cache-dit 0.2.27__py3-none-any.whl → 0.2.28__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cache_dit/__init__.py +1 -0
- cache_dit/_version.py +2 -2
- cache_dit/cache_factory/__init__.py +2 -0
- cache_dit/cache_factory/block_adapters/__init__.py +22 -5
- cache_dit/cache_factory/block_adapters/block_adapters.py +230 -25
- cache_dit/cache_factory/cache_adapters.py +209 -94
- cache_dit/cache_factory/cache_blocks/__init__.py +55 -4
- cache_dit/cache_factory/cache_blocks/pattern_3_4_5.py +36 -37
- cache_dit/cache_factory/cache_blocks/pattern_base.py +83 -76
- cache_dit/cache_factory/cache_blocks/utils.py +10 -8
- cache_dit/cache_factory/cache_contexts/__init__.py +4 -1
- cache_dit/cache_factory/cache_contexts/cache_context.py +14 -876
- cache_dit/cache_factory/cache_contexts/cache_manager.py +833 -0
- cache_dit/cache_factory/cache_interface.py +10 -13
- cache_dit/utils.py +7 -10
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/METADATA +30 -24
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/RECORD +21 -21
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/WHEEL +0 -0
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/entry_points.txt +0 -0
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/licenses/LICENSE +0 -0
- {cache_dit-0.2.27.dist-info → cache_dit-0.2.28.dist-info}/top_level.txt +0 -0
|
@@ -1,11 +1,9 @@
|
|
|
1
1
|
import logging
|
|
2
|
-
import contextlib
|
|
3
2
|
import dataclasses
|
|
4
3
|
from collections import defaultdict
|
|
5
4
|
from typing import Any, DefaultDict, Dict, List, Optional, Union, Tuple
|
|
6
5
|
|
|
7
6
|
import torch
|
|
8
|
-
import torch.distributed as dist
|
|
9
7
|
|
|
10
8
|
from cache_dit.cache_factory.cache_contexts.taylorseer import TaylorSeer
|
|
11
9
|
from cache_dit.logger import init_logger
|
|
@@ -14,7 +12,7 @@ logger = init_logger(__name__)
|
|
|
14
12
|
|
|
15
13
|
|
|
16
14
|
@dataclasses.dataclass
|
|
17
|
-
class
|
|
15
|
+
class CachedContext: # Internal CachedContext Impl class
|
|
18
16
|
name: str = "default"
|
|
19
17
|
# Dual Block Cache
|
|
20
18
|
# Fn=1, Bn=0, means FB Cache, otherwise, Dual Block Cache
|
|
@@ -67,15 +65,16 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
67
65
|
enable_encoder_taylorseer: bool = False
|
|
68
66
|
# NOTE: use residual cache for taylorseer may incur precision loss
|
|
69
67
|
taylorseer_cache_type: str = "hidden_states" # residual or hidden_states
|
|
68
|
+
taylorseer_order: int = 2 # The order for TaylorSeer
|
|
70
69
|
taylorseer_kwargs: Dict[str, Any] = dataclasses.field(default_factory=dict)
|
|
71
70
|
taylorseer: Optional[TaylorSeer] = None
|
|
72
71
|
encoder_tarlorseer: Optional[TaylorSeer] = None
|
|
73
72
|
|
|
74
|
-
# Support
|
|
73
|
+
# Support enable_spearate_cfg, such as Wan 2.1,
|
|
75
74
|
# Qwen-Image. For model that fused CFG and non-CFG into single
|
|
76
|
-
# forward step, should set
|
|
75
|
+
# forward step, should set enable_spearate_cfg as False.
|
|
77
76
|
# For example: CogVideoX, HunyuanVideo, Mochi.
|
|
78
|
-
|
|
77
|
+
enable_spearate_cfg: bool = False
|
|
79
78
|
# Compute cfg forward first or not, default False, namely,
|
|
80
79
|
# 0, 2, 4, ..., -> non-CFG step; 1, 3, 5, ... -> CFG step.
|
|
81
80
|
cfg_compute_first: bool = False
|
|
@@ -103,10 +102,10 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
103
102
|
if logger.isEnabledFor(logging.DEBUG):
|
|
104
103
|
logger.info(f"Created _CacheContext: {self.name}")
|
|
105
104
|
# Some checks for settings
|
|
106
|
-
if self.
|
|
105
|
+
if self.enable_spearate_cfg:
|
|
107
106
|
assert self.enable_alter_cache is False, (
|
|
108
107
|
"enable_alter_cache must set as False if "
|
|
109
|
-
"
|
|
108
|
+
"enable_spearate_cfg is enabled."
|
|
110
109
|
)
|
|
111
110
|
if self.cfg_diff_compute_separate:
|
|
112
111
|
assert self.cfg_compute_first is False, (
|
|
@@ -121,20 +120,17 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
121
120
|
self.max_warmup_steps if self.max_warmup_steps > 0 else 1
|
|
122
121
|
)
|
|
123
122
|
|
|
124
|
-
#
|
|
125
|
-
|
|
126
|
-
self.taylorseer_kwargs["n_derivatives"] = max(
|
|
127
|
-
2, min(3, self.taylorseer_kwargs["max_warmup_steps"])
|
|
128
|
-
)
|
|
123
|
+
# Overwrite the 'n_derivatives' by 'taylorseer_order', default: 2.
|
|
124
|
+
self.taylorseer_kwargs["n_derivatives"] = self.taylorseer_order
|
|
129
125
|
|
|
130
126
|
if self.enable_taylorseer:
|
|
131
127
|
self.taylorseer = TaylorSeer(**self.taylorseer_kwargs)
|
|
132
|
-
if self.
|
|
128
|
+
if self.enable_spearate_cfg:
|
|
133
129
|
self.cfg_taylorseer = TaylorSeer(**self.taylorseer_kwargs)
|
|
134
130
|
|
|
135
131
|
if self.enable_encoder_taylorseer:
|
|
136
132
|
self.encoder_tarlorseer = TaylorSeer(**self.taylorseer_kwargs)
|
|
137
|
-
if self.
|
|
133
|
+
if self.enable_spearate_cfg:
|
|
138
134
|
self.cfg_encoder_taylorseer = TaylorSeer(
|
|
139
135
|
**self.taylorseer_kwargs
|
|
140
136
|
)
|
|
@@ -181,7 +177,7 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
181
177
|
# incr step: prev 0 -> 1; prev 1 -> 2
|
|
182
178
|
# current step: incr step - 1
|
|
183
179
|
self.transformer_executed_steps += 1
|
|
184
|
-
if not self.
|
|
180
|
+
if not self.enable_spearate_cfg:
|
|
185
181
|
self.executed_steps += 1
|
|
186
182
|
else:
|
|
187
183
|
# 0,1 -> 0 + 1, 2,3 -> 1 + 1, ...
|
|
@@ -223,7 +219,7 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
223
219
|
|
|
224
220
|
# mark_step_begin of TaylorSeer must be called after the cache is reset.
|
|
225
221
|
if self.enable_taylorseer or self.enable_encoder_taylorseer:
|
|
226
|
-
if self.
|
|
222
|
+
if self.enable_spearate_cfg:
|
|
227
223
|
# Assume non-CFG steps: 0, 2, 4, 6, ...
|
|
228
224
|
if not self.is_separate_cfg_step():
|
|
229
225
|
taylorseer, encoder_taylorseer = self.get_taylorseers()
|
|
@@ -318,7 +314,7 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
318
314
|
|
|
319
315
|
@torch.compiler.disable
|
|
320
316
|
def is_separate_cfg_step(self):
|
|
321
|
-
if not self.
|
|
317
|
+
if not self.enable_spearate_cfg:
|
|
322
318
|
return False
|
|
323
319
|
if self.cfg_compute_first:
|
|
324
320
|
# CFG steps: 0, 2, 4, 6, ...
|
|
@@ -329,861 +325,3 @@ class _CachedContext: # Internal CachedContext Impl class
|
|
|
329
325
|
@torch.compiler.disable
|
|
330
326
|
def is_in_warmup(self):
|
|
331
327
|
return self.get_current_step() < self.max_warmup_steps
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
# TODO: Support context manager for different cache_context
|
|
335
|
-
_current_cache_context: _CachedContext = None
|
|
336
|
-
|
|
337
|
-
_cache_context_manager: Dict[str, _CachedContext] = {}
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
def create_cache_context(*args, **kwargs):
|
|
341
|
-
global _cache_context_manager
|
|
342
|
-
_context = _CachedContext(*args, **kwargs)
|
|
343
|
-
_cache_context_manager[_context.name] = _context
|
|
344
|
-
return _context
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
def get_cache_context():
|
|
348
|
-
return _current_cache_context
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
def set_cache_context(cache_context: _CachedContext | str):
|
|
352
|
-
global _current_cache_context, _cache_context_manager
|
|
353
|
-
if isinstance(cache_context, _CachedContext):
|
|
354
|
-
_current_cache_context = cache_context
|
|
355
|
-
else:
|
|
356
|
-
_current_cache_context = _cache_context_manager[cache_context]
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
def reset_cache_context(cache_context: _CachedContext | str, *args, **kwargs):
|
|
360
|
-
global _cache_context_manager
|
|
361
|
-
if isinstance(cache_context, _CachedContext):
|
|
362
|
-
old_context_name = cache_context.name
|
|
363
|
-
if cache_context.name in _cache_context_manager:
|
|
364
|
-
del _cache_context_manager[cache_context.name]
|
|
365
|
-
# force use old_context name
|
|
366
|
-
kwargs["name"] = old_context_name
|
|
367
|
-
_context = _CachedContext(*args, **kwargs)
|
|
368
|
-
_cache_context_manager[_context.name] = _context
|
|
369
|
-
else:
|
|
370
|
-
old_context_name = cache_context
|
|
371
|
-
if cache_context in _cache_context_manager:
|
|
372
|
-
del _cache_context_manager[cache_context]
|
|
373
|
-
# force use old_context name
|
|
374
|
-
kwargs["name"] = old_context_name
|
|
375
|
-
_context = _CachedContext(*args, **kwargs)
|
|
376
|
-
_cache_context_manager[_context.name] = _context
|
|
377
|
-
|
|
378
|
-
return _context
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
@contextlib.contextmanager
|
|
382
|
-
def cache_context(cache_context: _CachedContext | str):
|
|
383
|
-
global _current_cache_context, _cache_context_manager
|
|
384
|
-
old_cache_context = _current_cache_context
|
|
385
|
-
if isinstance(cache_context, _CachedContext):
|
|
386
|
-
_current_cache_context = cache_context
|
|
387
|
-
else:
|
|
388
|
-
_current_cache_context = _cache_context_manager[cache_context]
|
|
389
|
-
try:
|
|
390
|
-
yield
|
|
391
|
-
finally:
|
|
392
|
-
_current_cache_context = old_cache_context
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
@torch.compiler.disable
|
|
396
|
-
def get_residual_diff_threshold():
|
|
397
|
-
cache_context = get_cache_context()
|
|
398
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
399
|
-
return cache_context.get_residual_diff_threshold()
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
@torch.compiler.disable
|
|
403
|
-
def get_buffer(name):
|
|
404
|
-
cache_context = get_cache_context()
|
|
405
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
406
|
-
return cache_context.get_buffer(name)
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
@torch.compiler.disable
|
|
410
|
-
def set_buffer(name, buffer):
|
|
411
|
-
cache_context = get_cache_context()
|
|
412
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
413
|
-
cache_context.set_buffer(name, buffer)
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
@torch.compiler.disable
|
|
417
|
-
def remove_buffer(name):
|
|
418
|
-
cache_context = get_cache_context()
|
|
419
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
420
|
-
cache_context.remove_buffer(name)
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
@torch.compiler.disable
|
|
424
|
-
def mark_step_begin():
|
|
425
|
-
cache_context = get_cache_context()
|
|
426
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
427
|
-
cache_context.mark_step_begin()
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
@torch.compiler.disable
|
|
431
|
-
def get_current_step():
|
|
432
|
-
cache_context = get_cache_context()
|
|
433
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
434
|
-
return cache_context.get_current_step()
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
@torch.compiler.disable
|
|
438
|
-
def get_current_step_residual_diff():
|
|
439
|
-
cache_context = get_cache_context()
|
|
440
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
441
|
-
step = str(get_current_step())
|
|
442
|
-
residual_diffs = get_residual_diffs()
|
|
443
|
-
if step in residual_diffs:
|
|
444
|
-
return residual_diffs[step]
|
|
445
|
-
return None
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
@torch.compiler.disable
|
|
449
|
-
def get_current_step_cfg_residual_diff():
|
|
450
|
-
cache_context = get_cache_context()
|
|
451
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
452
|
-
step = str(get_current_step())
|
|
453
|
-
cfg_residual_diffs = get_cfg_residual_diffs()
|
|
454
|
-
if step in cfg_residual_diffs:
|
|
455
|
-
return cfg_residual_diffs[step]
|
|
456
|
-
return None
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
@torch.compiler.disable
|
|
460
|
-
def get_current_transformer_step():
|
|
461
|
-
cache_context = get_cache_context()
|
|
462
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
463
|
-
return cache_context.get_current_transformer_step()
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
@torch.compiler.disable
|
|
467
|
-
def get_cached_steps():
|
|
468
|
-
cache_context = get_cache_context()
|
|
469
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
470
|
-
return cache_context.get_cached_steps()
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
@torch.compiler.disable
|
|
474
|
-
def get_cfg_cached_steps():
|
|
475
|
-
cache_context = get_cache_context()
|
|
476
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
477
|
-
return cache_context.get_cfg_cached_steps()
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
@torch.compiler.disable
|
|
481
|
-
def get_max_cached_steps():
|
|
482
|
-
cache_context = get_cache_context()
|
|
483
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
484
|
-
return cache_context.max_cached_steps
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
@torch.compiler.disable
|
|
488
|
-
def get_max_continuous_cached_steps():
|
|
489
|
-
cache_context = get_cache_context()
|
|
490
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
491
|
-
return cache_context.max_continuous_cached_steps
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
@torch.compiler.disable
|
|
495
|
-
def get_continuous_cached_steps():
|
|
496
|
-
cache_context = get_cache_context()
|
|
497
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
498
|
-
return cache_context.continuous_cached_steps
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
@torch.compiler.disable
|
|
502
|
-
def get_cfg_continuous_cached_steps():
|
|
503
|
-
cache_context = get_cache_context()
|
|
504
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
505
|
-
return cache_context.cfg_continuous_cached_steps
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
@torch.compiler.disable
|
|
509
|
-
def add_cached_step():
|
|
510
|
-
cache_context = get_cache_context()
|
|
511
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
512
|
-
cache_context.add_cached_step()
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
@torch.compiler.disable
|
|
516
|
-
def add_residual_diff(diff):
|
|
517
|
-
cache_context = get_cache_context()
|
|
518
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
519
|
-
cache_context.add_residual_diff(diff)
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
@torch.compiler.disable
|
|
523
|
-
def get_residual_diffs():
|
|
524
|
-
cache_context = get_cache_context()
|
|
525
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
526
|
-
return cache_context.get_residual_diffs()
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
@torch.compiler.disable
|
|
530
|
-
def get_cfg_residual_diffs():
|
|
531
|
-
cache_context = get_cache_context()
|
|
532
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
533
|
-
return cache_context.get_cfg_residual_diffs()
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
@torch.compiler.disable
|
|
537
|
-
def is_taylorseer_enabled():
|
|
538
|
-
cache_context = get_cache_context()
|
|
539
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
540
|
-
return cache_context.enable_taylorseer
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
@torch.compiler.disable
|
|
544
|
-
def is_encoder_taylorseer_enabled():
|
|
545
|
-
cache_context = get_cache_context()
|
|
546
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
547
|
-
return cache_context.enable_encoder_taylorseer
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
def get_taylorseers() -> Tuple[TaylorSeer, TaylorSeer]:
|
|
551
|
-
cache_context = get_cache_context()
|
|
552
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
553
|
-
return cache_context.get_taylorseers()
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
def get_cfg_taylorseers() -> Tuple[TaylorSeer, TaylorSeer]:
|
|
557
|
-
cache_context = get_cache_context()
|
|
558
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
559
|
-
return cache_context.get_cfg_taylorseers()
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
@torch.compiler.disable
|
|
563
|
-
def is_taylorseer_cache_residual():
|
|
564
|
-
cache_context = get_cache_context()
|
|
565
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
566
|
-
return cache_context.taylorseer_cache_type == "residual"
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
@torch.compiler.disable
|
|
570
|
-
def is_cache_residual():
|
|
571
|
-
if is_taylorseer_enabled():
|
|
572
|
-
# residual or hidden_states
|
|
573
|
-
return is_taylorseer_cache_residual()
|
|
574
|
-
return True
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
@torch.compiler.disable
|
|
578
|
-
def is_encoder_cache_residual():
|
|
579
|
-
if is_encoder_taylorseer_enabled():
|
|
580
|
-
# residual or hidden_states
|
|
581
|
-
return is_taylorseer_cache_residual()
|
|
582
|
-
return True
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
@torch.compiler.disable
|
|
586
|
-
def is_alter_cache_enabled():
|
|
587
|
-
cache_context = get_cache_context()
|
|
588
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
589
|
-
return cache_context.enable_alter_cache
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
@torch.compiler.disable
|
|
593
|
-
def is_alter_cache():
|
|
594
|
-
cache_context = get_cache_context()
|
|
595
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
596
|
-
return cache_context.is_alter_cache
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
@torch.compiler.disable
|
|
600
|
-
def is_in_warmup():
|
|
601
|
-
cache_context = get_cache_context()
|
|
602
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
603
|
-
return cache_context.is_in_warmup()
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
@torch.compiler.disable
|
|
607
|
-
def is_l1_diff_enabled():
|
|
608
|
-
cache_context = get_cache_context()
|
|
609
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
610
|
-
return (
|
|
611
|
-
cache_context.l1_hidden_states_diff_threshold is not None
|
|
612
|
-
and cache_context.l1_hidden_states_diff_threshold > 0.0
|
|
613
|
-
)
|
|
614
|
-
|
|
615
|
-
|
|
616
|
-
@torch.compiler.disable
|
|
617
|
-
def get_important_condition_threshold():
|
|
618
|
-
cache_context = get_cache_context()
|
|
619
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
620
|
-
return cache_context.important_condition_threshold
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
@torch.compiler.disable
|
|
624
|
-
def non_compute_blocks_diff_threshold():
|
|
625
|
-
cache_context = get_cache_context()
|
|
626
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
627
|
-
return cache_context.non_compute_blocks_diff_threshold
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
@torch.compiler.disable
|
|
631
|
-
def Fn_compute_blocks():
|
|
632
|
-
cache_context = get_cache_context()
|
|
633
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
634
|
-
assert (
|
|
635
|
-
cache_context.Fn_compute_blocks >= 1
|
|
636
|
-
), "Fn_compute_blocks must be >= 1"
|
|
637
|
-
if cache_context.max_Fn_compute_blocks > 0:
|
|
638
|
-
# NOTE: Fn_compute_blocks can be 1, which means FB Cache
|
|
639
|
-
# but it must be less than or equal to max_Fn_compute_blocks
|
|
640
|
-
assert (
|
|
641
|
-
cache_context.Fn_compute_blocks
|
|
642
|
-
<= cache_context.max_Fn_compute_blocks
|
|
643
|
-
), (
|
|
644
|
-
f"Fn_compute_blocks must be <= {cache_context.max_Fn_compute_blocks}, "
|
|
645
|
-
f"but got {cache_context.Fn_compute_blocks}"
|
|
646
|
-
)
|
|
647
|
-
return cache_context.Fn_compute_blocks
|
|
648
|
-
|
|
649
|
-
|
|
650
|
-
@torch.compiler.disable
|
|
651
|
-
def Fn_compute_blocks_ids():
|
|
652
|
-
cache_context = get_cache_context()
|
|
653
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
654
|
-
assert (
|
|
655
|
-
len(cache_context.Fn_compute_blocks_ids)
|
|
656
|
-
<= cache_context.Fn_compute_blocks
|
|
657
|
-
), (
|
|
658
|
-
"The num of Fn_compute_blocks_ids must be <= Fn_compute_blocks "
|
|
659
|
-
f"{cache_context.Fn_compute_blocks}, but got "
|
|
660
|
-
f"{len(cache_context.Fn_compute_blocks_ids)}"
|
|
661
|
-
)
|
|
662
|
-
return cache_context.Fn_compute_blocks_ids
|
|
663
|
-
|
|
664
|
-
|
|
665
|
-
@torch.compiler.disable
|
|
666
|
-
def Bn_compute_blocks():
|
|
667
|
-
cache_context = get_cache_context()
|
|
668
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
669
|
-
assert (
|
|
670
|
-
cache_context.Bn_compute_blocks >= 0
|
|
671
|
-
), "Bn_compute_blocks must be >= 0"
|
|
672
|
-
if cache_context.max_Bn_compute_blocks > 0:
|
|
673
|
-
# NOTE: Bn_compute_blocks can be 0, which means FB Cache
|
|
674
|
-
# but it must be less than or equal to max_Bn_compute_blocks
|
|
675
|
-
assert (
|
|
676
|
-
cache_context.Bn_compute_blocks
|
|
677
|
-
<= cache_context.max_Bn_compute_blocks
|
|
678
|
-
), (
|
|
679
|
-
f"Bn_compute_blocks must be <= {cache_context.max_Bn_compute_blocks}, "
|
|
680
|
-
f"but got {cache_context.Bn_compute_blocks}"
|
|
681
|
-
)
|
|
682
|
-
return cache_context.Bn_compute_blocks
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
@torch.compiler.disable
|
|
686
|
-
def Bn_compute_blocks_ids():
|
|
687
|
-
cache_context = get_cache_context()
|
|
688
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
689
|
-
assert (
|
|
690
|
-
len(cache_context.Bn_compute_blocks_ids)
|
|
691
|
-
<= cache_context.Bn_compute_blocks
|
|
692
|
-
), (
|
|
693
|
-
"The num of Bn_compute_blocks_ids must be <= Bn_compute_blocks "
|
|
694
|
-
f"{cache_context.Bn_compute_blocks}, but got "
|
|
695
|
-
f"{len(cache_context.Bn_compute_blocks_ids)}"
|
|
696
|
-
)
|
|
697
|
-
return cache_context.Bn_compute_blocks_ids
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
@torch.compiler.disable
|
|
701
|
-
def do_separate_cfg():
|
|
702
|
-
cache_context = get_cache_context()
|
|
703
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
704
|
-
return cache_context.do_separate_cfg
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
@torch.compiler.disable
|
|
708
|
-
def is_separate_cfg_step():
|
|
709
|
-
cache_context = get_cache_context()
|
|
710
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
711
|
-
return cache_context.is_separate_cfg_step()
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
@torch.compiler.disable
|
|
715
|
-
def cfg_diff_compute_separate():
|
|
716
|
-
cache_context = get_cache_context()
|
|
717
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
718
|
-
return cache_context.cfg_diff_compute_separate
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
def collect_cache_kwargs(default_attrs: dict, **kwargs):
|
|
722
|
-
# NOTE: This API will split kwargs into cache_kwargs and other_kwargs
|
|
723
|
-
# default_attrs: specific settings for different pipelines
|
|
724
|
-
cache_attrs = dataclasses.fields(_CachedContext)
|
|
725
|
-
cache_attrs = [
|
|
726
|
-
attr
|
|
727
|
-
for attr in cache_attrs
|
|
728
|
-
if hasattr(
|
|
729
|
-
_CachedContext,
|
|
730
|
-
attr.name,
|
|
731
|
-
)
|
|
732
|
-
]
|
|
733
|
-
cache_kwargs = {
|
|
734
|
-
attr.name: kwargs.pop(
|
|
735
|
-
attr.name,
|
|
736
|
-
getattr(_CachedContext, attr.name),
|
|
737
|
-
)
|
|
738
|
-
for attr in cache_attrs
|
|
739
|
-
}
|
|
740
|
-
|
|
741
|
-
def _safe_set_sequence_field(
|
|
742
|
-
field_name: str,
|
|
743
|
-
default_value: Any = None,
|
|
744
|
-
):
|
|
745
|
-
if field_name not in cache_kwargs:
|
|
746
|
-
cache_kwargs[field_name] = kwargs.pop(
|
|
747
|
-
field_name,
|
|
748
|
-
default_value,
|
|
749
|
-
)
|
|
750
|
-
|
|
751
|
-
# Manually set sequence fields, namely, Fn_compute_blocks_ids
|
|
752
|
-
# and Bn_compute_blocks_ids, which are lists or sets.
|
|
753
|
-
_safe_set_sequence_field("Fn_compute_blocks_ids", [])
|
|
754
|
-
_safe_set_sequence_field("Bn_compute_blocks_ids", [])
|
|
755
|
-
_safe_set_sequence_field("taylorseer_kwargs", {})
|
|
756
|
-
|
|
757
|
-
for attr in cache_attrs:
|
|
758
|
-
if attr.name in default_attrs: # can be empty {}
|
|
759
|
-
cache_kwargs[attr.name] = default_attrs[attr.name]
|
|
760
|
-
|
|
761
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
762
|
-
logger.debug(f"Collected DBCache kwargs: {cache_kwargs}")
|
|
763
|
-
|
|
764
|
-
return cache_kwargs, kwargs
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
@torch.compiler.disable
|
|
768
|
-
def are_two_tensors_similar(
|
|
769
|
-
t1: torch.Tensor, # prev residual R(t-1,n) = H(t-1,n) - H(t-1,0)
|
|
770
|
-
t2: torch.Tensor, # curr residual R(t ,n) = H(t ,n) - H(t ,0)
|
|
771
|
-
*,
|
|
772
|
-
threshold: float,
|
|
773
|
-
parallelized: bool = False,
|
|
774
|
-
prefix: str = "Fn", # for debugging
|
|
775
|
-
):
|
|
776
|
-
# Special case for threshold, 0.0 means the threshold is disabled, -1.0 means
|
|
777
|
-
# the threshold is always enabled, -2.0 means the shape is not matched.
|
|
778
|
-
if threshold <= 0.0:
|
|
779
|
-
add_residual_diff(-0.0)
|
|
780
|
-
return False
|
|
781
|
-
|
|
782
|
-
if threshold >= 1.0:
|
|
783
|
-
# If threshold is 1.0 or more, we consider them always similar.
|
|
784
|
-
add_residual_diff(-1.0)
|
|
785
|
-
return True
|
|
786
|
-
|
|
787
|
-
if t1.shape != t2.shape:
|
|
788
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
789
|
-
logger.debug(f"{prefix}, shape error: {t1.shape} != {t2.shape}")
|
|
790
|
-
add_residual_diff(-2.0)
|
|
791
|
-
return False
|
|
792
|
-
|
|
793
|
-
if all(
|
|
794
|
-
(
|
|
795
|
-
do_separate_cfg(),
|
|
796
|
-
is_separate_cfg_step(),
|
|
797
|
-
not cfg_diff_compute_separate(),
|
|
798
|
-
get_current_step_residual_diff() is not None,
|
|
799
|
-
)
|
|
800
|
-
):
|
|
801
|
-
# Reuse computed diff value from non-CFG step
|
|
802
|
-
diff = get_current_step_residual_diff()
|
|
803
|
-
else:
|
|
804
|
-
# Find the most significant token through t1 and t2, and
|
|
805
|
-
# consider the diff of the significant token. The more significant,
|
|
806
|
-
# the more important.
|
|
807
|
-
condition_thresh = get_important_condition_threshold()
|
|
808
|
-
if condition_thresh > 0.0:
|
|
809
|
-
raw_diff = (t1 - t2).abs() # [B, seq_len, d]
|
|
810
|
-
token_m_df = raw_diff.mean(dim=-1) # [B, seq_len]
|
|
811
|
-
token_m_t1 = t1.abs().mean(dim=-1) # [B, seq_len]
|
|
812
|
-
# D = (t1 - t2) / t1 = 1 - (t2 / t1), if D = 0, then t1 = t2.
|
|
813
|
-
token_diff = token_m_df / token_m_t1 # [B, seq_len]
|
|
814
|
-
condition = token_diff > condition_thresh # [B, seq_len]
|
|
815
|
-
if condition.sum() > 0:
|
|
816
|
-
condition = condition.unsqueeze(-1) # [B, seq_len, 1]
|
|
817
|
-
condition = condition.expand_as(raw_diff) # [B, seq_len, d]
|
|
818
|
-
mean_diff = raw_diff[condition].mean()
|
|
819
|
-
mean_t1 = t1[condition].abs().mean()
|
|
820
|
-
else:
|
|
821
|
-
mean_diff = (t1 - t2).abs().mean()
|
|
822
|
-
mean_t1 = t1.abs().mean()
|
|
823
|
-
else:
|
|
824
|
-
# Use the mean of the absolute difference of the tensors
|
|
825
|
-
mean_diff = (t1 - t2).abs().mean()
|
|
826
|
-
mean_t1 = t1.abs().mean()
|
|
827
|
-
|
|
828
|
-
if parallelized:
|
|
829
|
-
dist.all_reduce(mean_diff, op=dist.ReduceOp.AVG)
|
|
830
|
-
dist.all_reduce(mean_t1, op=dist.ReduceOp.AVG)
|
|
831
|
-
|
|
832
|
-
# D = (t1 - t2) / t1 = 1 - (t2 / t1), if D = 0, then t1 = t2.
|
|
833
|
-
# Futher, if we assume that (H(t, 0) - H(t-1,0)) ~ 0, then,
|
|
834
|
-
# H(t-1,n) ~ H(t ,n), which means the hidden states are similar.
|
|
835
|
-
diff = (mean_diff / mean_t1).item()
|
|
836
|
-
|
|
837
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
838
|
-
logger.debug(f"{prefix}, diff: {diff:.6f}, threshold: {threshold:.6f}")
|
|
839
|
-
|
|
840
|
-
add_residual_diff(diff)
|
|
841
|
-
|
|
842
|
-
return diff < threshold
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
@torch.compiler.disable
|
|
846
|
-
def _debugging_set_buffer(prefix):
|
|
847
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
848
|
-
logger.debug(
|
|
849
|
-
f"set {prefix}, "
|
|
850
|
-
f"transformer step: {get_current_transformer_step()}, "
|
|
851
|
-
f"executed step: {get_current_step()}"
|
|
852
|
-
)
|
|
853
|
-
|
|
854
|
-
|
|
855
|
-
@torch.compiler.disable
|
|
856
|
-
def _debugging_get_buffer(prefix):
|
|
857
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
858
|
-
logger.debug(
|
|
859
|
-
f"get {prefix}, "
|
|
860
|
-
f"transformer step: {get_current_transformer_step()}, "
|
|
861
|
-
f"executed step: {get_current_step()}"
|
|
862
|
-
)
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
# Fn buffers
|
|
866
|
-
@torch.compiler.disable
|
|
867
|
-
def set_Fn_buffer(buffer: torch.Tensor, prefix: str = "Fn"):
|
|
868
|
-
# Set hidden_states or residual for Fn blocks.
|
|
869
|
-
# This buffer is only use for L1 diff calculation.
|
|
870
|
-
downsample_factor = get_downsample_factor()
|
|
871
|
-
if downsample_factor > 1:
|
|
872
|
-
buffer = buffer[..., ::downsample_factor]
|
|
873
|
-
buffer = buffer.contiguous()
|
|
874
|
-
if is_separate_cfg_step():
|
|
875
|
-
_debugging_set_buffer(f"{prefix}_buffer_cfg")
|
|
876
|
-
set_buffer(f"{prefix}_buffer_cfg", buffer)
|
|
877
|
-
else:
|
|
878
|
-
_debugging_set_buffer(f"{prefix}_buffer")
|
|
879
|
-
set_buffer(f"{prefix}_buffer", buffer)
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
@torch.compiler.disable
|
|
883
|
-
def get_Fn_buffer(prefix: str = "Fn"):
|
|
884
|
-
if is_separate_cfg_step():
|
|
885
|
-
_debugging_get_buffer(f"{prefix}_buffer_cfg")
|
|
886
|
-
return get_buffer(f"{prefix}_buffer_cfg")
|
|
887
|
-
_debugging_get_buffer(f"{prefix}_buffer")
|
|
888
|
-
return get_buffer(f"{prefix}_buffer")
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
@torch.compiler.disable
|
|
892
|
-
def set_Fn_encoder_buffer(buffer: torch.Tensor, prefix: str = "Fn"):
|
|
893
|
-
if is_separate_cfg_step():
|
|
894
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
895
|
-
set_buffer(f"{prefix}_encoder_buffer_cfg", buffer)
|
|
896
|
-
else:
|
|
897
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer")
|
|
898
|
-
set_buffer(f"{prefix}_encoder_buffer", buffer)
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
@torch.compiler.disable
|
|
902
|
-
def get_Fn_encoder_buffer(prefix: str = "Fn"):
|
|
903
|
-
if is_separate_cfg_step():
|
|
904
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
905
|
-
return get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
906
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer")
|
|
907
|
-
return get_buffer(f"{prefix}_encoder_buffer")
|
|
908
|
-
|
|
909
|
-
|
|
910
|
-
# Bn buffers
|
|
911
|
-
@torch.compiler.disable
|
|
912
|
-
def set_Bn_buffer(buffer: torch.Tensor, prefix: str = "Bn"):
|
|
913
|
-
# Set hidden_states or residual for Bn blocks.
|
|
914
|
-
# This buffer is use for hidden states approximation.
|
|
915
|
-
if is_taylorseer_enabled():
|
|
916
|
-
# taylorseer, encoder_taylorseer
|
|
917
|
-
if is_separate_cfg_step():
|
|
918
|
-
taylorseer, _ = get_cfg_taylorseers()
|
|
919
|
-
else:
|
|
920
|
-
taylorseer, _ = get_taylorseers()
|
|
921
|
-
|
|
922
|
-
if taylorseer is not None:
|
|
923
|
-
# Use TaylorSeer to update the buffer
|
|
924
|
-
taylorseer.update(buffer)
|
|
925
|
-
else:
|
|
926
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
927
|
-
logger.debug(
|
|
928
|
-
"TaylorSeer is enabled but not set in the cache context. "
|
|
929
|
-
"Falling back to default buffer retrieval."
|
|
930
|
-
)
|
|
931
|
-
if is_separate_cfg_step():
|
|
932
|
-
_debugging_set_buffer(f"{prefix}_buffer_cfg")
|
|
933
|
-
set_buffer(f"{prefix}_buffer_cfg", buffer)
|
|
934
|
-
else:
|
|
935
|
-
_debugging_set_buffer(f"{prefix}_buffer")
|
|
936
|
-
set_buffer(f"{prefix}_buffer", buffer)
|
|
937
|
-
else:
|
|
938
|
-
if is_separate_cfg_step():
|
|
939
|
-
_debugging_set_buffer(f"{prefix}_buffer_cfg")
|
|
940
|
-
set_buffer(f"{prefix}_buffer_cfg", buffer)
|
|
941
|
-
else:
|
|
942
|
-
_debugging_set_buffer(f"{prefix}_buffer")
|
|
943
|
-
set_buffer(f"{prefix}_buffer", buffer)
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
@torch.compiler.disable
|
|
947
|
-
def get_Bn_buffer(prefix: str = "Bn"):
|
|
948
|
-
if is_taylorseer_enabled():
|
|
949
|
-
# taylorseer, encoder_taylorseer
|
|
950
|
-
if is_separate_cfg_step():
|
|
951
|
-
taylorseer, _ = get_cfg_taylorseers()
|
|
952
|
-
else:
|
|
953
|
-
taylorseer, _ = get_taylorseers()
|
|
954
|
-
|
|
955
|
-
if taylorseer is not None:
|
|
956
|
-
return taylorseer.approximate_value()
|
|
957
|
-
else:
|
|
958
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
959
|
-
logger.debug(
|
|
960
|
-
"TaylorSeer is enabled but not set in the cache context. "
|
|
961
|
-
"Falling back to default buffer retrieval."
|
|
962
|
-
)
|
|
963
|
-
# Fallback to default buffer retrieval
|
|
964
|
-
if is_separate_cfg_step():
|
|
965
|
-
_debugging_get_buffer(f"{prefix}_buffer_cfg")
|
|
966
|
-
return get_buffer(f"{prefix}_buffer_cfg")
|
|
967
|
-
_debugging_get_buffer(f"{prefix}_buffer")
|
|
968
|
-
return get_buffer(f"{prefix}_buffer")
|
|
969
|
-
else:
|
|
970
|
-
if is_separate_cfg_step():
|
|
971
|
-
_debugging_get_buffer(f"{prefix}_buffer_cfg")
|
|
972
|
-
return get_buffer(f"{prefix}_buffer_cfg")
|
|
973
|
-
_debugging_get_buffer(f"{prefix}_buffer")
|
|
974
|
-
return get_buffer(f"{prefix}_buffer")
|
|
975
|
-
|
|
976
|
-
|
|
977
|
-
@torch.compiler.disable
|
|
978
|
-
def set_Bn_encoder_buffer(buffer: torch.Tensor | None, prefix: str = "Bn"):
|
|
979
|
-
# DON'T set None Buffer
|
|
980
|
-
if buffer is None:
|
|
981
|
-
return
|
|
982
|
-
|
|
983
|
-
# This buffer is use for encoder hidden states approximation.
|
|
984
|
-
if is_encoder_taylorseer_enabled():
|
|
985
|
-
# taylorseer, encoder_taylorseer
|
|
986
|
-
if is_separate_cfg_step():
|
|
987
|
-
_, encoder_taylorseer = get_cfg_taylorseers()
|
|
988
|
-
else:
|
|
989
|
-
_, encoder_taylorseer = get_taylorseers()
|
|
990
|
-
|
|
991
|
-
if encoder_taylorseer is not None:
|
|
992
|
-
# Use TaylorSeer to update the buffer
|
|
993
|
-
encoder_taylorseer.update(buffer)
|
|
994
|
-
else:
|
|
995
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
996
|
-
logger.debug(
|
|
997
|
-
"TaylorSeer is enabled but not set in the cache context. "
|
|
998
|
-
"Falling back to default buffer retrieval."
|
|
999
|
-
)
|
|
1000
|
-
if is_separate_cfg_step():
|
|
1001
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1002
|
-
set_buffer(f"{prefix}_encoder_buffer_cfg", buffer)
|
|
1003
|
-
else:
|
|
1004
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer")
|
|
1005
|
-
set_buffer(f"{prefix}_encoder_buffer", buffer)
|
|
1006
|
-
else:
|
|
1007
|
-
if is_separate_cfg_step():
|
|
1008
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1009
|
-
set_buffer(f"{prefix}_encoder_buffer_cfg", buffer)
|
|
1010
|
-
else:
|
|
1011
|
-
_debugging_set_buffer(f"{prefix}_encoder_buffer")
|
|
1012
|
-
set_buffer(f"{prefix}_encoder_buffer", buffer)
|
|
1013
|
-
|
|
1014
|
-
|
|
1015
|
-
@torch.compiler.disable
|
|
1016
|
-
def get_Bn_encoder_buffer(prefix: str = "Bn"):
|
|
1017
|
-
if is_encoder_taylorseer_enabled():
|
|
1018
|
-
if is_separate_cfg_step():
|
|
1019
|
-
_, encoder_taylorseer = get_cfg_taylorseers()
|
|
1020
|
-
else:
|
|
1021
|
-
_, encoder_taylorseer = get_taylorseers()
|
|
1022
|
-
|
|
1023
|
-
if encoder_taylorseer is not None:
|
|
1024
|
-
# Use TaylorSeer to approximate the value
|
|
1025
|
-
return encoder_taylorseer.approximate_value()
|
|
1026
|
-
else:
|
|
1027
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
1028
|
-
logger.debug(
|
|
1029
|
-
"TaylorSeer is enabled but not set in the cache context. "
|
|
1030
|
-
"Falling back to default buffer retrieval."
|
|
1031
|
-
)
|
|
1032
|
-
# Fallback to default buffer retrieval
|
|
1033
|
-
if is_separate_cfg_step():
|
|
1034
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1035
|
-
return get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1036
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer")
|
|
1037
|
-
return get_buffer(f"{prefix}_encoder_buffer")
|
|
1038
|
-
else:
|
|
1039
|
-
if is_separate_cfg_step():
|
|
1040
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1041
|
-
return get_buffer(f"{prefix}_encoder_buffer_cfg")
|
|
1042
|
-
_debugging_get_buffer(f"{prefix}_encoder_buffer")
|
|
1043
|
-
return get_buffer(f"{prefix}_encoder_buffer")
|
|
1044
|
-
|
|
1045
|
-
|
|
1046
|
-
@torch.compiler.disable
|
|
1047
|
-
def apply_hidden_states_residual(
|
|
1048
|
-
hidden_states: torch.Tensor,
|
|
1049
|
-
encoder_hidden_states: torch.Tensor = None,
|
|
1050
|
-
prefix: str = "Bn",
|
|
1051
|
-
encoder_prefix: str = "Bn_encoder",
|
|
1052
|
-
):
|
|
1053
|
-
# Allow Bn and Fn prefix to be used for residual cache.
|
|
1054
|
-
if "Bn" in prefix:
|
|
1055
|
-
hidden_states_prev = get_Bn_buffer(prefix)
|
|
1056
|
-
else:
|
|
1057
|
-
hidden_states_prev = get_Fn_buffer(prefix)
|
|
1058
|
-
|
|
1059
|
-
assert hidden_states_prev is not None, f"{prefix}_buffer must be set before"
|
|
1060
|
-
|
|
1061
|
-
if is_cache_residual():
|
|
1062
|
-
hidden_states = hidden_states_prev + hidden_states
|
|
1063
|
-
else:
|
|
1064
|
-
# If cache is not residual, we use the hidden states directly
|
|
1065
|
-
hidden_states = hidden_states_prev
|
|
1066
|
-
|
|
1067
|
-
hidden_states = hidden_states.contiguous()
|
|
1068
|
-
|
|
1069
|
-
if encoder_hidden_states is not None:
|
|
1070
|
-
if "Bn" in encoder_prefix:
|
|
1071
|
-
encoder_hidden_states_prev = get_Bn_encoder_buffer(encoder_prefix)
|
|
1072
|
-
else:
|
|
1073
|
-
encoder_hidden_states_prev = get_Fn_encoder_buffer(encoder_prefix)
|
|
1074
|
-
|
|
1075
|
-
assert (
|
|
1076
|
-
encoder_hidden_states_prev is not None
|
|
1077
|
-
), f"{prefix}_encoder_buffer must be set before"
|
|
1078
|
-
|
|
1079
|
-
if is_encoder_cache_residual():
|
|
1080
|
-
encoder_hidden_states = (
|
|
1081
|
-
encoder_hidden_states_prev + encoder_hidden_states
|
|
1082
|
-
)
|
|
1083
|
-
else:
|
|
1084
|
-
# If encoder cache is not residual, we use the encoder hidden states directly
|
|
1085
|
-
encoder_hidden_states = encoder_hidden_states_prev
|
|
1086
|
-
|
|
1087
|
-
encoder_hidden_states = encoder_hidden_states.contiguous()
|
|
1088
|
-
|
|
1089
|
-
return hidden_states, encoder_hidden_states
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
@torch.compiler.disable
|
|
1093
|
-
def get_downsample_factor():
|
|
1094
|
-
cache_context = get_cache_context()
|
|
1095
|
-
assert cache_context is not None, "cache_context must be set before"
|
|
1096
|
-
return cache_context.downsample_factor
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
@torch.compiler.disable
|
|
1100
|
-
def get_can_use_cache(
|
|
1101
|
-
states_tensor: torch.Tensor, # hidden_states or residual
|
|
1102
|
-
parallelized: bool = False,
|
|
1103
|
-
threshold: Optional[float] = None, # can manually set threshold
|
|
1104
|
-
prefix: str = "Fn",
|
|
1105
|
-
):
|
|
1106
|
-
if is_in_warmup():
|
|
1107
|
-
return False
|
|
1108
|
-
|
|
1109
|
-
# max cached steps
|
|
1110
|
-
max_cached_steps = get_max_cached_steps()
|
|
1111
|
-
if not is_separate_cfg_step():
|
|
1112
|
-
cached_steps = get_cached_steps()
|
|
1113
|
-
else:
|
|
1114
|
-
cached_steps = get_cfg_cached_steps()
|
|
1115
|
-
|
|
1116
|
-
if max_cached_steps >= 0 and (len(cached_steps) >= max_cached_steps):
|
|
1117
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
1118
|
-
logger.debug(
|
|
1119
|
-
f"{prefix}, max_cached_steps reached: {max_cached_steps}, "
|
|
1120
|
-
"can not use cache."
|
|
1121
|
-
)
|
|
1122
|
-
return False
|
|
1123
|
-
|
|
1124
|
-
# max continuous cached steps
|
|
1125
|
-
max_continuous_cached_steps = get_max_continuous_cached_steps()
|
|
1126
|
-
if not is_separate_cfg_step():
|
|
1127
|
-
continuous_cached_steps = get_continuous_cached_steps()
|
|
1128
|
-
else:
|
|
1129
|
-
continuous_cached_steps = get_cfg_continuous_cached_steps()
|
|
1130
|
-
|
|
1131
|
-
if max_continuous_cached_steps >= 0 and (
|
|
1132
|
-
continuous_cached_steps >= max_continuous_cached_steps
|
|
1133
|
-
):
|
|
1134
|
-
if logger.isEnabledFor(logging.DEBUG):
|
|
1135
|
-
logger.debug(
|
|
1136
|
-
f"{prefix}, max_continuous_cached_steps "
|
|
1137
|
-
f"reached: {max_continuous_cached_steps}, "
|
|
1138
|
-
"can not use cache."
|
|
1139
|
-
)
|
|
1140
|
-
# reset continuous cached steps stats
|
|
1141
|
-
cache_context = get_cache_context()
|
|
1142
|
-
if not is_separate_cfg_step():
|
|
1143
|
-
cache_context.continuous_cached_steps = 0
|
|
1144
|
-
else:
|
|
1145
|
-
cache_context.cfg_continuous_cached_steps = 0
|
|
1146
|
-
return False
|
|
1147
|
-
|
|
1148
|
-
if threshold is None or threshold <= 0.0:
|
|
1149
|
-
threshold = get_residual_diff_threshold()
|
|
1150
|
-
if threshold <= 0.0:
|
|
1151
|
-
return False
|
|
1152
|
-
|
|
1153
|
-
downsample_factor = get_downsample_factor()
|
|
1154
|
-
if downsample_factor > 1 and "Bn" not in prefix:
|
|
1155
|
-
states_tensor = states_tensor[..., ::downsample_factor]
|
|
1156
|
-
states_tensor = states_tensor.contiguous()
|
|
1157
|
-
|
|
1158
|
-
# Allow Bn and Fn prefix to be used for diff calculation.
|
|
1159
|
-
if "Bn" in prefix:
|
|
1160
|
-
prev_states_tensor = get_Bn_buffer(prefix)
|
|
1161
|
-
else:
|
|
1162
|
-
prev_states_tensor = get_Fn_buffer(prefix)
|
|
1163
|
-
|
|
1164
|
-
if not is_alter_cache_enabled():
|
|
1165
|
-
# Dynamic cache according to the residual diff
|
|
1166
|
-
can_use_cache = (
|
|
1167
|
-
prev_states_tensor is not None
|
|
1168
|
-
and are_two_tensors_similar(
|
|
1169
|
-
prev_states_tensor,
|
|
1170
|
-
states_tensor,
|
|
1171
|
-
threshold=threshold,
|
|
1172
|
-
parallelized=parallelized,
|
|
1173
|
-
prefix=prefix,
|
|
1174
|
-
)
|
|
1175
|
-
)
|
|
1176
|
-
else:
|
|
1177
|
-
# Only cache in the alter cache steps
|
|
1178
|
-
can_use_cache = (
|
|
1179
|
-
prev_states_tensor is not None
|
|
1180
|
-
and are_two_tensors_similar(
|
|
1181
|
-
prev_states_tensor,
|
|
1182
|
-
states_tensor,
|
|
1183
|
-
threshold=threshold,
|
|
1184
|
-
parallelized=parallelized,
|
|
1185
|
-
prefix=prefix,
|
|
1186
|
-
)
|
|
1187
|
-
and is_alter_cache()
|
|
1188
|
-
)
|
|
1189
|
-
return can_use_cache
|