cache-dit 0.2.34__py3-none-any.whl → 0.2.36__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
cache_dit/utils.py CHANGED
@@ -1,6 +1,9 @@
1
1
  import torch
2
2
  import dataclasses
3
3
  import diffusers
4
+ import builtins as __builtin__
5
+ import contextlib
6
+
4
7
  import numpy as np
5
8
  from pprint import pprint
6
9
  from diffusers import DiffusionPipeline
@@ -13,6 +16,18 @@ from cache_dit.logger import init_logger
13
16
  logger = init_logger(__name__)
14
17
 
15
18
 
19
+ def dummy_print(*args, **kwargs):
20
+ pass
21
+
22
+
23
+ @contextlib.contextmanager
24
+ def disable_print():
25
+ origin_print = __builtin__.print
26
+ __builtin__.print = dummy_print
27
+ yield
28
+ __builtin__.print = origin_print
29
+
30
+
16
31
  @torch.compiler.disable
17
32
  def is_diffusers_at_least_0_3_5() -> bool:
18
33
  return diffusers.__version__ >= "0.35.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cache_dit
3
- Version: 0.2.34
3
+ Version: 0.2.36
4
4
  Summary: 🤗 A Unified and Training-free Cache Acceleration Toolbox for Diffusion Transformers
5
5
  Author: DefTruth, vipshop.com, etc.
6
6
  Maintainer: DefTruth, vipshop.com, etc
@@ -18,7 +18,12 @@ Requires-Dist: scikit-image
18
18
  Requires-Dist: scipy
19
19
  Requires-Dist: lpips==0.1.4
20
20
  Requires-Dist: torchao>=0.12.0
21
+ Requires-Dist: image-reward
21
22
  Provides-Extra: all
23
+ Provides-Extra: metrics
24
+ Requires-Dist: image-reward; extra == "metrics"
25
+ Requires-Dist: pytorch-fid; extra == "metrics"
26
+ Requires-Dist: lpips==0.1.4; extra == "metrics"
22
27
  Provides-Extra: dev
23
28
  Requires-Dist: pre-commit; extra == "dev"
24
29
  Requires-Dist: pytest<8.0.0,>=7.0.0; extra == "dev"
@@ -56,7 +61,8 @@ Dynamic: requires-python
56
61
  <img src=https://img.shields.io/badge/Release-v0.2-brightgreen.svg >
57
62
  </div>
58
63
  <p align="center">
59
- 🔥<b><a href="#unified">Unified Cache APIs</a> | <a href="#dbcache">DBCache</a> | <a href="#taylorseer">Hybrid TaylorSeer</a> | <a href="#cfg">Hybrid Cache CFG</a></b>🔥
64
+ <b><a href="#unified">📚Unified Cache APIs</a></b> | <a href="#forward-pattern-matching">📚Forward Pattern Matching</a> | <a href="#automatic-block-adapter">📚Automatic Block Adapter</a><br>
65
+ <a href="#hybird-forward-pattern">📚Hybrid Forward Pattern</a> | <a href="#dbcache">📚DBCache</a> | <a href="#taylorseer">📚Hybrid TaylorSeer</a> | <a href="#cfg">📚Cache CFG</a>
60
66
  </p>
61
67
  <p align="center">
62
68
  🎉Now, <b>cache-dit</b> covers <b>most</b> mainstream Diffusers' <b>DiT</b> Pipelines🎉<br>
@@ -111,8 +117,8 @@ Dynamic: requires-python
111
117
  <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/skyreels_v2.C0_L0_Q0_NONE.gif width=125px>
112
118
  <img src=https://github.com/vipshop/cache-dit/raw/main/assets/gifs/skyreels_v2.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.12_S17.gif width=125px>
113
119
  <p><b>🔥Mochi-1-preview</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.8x↑🎉 | <b>SkyReelsV2</b> | <a href="https://github.com/vipshop/cache-dit">+cache-dit</a>:1.6x↑🎉</p>
114
- <img src=./examples/data/visualcloze/00555_00.jpg width=100px>
115
- <img src=./examples/data/visualcloze/12265_00.jpg width=100px>
120
+ <img src=https://github.com/vipshop/cache-dit/raw/main/examples/data/visualcloze/00555_00.jpg width=100px>
121
+ <img src=https://github.com/vipshop/cache-dit/raw/main/examples/data/visualcloze/12265_00.jpg width=100px>
116
122
  <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_NONE.png width=100px>
117
123
  <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_DBCACHE_F8B0_W8M0MC0_T0O2_R0.08_S15.png width=100px>
118
124
  <img src=https://github.com/vipshop/cache-dit/raw/main/assets/visualcloze-512.C0_L0_Q0_DBCACHE_F1B0_W8M0MC0_T0O2_R0.08_S18.png width=100px>
@@ -180,14 +186,15 @@ Dynamic: requires-python
180
186
  <div id="contents"></div>
181
187
 
182
188
  - [⚙️Installation](#️installation)
183
- - [🔥Supported Models](#supported)
189
+ - [🔥Benchmarks](#benchmarks)
190
+ - [🔥Supported Pipelines](#supported)
184
191
  - [🎉Unified Cache APIs](#unified)
185
- - [📚Forward Pattern Matching](#unified)
186
- - [♥️Cache with One-line Code](#unified)
187
- - [🔥Automatic Block Adapter](#unified)
188
- - [📚Hybird Forward Pattern](#unified)
189
- - [📚Implement Patch Functor](#unified)
190
- - [🤖Cache Acceleration Stats](#unified)
192
+ - [📚Forward Pattern Matching](#forward-pattern-matching)
193
+ - [♥️Cache with One-line Code](#%EF%B8%8Fcache-acceleration-with-one-line-code)
194
+ - [🔥Automatic Block Adapter](#automatic-block-adapter)
195
+ - [📚Hybird Forward Pattern](#automatic-block-adapter)
196
+ - [📚Implement Patch Functor](#implement-patch-functor)
197
+ - [🤖Cache Acceleration Stats](#cache-acceleration-stats-summary)
191
198
  - [⚡️Dual Block Cache](#dbcache)
192
199
  - [🔥Hybrid TaylorSeer](#taylorseer)
193
200
  - [⚡️Hybrid Cache CFG](#cfg)
@@ -209,36 +216,48 @@ Or you can install the latest develop version from GitHub:
209
216
  pip3 install git+https://github.com/vipshop/cache-dit.git
210
217
  ```
211
218
 
212
- ## 🔥Supported Models
219
+ ## 🔥Supported Pipelines
213
220
 
214
221
  <div id="supported"></div>
215
222
 
216
- Currently, **cache-dit** library supports almost **Any** Diffusion Transformers (with **Transformer Blocks** that match the specific Input and Output **patterns**). Please check [🎉Unified Cache APIs](#unified) for more details. Here are just some of the tested models listed:
223
+ Currently, **cache-dit** library supports almost **Any** Diffusion Transformers (with **Transformer Blocks** that match the specific Input and Output **patterns**). Please check [🎉Examples](./examples/pipeline) for more details. Here are just some of the tested models listed.
224
+
225
+ ```python
226
+ >>> import cache_dit
227
+ >>> cache_dit.supported_pipelines()
228
+ (30, ['Flux*', 'Mochi*', 'CogVideoX*', 'Wan*', 'HunyuanVideo*', 'QwenImage*', 'LTX*', 'Allegro*',
229
+ 'CogView3Plus*', 'CogView4*', 'Cosmos*', 'EasyAnimate*', 'SkyReelsV2*', 'StableDiffusion3*',
230
+ 'ConsisID*', 'DiT*', 'Amused*', 'Bria*', 'Lumina*', 'OmniGen*', 'PixArt*', 'Sana*', 'StableAudio*',
231
+ 'VisualCloze*', 'AuraFlow*', 'Chroma*', 'ShapE*', 'HiDream*', 'HunyuanDiT*', 'HunyuanDiTPAG*'])
232
+ ```
233
+
234
+ <details>
235
+ <summary> Show all pipelines </summary>
217
236
 
218
237
  - [🚀HunyuanImage-2.1](https://github.com/vipshop/cache-dit/raw/main/examples)
219
- - [🚀Qwen-Image-Lightning](https://github.com/vipshop/cache-dit/raw/main/examples)
238
+ - [🚀Qwen-Image-Lightning](https://github.com/vipshop/cache-dit/raw/main/examples)
220
239
  - [🚀Qwen-Image-Edit](https://github.com/vipshop/cache-dit/raw/main/examples)
221
240
  - [🚀Qwen-Image](https://github.com/vipshop/cache-dit/raw/main/examples)
222
- - [🚀SkyReelsV2](https://github.com/vipshop/cache-dit/raw/main/examples)
223
- - [🚀LTXVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
224
- - [🚀OmniGen](https://github.com/vipshop/cache-dit/raw/main/examples)
225
- - [🚀Lumina2](https://github.com/vipshop/cache-dit/raw/main/examples)
226
241
  - [🚀FLUX.1-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
227
242
  - [🚀FLUX.1-Fill-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
228
- - [🚀FLUX.1-Kontext-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
229
- - [🚀Chroma1-HD](https://github.com/vipshop/cache-dit/raw/main/examples)
230
- - [🚀VisualCloze](https://github.com/vipshop/cache-dit/raw/main/examples)
231
- - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples)
232
- - [🚀CogVideoX1.5](https://github.com/vipshop/cache-dit/raw/main/examples)
233
- - [🚀CogView3-Plus](https://github.com/vipshop/cache-dit/raw/main/examples)
243
+ - [🚀FLUX.1-Kontext-dev](https://github.com/vipshop/cache-dit/raw/main/examples)
234
244
  - [🚀CogView4](https://github.com/vipshop/cache-dit/raw/main/examples)
235
245
  - [🚀Wan2.2-T2V](https://github.com/vipshop/cache-dit/raw/main/examples)
246
+ - [🚀HunyuanVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
247
+ - [🚀HiDream-I1-Full](https://github.com/vipshop/cache-dit/raw/main/examples)
248
+ - [🚀HunyuanDiT](https://github.com/vipshop/cache-dit/raw/main/examples)
236
249
  - [🚀Wan2.1-T2V](https://github.com/vipshop/cache-dit/raw/main/examples)
237
250
  - [🚀Wan2.1-FLF2V](https://github.com/vipshop/cache-dit/raw/main/examples)
251
+ - [🚀SkyReelsV2](https://github.com/vipshop/cache-dit/raw/main/examples)
252
+ - [🚀Chroma1-HD](https://github.com/vipshop/cache-dit/raw/main/examples)
253
+ - [🚀CogVideoX1.5](https://github.com/vipshop/cache-dit/raw/main/examples)
254
+ - [🚀CogView3-Plus](https://github.com/vipshop/cache-dit/raw/main/examples)
255
+ - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/examples)
256
+ - [🚀VisualCloze](https://github.com/vipshop/cache-dit/raw/main/examples)
257
+ - [🚀LTXVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
258
+ - [🚀OmniGen](https://github.com/vipshop/cache-dit/raw/main/examples)
259
+ - [🚀Lumina2](https://github.com/vipshop/cache-dit/raw/main/examples)
238
260
  - [🚀mochi-1-preview](https://github.com/vipshop/cache-dit/raw/main/examples)
239
- - [🚀HunyuanVideo](https://github.com/vipshop/cache-dit/raw/main/examples)
240
- - [🚀HunyuanDiT](https://github.com/vipshop/cache-dit/raw/main/examples)
241
- - [🚀HiDream-I1-Full](https://github.com/vipshop/cache-dit/raw/main/examples)
242
261
  - [🚀AuraFlow-v0.3](https://github.com/vipshop/cache-dit/raw/main/examples)
243
262
  - [🚀PixArt-Alpha](https://github.com/vipshop/cache-dit/raw/main/examples)
244
263
  - [🚀PixArt-Sigma](https://github.com/vipshop/cache-dit/raw/main/examples)
@@ -252,6 +271,50 @@ Currently, **cache-dit** library supports almost **Any** Diffusion Transformers
252
271
 
253
272
  </details>
254
273
 
274
+ ## 🔥Benchmarks
275
+
276
+ <div id="benchmarks"></div>
277
+
278
+ Take FLUX.1-dev as an example. Here, only the results of some precision and performance benchmarks are presented. The test dataset is DrawBench. For a complete benchmark, please refer to [benchmarks](./bench/). **Device**: NVIDIA L20. **F**: Fn_compute_blocks, **B**: Bn_compute_blocks.
279
+
280
+ | Config | Clip Score(↑) | ImageReward(↑) | PSNR(↑) | TFLOPs(↑) | SpeedUp(↑) |
281
+ | --- | --- | --- | --- | --- | --- |
282
+ | [**FLUX.1**-dev]: 50 steps | 32.9217 | 1.0412 | INF | 3726.87 | 1.00 |
283
+ | F8B0_W8MC0_R0.08 | 33.0070 | 1.0333 | 35.2008 | 2162.19 | 1.72x |
284
+ | F8B0_W4MC0_R0.08 | 32.9871 | 1.0370 | 33.8317 | 2064.81 | 1.80x |
285
+ | F4B0_W4MC2_R0.12 | 32.9718 | 1.0301 | 31.9394 | 1678.98 | 2.22x |
286
+ | F8B0_W8MC3_R0.12 | 32.9613 | 1.0270 | 34.2834 | 1977.69 | 1.88x |
287
+ | F8B0_W4MC2_R0.12 | 32.9535 | 1.0185 | 32.7346 | 1935.73 | 1.93x |
288
+ | F8B0_W8MC2_R0.12 | 32.9302 | 1.0227 | 34.7449 | 2072.18 | 1.80x |
289
+ | F8B0_W4MC3_R0.12 | 32.9234 | 1.0085 | 32.5385 | 1816.58 | 2.05x |
290
+ | F8B0_W8MC4_R0.12 | 32.9041 | 1.0140 | 33.9466 | 1897.61 | 1.96x |
291
+ | F4B0_W4MC3_R0.12 | 32.8981 | 1.0130 | 31.8031 | 1507.83 | 2.47x |
292
+ | F4B0_W4MC0_R0.08 | 32.8544 | 1.0065 | 32.3555 | 1654.72 | 2.25x |
293
+ | F8B0_W4MC4_R0.12 | 32.8443 | 1.0102 | 32.4231 | 1753.48 | 2.13x |
294
+ | F4B0_W4MC4_R0.12 | 32.8384 | 1.0065 | 31.5292 | 1400.08 | 2.66x |
295
+ | F1B0_W4MC4_R0.12 | 32.8291 | 1.0181 | 32.9462 | 1401.61 | 2.66x |
296
+ | F1B0_W4MC3_R0.12 | 32.8236 | 1.0166 | 33.0037 | 1457.62 | 2.56x |
297
+
298
+ The comparison between DBCache and algorithms such as Δ-DiT, Chipmunk, FORA, DuCa, TaylorSeer and FoCa is as follows. Now, in the comparison with a speedup ratio less than **3x**, cache-dit achieved the best accuracy. Please check [📚How to Reproduce?](./bench/) for more details.
299
+
300
+ | Method | TFLOPs(↓) | SpeedUp(↑) | ImageReward(↑) | Clip Score(↑) |
301
+ | --- | --- | --- | --- | --- |
302
+ | [**FLUX.1**-dev]: 50 steps | 3726.87 | 1.00× | 0.9898 | 32.404 |
303
+ | [**FLUX.1**-dev]: 60% steps | 2231.70 | 1.67× | 0.9663 | 32.312 |
304
+ | Δ-DiT (N=2) | 2480.01 | 1.50× | 0.9444 | 32.273 |
305
+ | Δ-DiT (N=3) | 1686.76 | 2.21× | 0.8721 | 32.102 |
306
+ | [**FLUX.1**-dev]: 34% steps | 1264.63 | 3.13× | 0.9453 | 32.114 |
307
+ | Chipmunk | 1505.87 | 2.47× | 0.9936 | 32.776 |
308
+ | FORA (N=3) | 1320.07 | 2.82× | 0.9776 | 32.266 |
309
+ | **[DBCache (F=4, B=0)](https://github.com/vipshop/cache-dit)** | **1400.08** | **2.66×** | **1.0065** | **32.838** |
310
+ | **[DBCache + TaylorSeer (F=4, B=0)](https://github.com/vipshop/cache-dit)** | **1388.30** | **2.68×** | **1.0287** | **32.914** |
311
+ | DuCa(N=5) | 978.76 | 3.80× | 0.9955 | 32.241 |
312
+ | TaylorSeer (N=4, O=2) | 1042.27 | 3.57× | 0.9857 | 32.413 |
313
+ | **[FoCa (N=5) arxiv.2508.16211](https://arxiv.org/pdf/2508.16211)** | **893.54** | **4.16×** | **1.0029** | **32.948** |
314
+
315
+ cache-dit will support more mainstream Cache acceleration algorithms in the future. More benchmarks will be released, please stay tuned for update.
316
+
317
+
255
318
  ## 🎉Unified Cache APIs
256
319
 
257
320
  <div id="unified"></div>
@@ -563,13 +626,19 @@ You can utilize the APIs provided by cache-dit to quickly evaluate the accuracy
563
626
 
564
627
  ```python
565
628
  from cache_dit.metrics import compute_psnr
566
- from cache_dit.metrics import compute_video_psnr
567
- from cache_dit.metrics import FrechetInceptionDistance # FID
568
-
569
- FID = FrechetInceptionDistance()
570
- image_psnr, n = compute_psnr("true.png", "test.png") # Num: n
571
- image_fid, n = FID.compute_fid("true_dir", "test_dir")
572
- video_psnr, n = compute_video_psnr("true.mp4", "test.mp4") # Frames: n
629
+ from cache_dit.metrics import compute_ssim
630
+ from cache_dit.metrics import compute_fid
631
+ from cache_dit.metrics import compute_lpips
632
+ from cache_dit.metrics import compute_clip_score
633
+ from cache_dit.metrics import compute_image_reward
634
+
635
+ psnr, n = compute_psnr("true.png", "test.png") # Num: n
636
+ psnr, n = compute_psnr("true_dir", "test_dir")
637
+ ssim, n = compute_ssim("true_dir", "test_dir")
638
+ fid, n = compute_fid("true_dir", "test_dir")
639
+ lpips, n = compute_lpips("true_dir", "test_dir")
640
+ clip_score, n = compute_clip_score("DrawBench200.txt", "test_dir")
641
+ reward, n = compute_image_reward("DrawBench200.txt", "test_dir")
573
642
  ```
574
643
 
575
644
  Please check [test_metrics.py](./tests/test_metrics.py) for more details. Or, you can use `cache-dit-metrics-cli` tool. For examples:
@@ -1,7 +1,7 @@
1
- cache_dit/__init__.py,sha256=kX9V-FegZG4c8LMwI4PTmMqH794MEW0pzDArdhC0cJw,1241
2
- cache_dit/_version.py,sha256=CtkelOzOJFXtgJ0APT8pLd5zWrG63eLavWaOD_cX7xo,706
1
+ cache_dit/__init__.py,sha256=hzaexC1VQ0TxiWY6TJ1lTm-04e65WOTNHOfYryu1vFA,1284
2
+ cache_dit/_version.py,sha256=y3W4kIzeljZ6sUAtO8hW9y1LA6HKsN9jWHCm6JjF5gw,706
3
3
  cache_dit/logger.py,sha256=0zsu42hN-3-rgGC_C29ms1IvVpV4_b4_SwJCKSenxBE,4304
4
- cache_dit/utils.py,sha256=WK7eqgH6gCYNHXNLmWyxBDU0XSHTPg7CfOcyXlGXBqE,10510
4
+ cache_dit/utils.py,sha256=nuHHr6NB286qE9u6klLNfhAVRMOGipihOhM8LRqznmU,10775
5
5
  cache_dit/cache_factory/.gitignore,sha256=5Cb-qT9wsTUoMJ7vACDF7ZcLpAXhi5v-xdcWSRit988,23
6
6
  cache_dit/cache_factory/__init__.py,sha256=Iw6-iJLFbdzCsIDZXXOw371L-HPmoeZO_P9a3sDjP5s,1103
7
7
  cache_dit/cache_factory/cache_adapters.py,sha256=OFJlxxyODhoZstN4EfPgC7tE8M1ZdQFcE25gDNrW7NA,18212
@@ -33,17 +33,19 @@ cache_dit/compile/utils.py,sha256=nN2OIrSdwRR5zGxJinKDqb07pXpvTNTF3g_OgLkeeBU,38
33
33
  cache_dit/custom_ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  cache_dit/custom_ops/triton_taylorseer.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  cache_dit/metrics/__init__.py,sha256=RaUhl5dieF40RqnizGzR30qoJJ9dyMUEADwgwMaMQrE,575
36
+ cache_dit/metrics/clip_score.py,sha256=ERNCFQFJKzJdbIX9OAg-1LiSPuXUVHLOFxbf2gcENpc,3938
36
37
  cache_dit/metrics/config.py,sha256=ieOgD9ayz722RjVzk24bSIqS2D6o7TZjGk8KeXV-OLQ,551
37
- cache_dit/metrics/fid.py,sha256=9Ivtazl6mW0Bon2VXa-Ia5Xj2ewxRD3V1Qkd69zYM3Y,17066
38
+ cache_dit/metrics/fid.py,sha256=ZM_FM0XERtpnkMUfphmw2aOdljrh1uba-pnYItu0q6M,18219
39
+ cache_dit/metrics/image_reward.py,sha256=N8HalJo1T1js0dsNb2V1KRv4kIdcm3nhx7iOXJuqcns,5421
38
40
  cache_dit/metrics/inception.py,sha256=pBVe2X6ylLPIXTG4-GWDM9DWnCviMJbJ45R3ulhktR0,12759
39
- cache_dit/metrics/lpips.py,sha256=I2qCNi6qJh5TRsaIsdxO0WoRX1DN7U_H3zS0oCSahYM,1032
40
- cache_dit/metrics/metrics.py,sha256=8jvM1sF-nDxUuwCRy44QEoo4dYVLCQVh1QyAMs4eaQY,27840
41
+ cache_dit/metrics/lpips.py,sha256=hrHrmdM-f2B4TKDs0xLqJO5JFaYcCjq2qNIR8oCrVkc,811
42
+ cache_dit/metrics/metrics.py,sha256=RADSUUMYKBMkABsYFCEr_9PV8cDXLuxe2xuQ-mRBs4Y,39691
41
43
  cache_dit/quantize/__init__.py,sha256=kWYoMAyZgBXu9BJlZjTQ0dRffW9GqeeY9_iTkXrb70A,59
42
44
  cache_dit/quantize/quantize_ao.py,sha256=Fx1KW4l3gdEkdrcAYtPoDW7WKBJWrs3glOHiEwW_TgE,6160
43
45
  cache_dit/quantize/quantize_interface.py,sha256=2s_R7xPSKuJeFpEGeLwRxnq_CqJcBG3a3lzyW5wh-UM,1241
44
- cache_dit-0.2.34.dist-info/licenses/LICENSE,sha256=Dqb07Ik2dV41s9nIdMUbiRWEfDqo7-dQeRiY7kPO8PE,3769
45
- cache_dit-0.2.34.dist-info/METADATA,sha256=BvEY08xjrGPcqTEZSHvSDtJP4sGZv1T6jzhGj-jQbvo,38284
46
- cache_dit-0.2.34.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
- cache_dit-0.2.34.dist-info/entry_points.txt,sha256=FX2gysXaZx6NeK1iCLMcIdP8Q4_qikkIHtEmi3oWn8o,65
48
- cache_dit-0.2.34.dist-info/top_level.txt,sha256=ZJDydonLEhujzz0FOkVbO-BqfzO9d_VqRHmZU-3MOZo,10
49
- cache_dit-0.2.34.dist-info/RECORD,,
46
+ cache_dit-0.2.36.dist-info/licenses/LICENSE,sha256=Dqb07Ik2dV41s9nIdMUbiRWEfDqo7-dQeRiY7kPO8PE,3769
47
+ cache_dit-0.2.36.dist-info/METADATA,sha256=2WIwYYezSUUk0rnIutttA2-s6_yTSCz1BwiAfO9cbQI,42706
48
+ cache_dit-0.2.36.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
+ cache_dit-0.2.36.dist-info/entry_points.txt,sha256=FX2gysXaZx6NeK1iCLMcIdP8Q4_qikkIHtEmi3oWn8o,65
50
+ cache_dit-0.2.36.dist-info/top_level.txt,sha256=ZJDydonLEhujzz0FOkVbO-BqfzO9d_VqRHmZU-3MOZo,10
51
+ cache_dit-0.2.36.dist-info/RECORD,,