/vipshop/cache-dit/raw/main/bench/perf.py) for more details.
686
-
687
-
688
- ## 🛠Metrics CLI
689
-
690
- <div id="metrics"></div>
691
-
692
- You can utilize the APIs provided by cache-dit to quickly evaluate the accuracy losses caused by different cache configurations. For example:
693
-
694
- ```python
695
- from cache_dit.metrics import compute_psnr
696
- from cache_dit.metrics import compute_ssim
697
- from cache_dit.metrics import compute_fid
698
- from cache_dit.metrics import compute_lpips
699
- from cache_dit.metrics import compute_clip_score
700
- from cache_dit.metrics import compute_image_reward
701
-
702
- psnr, n = compute_psnr("true.png", "test.png") # Num: n
703
- psnr, n = compute_psnr("true_dir", "test_dir")
704
- ssim, n = compute_ssim("true_dir", "test_dir")
705
- fid, n = compute_fid("true_dir", "test_dir")
706
- lpips, n = compute_lpips("true_dir", "test_dir")
707
- clip, n = compute_clip_score("DrawBench200.txt", "test_dir")
708
- reward, n = compute_image_reward("DrawBench200.txt", "test_dir")
709
- ```
710
-
711
- Or, you can use `cache-dit-metrics-cli` tool. For examples:
712
-
713
- ```bash
714
- cache-dit-metrics-cli -h # show usage
715
- # all: PSNR, FID, SSIM, MSE, ..., etc.
716
- cache-dit-metrics-cli all -i1 true.png -i2 test.png # image
717
- cache-dit-metrics-cli all -i1 true_dir -i2 test_dir # image dir
718
- ```
719
-
720
- ## 👋Contribute
721
- <div id="contribute"></div>
722
-
723
- How to contribute? Star ⭐️ this repo to support us or check [CONTRIBUTE.md](https://github.com/vipshop/cache-dit/raw/main/CONTRIBUTE.md).
724
-
725
- <div align='center'>
726
- <a href="https://star-history.com/#vipshop/cache-dit&Date">
727
- <picture align='center'>
728
- <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=vipshop/cache-dit&type=Date&theme=dark" />
729
- <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=vipshop/cache-dit&type=Date" />
730
- <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=vipshop/cache-dit&type=Date" width=400px />
731
- </picture>
732
- </a>
733
- </div>
734
-
735
- ## ©️Acknowledgements
736
-
737
- <div id="Acknowledgements"></div>
738
-
739
- The **cache-dit** codebase is adapted from FBCache. Over time its codebase diverged a lot, and **cache-dit** API is no longer compatible with FBCache.
740
-
741
- ## ©️Citations
742
-
743
- <div id="citations"></div>
744
-
745
- ```BibTeX
746
- @misc{cache-dit@2025,
747
- title={cache-dit: A Unified, Flexible and Training-free Cache Acceleration Framework for 🤗Diffusers.},
748
- url={https://github.com/vipshop/cache-dit.git},
749
- note={Open-source software available at https://github.com/vipshop/cache-dit.git},
750
- author={vipshop.com},
751
- year={2025}
752
- }
753
- ```