cache-dit 0.1.3__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of cache-dit might be problematic. Click here for more details.
- cache_dit/_version.py +2 -2
- cache_dit/cache_factory/dynamic_block_prune/prune_context.py +11 -3
- {cache_dit-0.1.3.dist-info → cache_dit-0.1.6.dist-info}/METADATA +96 -21
- {cache_dit-0.1.3.dist-info → cache_dit-0.1.6.dist-info}/RECORD +7 -7
- {cache_dit-0.1.3.dist-info → cache_dit-0.1.6.dist-info}/WHEEL +0 -0
- {cache_dit-0.1.3.dist-info → cache_dit-0.1.6.dist-info}/licenses/LICENSE +0 -0
- {cache_dit-0.1.3.dist-info → cache_dit-0.1.6.dist-info}/top_level.txt +0 -0
cache_dit/_version.py
CHANGED
|
@@ -562,7 +562,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
|
|
|
562
562
|
torch._dynamo.graph_break()
|
|
563
563
|
|
|
564
564
|
add_pruned_block(self.pruned_blocks_step)
|
|
565
|
-
add_actual_block(self.
|
|
565
|
+
add_actual_block(self.num_transformer_blocks)
|
|
566
566
|
patch_pruned_stats(self.transformer)
|
|
567
567
|
|
|
568
568
|
return (
|
|
@@ -577,7 +577,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
|
|
|
577
577
|
|
|
578
578
|
@property
|
|
579
579
|
@torch.compiler.disable
|
|
580
|
-
def
|
|
580
|
+
def num_transformer_blocks(self):
|
|
581
581
|
# Total number of transformer blocks, including single transformer blocks.
|
|
582
582
|
num_blocks = len(self.transformer_blocks)
|
|
583
583
|
if self.single_transformer_blocks is not None:
|
|
@@ -597,7 +597,7 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
|
|
|
597
597
|
@torch.compiler.disable
|
|
598
598
|
def _non_prune_blocks_ids(self):
|
|
599
599
|
# Never prune the first `Fn` and last `Bn` blocks.
|
|
600
|
-
num_blocks = self.
|
|
600
|
+
num_blocks = self.num_transformer_blocks
|
|
601
601
|
Fn_compute_blocks_ = (
|
|
602
602
|
Fn_compute_blocks()
|
|
603
603
|
if Fn_compute_blocks() < num_blocks
|
|
@@ -627,6 +627,10 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
|
|
|
627
627
|
]
|
|
628
628
|
return sorted(non_prune_blocks_ids)
|
|
629
629
|
|
|
630
|
+
# @torch.compile(dynamic=True)
|
|
631
|
+
# mark this function as compile with dynamic=True will
|
|
632
|
+
# cause precision degradate, so, we choose to disable it
|
|
633
|
+
# now, until we find a better solution or fixed the bug.
|
|
630
634
|
@torch.compiler.disable
|
|
631
635
|
def _compute_single_hidden_states_residual(
|
|
632
636
|
self,
|
|
@@ -663,6 +667,10 @@ class DBPrunedTransformerBlocks(torch.nn.Module):
|
|
|
663
667
|
single_encoder_hidden_states_residual,
|
|
664
668
|
)
|
|
665
669
|
|
|
670
|
+
# @torch.compile(dynamic=True)
|
|
671
|
+
# mark this function as compile with dynamic=True will
|
|
672
|
+
# cause precision degradate, so, we choose to disable it
|
|
673
|
+
# now, until we find a better solution or fixed the bug.
|
|
666
674
|
@torch.compiler.disable
|
|
667
675
|
def _split_single_hidden_states(
|
|
668
676
|
self,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: cache_dit
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
|
|
5
5
|
Author: DefTruth, vipshop.com, etc.
|
|
6
6
|
Maintainer: DefTruth, vipshop.com, etc
|
|
@@ -10,9 +10,9 @@ Requires-Python: >=3.10
|
|
|
10
10
|
Description-Content-Type: text/markdown
|
|
11
11
|
License-File: LICENSE
|
|
12
12
|
Requires-Dist: packaging
|
|
13
|
-
Requires-Dist: torch
|
|
14
|
-
Requires-Dist: transformers
|
|
15
|
-
Requires-Dist: diffusers
|
|
13
|
+
Requires-Dist: torch>=2.5.1
|
|
14
|
+
Requires-Dist: transformers>=4.51.3
|
|
15
|
+
Requires-Dist: diffusers>=0.33.1
|
|
16
16
|
Provides-Extra: all
|
|
17
17
|
Provides-Extra: dev
|
|
18
18
|
Requires-Dist: pre-commit; extra == "dev"
|
|
@@ -44,10 +44,10 @@ Dynamic: requires-python
|
|
|
44
44
|
<img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
|
|
45
45
|
<img src=https://static.pepy.tech/badge/cache-dit >
|
|
46
46
|
<img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
|
|
47
|
-
<img src=https://img.shields.io/badge/Release-v0.1.
|
|
47
|
+
<img src=https://img.shields.io/badge/Release-v0.1.6-brightgreen.svg >
|
|
48
48
|
</div>
|
|
49
49
|
<p align="center">
|
|
50
|
-
DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT
|
|
50
|
+
DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT <br>offers a set of training-free cache accelerators for DiT: 🔥DBCache, DBPrune, FBCache, etc🔥
|
|
51
51
|
</p>
|
|
52
52
|
</div>
|
|
53
53
|
|
|
@@ -55,7 +55,7 @@ Dynamic: requires-python
|
|
|
55
55
|
|
|
56
56
|
<div align="center">
|
|
57
57
|
<p align="center">
|
|
58
|
-
<h3
|
|
58
|
+
<h3>🔥 DBCache: Dual Block Caching for Diffusion Transformers</h3>
|
|
59
59
|
</p>
|
|
60
60
|
</div>
|
|
61
61
|
|
|
@@ -77,7 +77,7 @@ Dynamic: requires-python
|
|
|
77
77
|
|
|
78
78
|
<div align="center">
|
|
79
79
|
<p align="center">
|
|
80
|
-
|
|
80
|
+
DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
|
|
81
81
|
</p>
|
|
82
82
|
</div>
|
|
83
83
|
|
|
@@ -85,7 +85,7 @@ These case studies demonstrate that even with relatively high thresholds (such a
|
|
|
85
85
|
|
|
86
86
|
<div align="center">
|
|
87
87
|
<p align="center">
|
|
88
|
-
<h3
|
|
88
|
+
<h3>🔥 DBPrune: Dynamic Block Prune with Residual Caching</h3>
|
|
89
89
|
</p>
|
|
90
90
|
</div>
|
|
91
91
|
|
|
@@ -102,10 +102,10 @@ These case studies demonstrate that even with relatively high thresholds (such a
|
|
|
102
102
|
</p>
|
|
103
103
|
</div>
|
|
104
104
|
|
|
105
|
-
Moreover,
|
|
105
|
+
Moreover, **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
|
|
106
106
|
|
|
107
107
|
<p align="center">
|
|
108
|
-
|
|
108
|
+
♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
|
|
109
109
|
</p>
|
|
110
110
|
|
|
111
111
|
## ©️Citations
|
|
@@ -135,7 +135,7 @@ The **CacheDiT** codebase was adapted from FBCache's implementation at the [Para
|
|
|
135
135
|
- [🎉First Block Cache](#fbcache)
|
|
136
136
|
- [⚡️Dynamic Block Prune](#dbprune)
|
|
137
137
|
- [🎉Context Parallelism](#context-parallelism)
|
|
138
|
-
- [
|
|
138
|
+
- [🔥Torch Compile](#compile)
|
|
139
139
|
- [🎉Supported Models](#supported)
|
|
140
140
|
- [👋Contribute](#contribute)
|
|
141
141
|
- [©️License](#license)
|
|
@@ -167,7 +167,7 @@ pip3 install git+https://github.com/vipshop/cache-dit.git
|
|
|
167
167
|
- **Fn**: Specifies that DBCache uses the **first n** Transformer blocks to fit the information at time step t, enabling the calculation of a more stable L1 diff and delivering more accurate information to subsequent blocks.
|
|
168
168
|
- **Bn**: Further fuses approximate information in the **last n** Transformer blocks to enhance prediction accuracy. These blocks act as an auto-scaler for approximate hidden states that use residual cache.
|
|
169
169
|
- **warmup_steps**: (default: 0) DBCache does not apply the caching strategy when the number of running steps is less than or equal to this value, ensuring the model sufficiently learns basic features during warmup.
|
|
170
|
-
- **max_cached_steps**: (default: -1) DBCache disables the caching strategy when the
|
|
170
|
+
- **max_cached_steps**: (default: -1) DBCache disables the caching strategy when the previous cached steps exceed this value to prevent precision degradation.
|
|
171
171
|
- **residual_diff_threshold**: The value of residual diff threshold, a higher value leads to faster performance at the cost of lower precision.
|
|
172
172
|
|
|
173
173
|
For a good balance between performance and precision, DBCache is configured by default with **F8B8**, 8 warmup steps, and unlimited cached steps.
|
|
@@ -210,6 +210,17 @@ cache_options = {
|
|
|
210
210
|
}
|
|
211
211
|
```
|
|
212
212
|
|
|
213
|
+
<div align="center">
|
|
214
|
+
<p align="center">
|
|
215
|
+
DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
|
|
216
|
+
</p>
|
|
217
|
+
</div>
|
|
218
|
+
|
|
219
|
+
|Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
|
|
220
|
+
|:---:|:---:|:---:|:---:|:---:|:---:|
|
|
221
|
+
|24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
|
|
222
|
+
|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
|
|
223
|
+
|
|
213
224
|
## 🎉FBCache: First Block Cache
|
|
214
225
|
|
|
215
226
|
<div id="fbcache"></div>
|
|
@@ -261,12 +272,47 @@ pipe = FluxPipeline.from_pretrained(
|
|
|
261
272
|
torch_dtype=torch.bfloat16,
|
|
262
273
|
).to("cuda")
|
|
263
274
|
|
|
264
|
-
# Using DBPrune
|
|
275
|
+
# Using DBPrune with default options
|
|
265
276
|
cache_options = CacheType.default_options(CacheType.DBPrune)
|
|
266
277
|
|
|
267
278
|
apply_cache_on_pipe(pipe, **cache_options)
|
|
268
279
|
```
|
|
269
280
|
|
|
281
|
+
We have also brought the designs from DBCache to DBPrune to make it a more general and customizable block prune algorithm. You can specify the values of **Fn** and **Bn** for higher precision, or set up the non-prune blocks list **non_prune_blocks_ids** to avoid aggressive pruning. For example:
|
|
282
|
+
|
|
283
|
+
```python
|
|
284
|
+
# Custom options for DBPrune
|
|
285
|
+
cache_options = {
|
|
286
|
+
"cache_type": CacheType.DBPrune,
|
|
287
|
+
"residual_diff_threshold": 0.05,
|
|
288
|
+
# Never prune the first `Fn` and last `Bn` blocks.
|
|
289
|
+
"Fn_compute_blocks": 8, # default 1
|
|
290
|
+
"Bn_compute_blocks": 8, # default 0
|
|
291
|
+
"warmup_steps": 8, # default -1
|
|
292
|
+
# Disables the pruning strategy when the previous
|
|
293
|
+
# pruned steps greater than this value.
|
|
294
|
+
"max_pruned_steps": 12, # default, -1 means no limit
|
|
295
|
+
# Enable dynamic prune threshold within step, higher
|
|
296
|
+
# `max_dynamic_prune_threshold` value may introduce a more
|
|
297
|
+
# ageressive pruning strategy.
|
|
298
|
+
"enable_dynamic_prune_threshold": True,
|
|
299
|
+
"max_dynamic_prune_threshold": 2 * 0.05,
|
|
300
|
+
# (New thresh) = mean(previous_block_diffs_within_step) * 1.25
|
|
301
|
+
# (New thresh) = ((New thresh) if (New thresh) <
|
|
302
|
+
# max_dynamic_prune_threshold else residual_diff_threshold)
|
|
303
|
+
"dynamic_prune_threshold_relax_ratio": 1.25,
|
|
304
|
+
# The step interval to update residual cache. For example,
|
|
305
|
+
# 2: means the update steps will be [0, 2, 4, ...].
|
|
306
|
+
"residual_cache_update_interval": 1,
|
|
307
|
+
# You can set non-prune blocks to avoid ageressive pruning.
|
|
308
|
+
# For example, FLUX.1 has 19 + 38 blocks, so we can set it
|
|
309
|
+
# to 0, 2, 4, ..., 56, etc.
|
|
310
|
+
"non_prune_blocks_ids": [],
|
|
311
|
+
}
|
|
312
|
+
|
|
313
|
+
apply_cache_on_pipe(pipe, **cache_options)
|
|
314
|
+
```
|
|
315
|
+
|
|
270
316
|
<div align="center">
|
|
271
317
|
<p align="center">
|
|
272
318
|
DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
|
|
@@ -288,14 +334,19 @@ apply_cache_on_pipe(pipe, **cache_options)
|
|
|
288
334
|
pip3 install para-attn # or install `para-attn` from sources.
|
|
289
335
|
```
|
|
290
336
|
|
|
291
|
-
Then, you can run **DBCache** with **Context Parallelism** on 4 GPUs:
|
|
337
|
+
Then, you can run **DBCache** or **DBPrune** with **Context Parallelism** on 4 GPUs:
|
|
292
338
|
|
|
293
339
|
```python
|
|
340
|
+
import torch.distributed as dist
|
|
294
341
|
from diffusers import FluxPipeline
|
|
295
342
|
from para_attn.context_parallel import init_context_parallel_mesh
|
|
296
343
|
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
|
|
297
344
|
from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
|
|
298
345
|
|
|
346
|
+
# Init distributed process group
|
|
347
|
+
dist.init_process_group()
|
|
348
|
+
torch.cuda.set_device(dist.get_rank())
|
|
349
|
+
|
|
299
350
|
pipe = FluxPipeline.from_pretrained(
|
|
300
351
|
"black-forest-labs/FLUX.1-dev",
|
|
301
352
|
torch_dtype=torch.bfloat16,
|
|
@@ -308,13 +359,31 @@ parallelize_pipe(
|
|
|
308
359
|
)
|
|
309
360
|
)
|
|
310
361
|
|
|
311
|
-
#
|
|
362
|
+
# DBPrune with default options from this library
|
|
312
363
|
apply_cache_on_pipe(
|
|
313
|
-
pipe, **CacheType.default_options(CacheType.
|
|
364
|
+
pipe, **CacheType.default_options(CacheType.DBPrune)
|
|
314
365
|
)
|
|
366
|
+
|
|
367
|
+
dist.destroy_process_group()
|
|
368
|
+
```
|
|
369
|
+
Then, run the python test script with `torchrun`:
|
|
370
|
+
```bash
|
|
371
|
+
torchrun --nproc_per_node=4 parallel_cache.py
|
|
315
372
|
```
|
|
316
373
|
|
|
317
|
-
|
|
374
|
+
<div align="center">
|
|
375
|
+
<p align="center">
|
|
376
|
+
DBPrune, <b> L20x4 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
|
|
377
|
+
</p>
|
|
378
|
+
</div>
|
|
379
|
+
|
|
380
|
+
|Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
|
|
381
|
+
|:---:|:---:|:---:|:---:|:---:|:---:|
|
|
382
|
+
|24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
|
|
383
|
+
|8.54s (L20x4)|7.20s (L20x4)|6.61s (L20x4)|6.09s (L20x4)|5.54s (L20x4)|4.22s (L20x4)|
|
|
384
|
+
|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
|
|
385
|
+
|
|
386
|
+
## 🔥Torch Compile
|
|
318
387
|
|
|
319
388
|
<div id="compile"></div>
|
|
320
389
|
|
|
@@ -322,7 +391,7 @@ apply_cache_on_pipe(
|
|
|
322
391
|
|
|
323
392
|
```python
|
|
324
393
|
apply_cache_on_pipe(
|
|
325
|
-
pipe, **CacheType.default_options(CacheType.
|
|
394
|
+
pipe, **CacheType.default_options(CacheType.DBPrune)
|
|
326
395
|
)
|
|
327
396
|
# Compile the Transformer module
|
|
328
397
|
pipe.transformer = torch.compile(pipe.transformer)
|
|
@@ -333,7 +402,13 @@ However, users intending to use **CacheDiT** for DiT with **dynamic input shapes
|
|
|
333
402
|
torch._dynamo.config.recompile_limit = 96 # default is 8
|
|
334
403
|
torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
|
|
335
404
|
```
|
|
336
|
-
Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
|
|
405
|
+
Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode. Here is the case of **DBPrune + torch.compile**.
|
|
406
|
+
|
|
407
|
+
<div align="center">
|
|
408
|
+
<p align="center">
|
|
409
|
+
DBPrune + compile, Steps: 28, "A cat holding a sign that says hello world with complex background"
|
|
410
|
+
</p>
|
|
411
|
+
</div>
|
|
337
412
|
|
|
338
413
|
## 🎉Supported Models
|
|
339
414
|
|
|
@@ -346,7 +421,7 @@ Otherwise, the recompile_limit error may be triggered, causing the module to fal
|
|
|
346
421
|
## 👋Contribute
|
|
347
422
|
<div id="contribute"></div>
|
|
348
423
|
|
|
349
|
-
How to contribute? Star this repo or check [CONTRIBUTE.md](./CONTRIBUTE.md).
|
|
424
|
+
How to contribute? Star ⭐️ this repo to support us or check [CONTRIBUTE.md](./CONTRIBUTE.md).
|
|
350
425
|
|
|
351
426
|
## ©️License
|
|
352
427
|
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
cache_dit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
cache_dit/_version.py,sha256=
|
|
2
|
+
cache_dit/_version.py,sha256=ESbJO0YD7TYfOUv_WDIJJgWELGepEWsoyhqVifEcXPA,511
|
|
3
3
|
cache_dit/logger.py,sha256=dKfNe_RRk9HJwfgHGeRR1f0LbskJpKdGmISCbL9roQs,3443
|
|
4
4
|
cache_dit/primitives.py,sha256=A2iG9YLot3gOsZSPp-_gyjqjLgJvWQRx8aitD4JQ23Y,3877
|
|
5
5
|
cache_dit/cache_factory/__init__.py,sha256=5RNuhWakvvqrOV4vkqrEBA7d-V1LwcNSsjtW14mkqK8,5255
|
|
@@ -12,7 +12,7 @@ cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py,sha256=
|
|
|
12
12
|
cache_dit/cache_factory/dual_block_cache/diffusers_adapters/flux.py,sha256=UbE6nIF-EtA92QxIZVMzIssdZKQSPAVX1hchF9R8drU,2754
|
|
13
13
|
cache_dit/cache_factory/dual_block_cache/diffusers_adapters/mochi.py,sha256=qxMu1L3ycT8F-uxpGsmFQBY_BH1vDiGIOXgS_Qbb7dM,2391
|
|
14
14
|
cache_dit/cache_factory/dynamic_block_prune/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
|
-
cache_dit/cache_factory/dynamic_block_prune/prune_context.py,sha256=
|
|
15
|
+
cache_dit/cache_factory/dynamic_block_prune/prune_context.py,sha256=foUGCBtpCbfLWw6pxJguyxOfcp_YrizfDEKawCt_UKI,35028
|
|
16
16
|
cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/__init__.py,sha256=8IjJjZOs5XRzsj7Ni2MXpR2Z1PUyRSONIhmfAn1G0eM,1667
|
|
17
17
|
cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/cogvideox.py,sha256=ORJpdkXkgziDUo-rpebC6pUemgYaDCoeu0cwwLz175U,2407
|
|
18
18
|
cache_dit/cache_factory/dynamic_block_prune/diffusers_adapters/flux.py,sha256=KbEkLSsHtS6xwLWNh3jlOlXRyGRdrI2pWV1zyQxMTj4,2757
|
|
@@ -24,8 +24,8 @@ cache_dit/cache_factory/first_block_cache/diffusers_adapters/cogvideox.py,sha256
|
|
|
24
24
|
cache_dit/cache_factory/first_block_cache/diffusers_adapters/flux.py,sha256=Dcd4OzABCtyQCZNX2KNnUTdVoO1E1ApM7P8gcVYzcK0,2733
|
|
25
25
|
cache_dit/cache_factory/first_block_cache/diffusers_adapters/mochi.py,sha256=lQTClo52OwPbNEE4jiBZQhfC7hbtYqnYIABp_vbm_dk,2363
|
|
26
26
|
cache_dit/cache_factory/first_block_cache/diffusers_adapters/wan.py,sha256=IVH-lroOzvYb4XKLk9MOw54EtijBtuzVaKcVGz0KlBA,2656
|
|
27
|
-
cache_dit-0.1.
|
|
28
|
-
cache_dit-0.1.
|
|
29
|
-
cache_dit-0.1.
|
|
30
|
-
cache_dit-0.1.
|
|
31
|
-
cache_dit-0.1.
|
|
27
|
+
cache_dit-0.1.6.dist-info/licenses/LICENSE,sha256=Dqb07Ik2dV41s9nIdMUbiRWEfDqo7-dQeRiY7kPO8PE,3769
|
|
28
|
+
cache_dit-0.1.6.dist-info/METADATA,sha256=B8ddDPBXwFFPYYAxEgu8itLKjpb5IKTaA2JHFV7eQhM,21030
|
|
29
|
+
cache_dit-0.1.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
30
|
+
cache_dit-0.1.6.dist-info/top_level.txt,sha256=ZJDydonLEhujzz0FOkVbO-BqfzO9d_VqRHmZU-3MOZo,10
|
|
31
|
+
cache_dit-0.1.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|