cache-dit 0.1.1.dev2__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
cache_dit/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.1.dev2'
21
- __version_tuple__ = version_tuple = (0, 1, 1, 'dev2')
20
+ __version__ = version = '0.1.3'
21
+ __version_tuple__ = version_tuple = (0, 1, 3)
@@ -160,7 +160,9 @@ def apply_cache_on_pipe(pipe: DiffusionPipeline, *args, **kwargs):
160
160
  elif cache_type == CacheType.DBPrune:
161
161
  return apply_db_prune_on_pipe(pipe, *args, **kwargs)
162
162
  elif cache_type == CacheType.NONE:
163
- logger.warning("Cache type is NONE, no caching will be applied.")
163
+ logger.warning(
164
+ f"Cache type is {cache_type}, no caching will be applied."
165
+ )
164
166
  return pipe
165
167
  else:
166
168
  raise ValueError(f"Unknown cache type: {cache_type}")
@@ -49,7 +49,7 @@ def apply_db_cache_on_transformer(
49
49
  return transformer
50
50
 
51
51
 
52
- def apply_cache_on_pipe(
52
+ def apply_db_cache_on_pipe(
53
53
  pipe: DiffusionPipeline,
54
54
  *,
55
55
  shallow_patch: bool = False,
@@ -0,0 +1,356 @@
1
+ Metadata-Version: 2.4
2
+ Name: cache_dit
3
+ Version: 0.1.3
4
+ Summary: 🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration Toolbox for Diffusion Transformers
5
+ Author: DefTruth, vipshop.com, etc.
6
+ Maintainer: DefTruth, vipshop.com, etc
7
+ Project-URL: Repository, https://github.com/vipshop/cache-dit.git
8
+ Project-URL: Homepage, https://github.com/vipshop/cache-dit.git
9
+ Requires-Python: >=3.10
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: packaging
13
+ Requires-Dist: torch
14
+ Requires-Dist: transformers
15
+ Requires-Dist: diffusers
16
+ Provides-Extra: all
17
+ Provides-Extra: dev
18
+ Requires-Dist: pre-commit; extra == "dev"
19
+ Requires-Dist: pytest<8.0.0,>=7.0.0; extra == "dev"
20
+ Requires-Dist: pytest-html; extra == "dev"
21
+ Requires-Dist: expecttest; extra == "dev"
22
+ Requires-Dist: hypothesis; extra == "dev"
23
+ Requires-Dist: transformers; extra == "dev"
24
+ Requires-Dist: diffusers; extra == "dev"
25
+ Requires-Dist: accelerate; extra == "dev"
26
+ Requires-Dist: peft; extra == "dev"
27
+ Requires-Dist: protobuf; extra == "dev"
28
+ Requires-Dist: sentencepiece; extra == "dev"
29
+ Requires-Dist: opencv-python-headless; extra == "dev"
30
+ Requires-Dist: ftfy; extra == "dev"
31
+ Dynamic: license-file
32
+ Dynamic: provides-extra
33
+ Dynamic: requires-dist
34
+ Dynamic: requires-python
35
+
36
+ <div align="center">
37
+ <p align="center">
38
+ <h3>🤗 CacheDiT: A Training-free and Easy-to-use Cache Acceleration <br>Toolbox for Diffusion Transformers</h3>
39
+ </p>
40
+ <img src=https://github.com/vipshop/cache-dit/raw/main/assets/cache-dit.png >
41
+ <div align='center'>
42
+ <img src=https://img.shields.io/badge/Language-Python-brightgreen.svg >
43
+ <img src=https://img.shields.io/badge/PRs-welcome-9cf.svg >
44
+ <img src=https://img.shields.io/badge/PyPI-pass-brightgreen.svg >
45
+ <img src=https://static.pepy.tech/badge/cache-dit >
46
+ <img src=https://img.shields.io/badge/Python-3.10|3.11|3.12-9cf.svg >
47
+ <img src=https://img.shields.io/badge/Release-v0.1.3-brightgreen.svg >
48
+ </div>
49
+ <p align="center">
50
+ DeepCache is for UNet not DiT. Most DiT cache speedups are complex and not training-free. CacheDiT provides <br>a series of training-free, UNet-style cache accelerators for DiT: DBCache, DBPrune, FBCache, etc.
51
+ </p>
52
+ </div>
53
+
54
+ ## 🤗 Introduction
55
+
56
+ <div align="center">
57
+ <p align="center">
58
+ <h3>DBCache: Dual Block Caching for Diffusion Transformers</h3>
59
+ </p>
60
+ </div>
61
+
62
+ **DBCache**: **Dual Block Caching** for Diffusion Transformers. We have enhanced `FBCache` into a more general and customizable cache algorithm, namely `DBCache`, enabling it to achieve fully `UNet-style` cache acceleration for DiT models. Different configurations of compute blocks (**F8B12**, etc.) can be customized in DBCache. Moreover, it can be entirely **training**-**free**. DBCache can strike a perfect **balance** between performance and precision!
63
+
64
+ <div align="center">
65
+ <p align="center">
66
+ DBCache, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
67
+ </p>
68
+ </div>
69
+
70
+ |Baseline(L20x1)|F1B0 (0.08)|F1B0 (0.20)|F8B8 (0.15)|F12B12 (0.20)|F16B16 (0.20)|
71
+ |:---:|:---:|:---:|:---:|:---:|:---:|
72
+ |24.85s|15.59s|8.58s|15.41s|15.11s|17.74s|
73
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.08_S11.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F1B0S1_R0.2_S19.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F8B8S1_R0.15_S15.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F12B12S4_R0.2_S16.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBCACHE_F16B16S4_R0.2_S13.png width=105px>|
74
+ |**Baseline(L20x1)**|**F1B0 (0.08)**|**F8B8 (0.12)**|**F8B12 (0.20)**|**F8B16 (0.20)**|**F8B20 (0.20)**|
75
+ |27.85s|6.04s|5.88s|5.77s|6.01s|6.20s|
76
+ |<img src=https://github.com/user-attachments/assets/70ea57f4-d8f2-415b-8a96-d8315974a5e6 width=105px>|<img src=https://github.com/user-attachments/assets/fc0e1a67-19cc-44aa-bf50-04696e7978a0 width=105px> |<img src=https://github.com/user-attachments/assets/d1434896-628c-436b-95ad-43c085a8629e width=105px>|<img src=https://github.com/user-attachments/assets/aaa42cd2-57de-4c4e-8bfb-913018a8251d width=105px>|<img src=https://github.com/user-attachments/assets/dc0ba2a4-ef7c-436d-8a39-67055deab92f width=105px>|<img src=https://github.com/user-attachments/assets/aede466f-61ed-4256-8df0-fecf8020c5ca width=105px>|
77
+
78
+ <div align="center">
79
+ <p align="center">
80
+ DBCache, <b> L20x4 </b>, Steps: 20, case to show the texture recovery ability of DBCache
81
+ </p>
82
+ </div>
83
+
84
+ These case studies demonstrate that even with relatively high thresholds (such as 0.12, 0.15, 0.2, etc.) under the DBCache **F12B12** or **F8B16** configuration, the detailed texture of the kitten's fur, colored cloth, and the clarity of text can still be preserved. This suggests that users can leverage DBCache to effectively balance performance and precision in their workflows!
85
+
86
+ <div align="center">
87
+ <p align="center">
88
+ <h3>DBPrune: Dynamic Block Prune with Residual Caching</h3>
89
+ </p>
90
+ </div>
91
+
92
+ **DBPrune**: We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, referred to as DBPrune. DBPrune caches each block's hidden states and residuals, then **dynamically prunes** blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals.
93
+
94
+ |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
95
+ |:---:|:---:|:---:|:---:|:---:|:---:|
96
+ |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
97
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
98
+
99
+ <div align="center">
100
+ <p align="center">
101
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
102
+ </p>
103
+ </div>
104
+
105
+ Moreover, both DBCache and DBPrune are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can easily tap into its **Context Parallelism** features for distributed inference.
106
+
107
+ <p align="center">
108
+ ♥️ Please consider to leave a ⭐️ Star to support us ~ ♥️
109
+ </p>
110
+
111
+ ## ©️Citations
112
+
113
+ ```BibTeX
114
+ @misc{CacheDiT@2025,
115
+ title={CacheDiT: A Training-free and Easy-to-use cache acceleration Toolbox for Diffusion Transformers},
116
+ url={https://github.com/vipshop/cache-dit.git},
117
+ note={Open-source software available at https://github.com/vipshop/cache-dit.git},
118
+ author={vipshop.com},
119
+ year={2025}
120
+ }
121
+ ```
122
+
123
+ ## 👋Reference
124
+
125
+ <div id="reference"></div>
126
+
127
+ The **CacheDiT** codebase was adapted from FBCache's implementation at the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main/src/para_attn/first_block_cache). We would like to express our sincere gratitude for this excellent work!
128
+
129
+ ## 📖Contents
130
+
131
+ <div id="contents"></div>
132
+
133
+ - [⚙️Installation](#️installation)
134
+ - [⚡️Dual Block Cache](#dbcache)
135
+ - [🎉First Block Cache](#fbcache)
136
+ - [⚡️Dynamic Block Prune](#dbprune)
137
+ - [🎉Context Parallelism](#context-parallelism)
138
+ - [⚡️Torch Compile](#compile)
139
+ - [🎉Supported Models](#supported)
140
+ - [👋Contribute](#contribute)
141
+ - [©️License](#license)
142
+
143
+
144
+ ## ⚙️Installation
145
+
146
+ <div id="installation"></div>
147
+
148
+ You can install the stable release of `cache-dit` from PyPI:
149
+
150
+ ```bash
151
+ pip3 install cache-dit
152
+ ```
153
+ Or you can install the latest develop version from GitHub:
154
+
155
+ ```bash
156
+ pip3 install git+https://github.com/vipshop/cache-dit.git
157
+ ```
158
+
159
+ ## ⚡️DBCache: Dual Block Cache
160
+
161
+ <div id="dbcache"></div>
162
+
163
+ ![](https://github.com/user-attachments/assets/c2a382b9-0ccd-46f4-aacc-87857b4a4de8)
164
+
165
+ **DBCache** provides configurable parameters for custom optimization, enabling a balanced trade-off between performance and precision:
166
+
167
+ - **Fn**: Specifies that DBCache uses the **first n** Transformer blocks to fit the information at time step t, enabling the calculation of a more stable L1 diff and delivering more accurate information to subsequent blocks.
168
+ - **Bn**: Further fuses approximate information in the **last n** Transformer blocks to enhance prediction accuracy. These blocks act as an auto-scaler for approximate hidden states that use residual cache.
169
+ - **warmup_steps**: (default: 0) DBCache does not apply the caching strategy when the number of running steps is less than or equal to this value, ensuring the model sufficiently learns basic features during warmup.
170
+ - **max_cached_steps**: (default: -1) DBCache disables the caching strategy when the running steps exceed this value to prevent precision degradation.
171
+ - **residual_diff_threshold**: The value of residual diff threshold, a higher value leads to faster performance at the cost of lower precision.
172
+
173
+ For a good balance between performance and precision, DBCache is configured by default with **F8B8**, 8 warmup steps, and unlimited cached steps.
174
+
175
+ ```python
176
+ from diffusers import FluxPipeline
177
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
178
+
179
+ pipe = FluxPipeline.from_pretrained(
180
+ "black-forest-labs/FLUX.1-dev",
181
+ torch_dtype=torch.bfloat16,
182
+ ).to("cuda")
183
+
184
+ # Default options, F8B8, good balance between performance and precision
185
+ cache_options = CacheType.default_options(CacheType.DBCache)
186
+
187
+ # Custom options, F8B16, higher precision
188
+ cache_options = {
189
+ "cache_type": CacheType.DBCache,
190
+ "warmup_steps": 8,
191
+ "max_cached_steps": 8, # -1 means no limit
192
+ "Fn_compute_blocks": 8, # Fn, F8, etc.
193
+ "Bn_compute_blocks": 16, # Bn, B16, etc.
194
+ "residual_diff_threshold": 0.12,
195
+ }
196
+
197
+ apply_cache_on_pipe(pipe, **cache_options)
198
+ ```
199
+ Moreover, users configuring higher **Bn** values (e.g., **F8B16**) while aiming to maintain good performance can specify **Bn_compute_blocks_ids** to work with Bn. DBCache will only compute the specified blocks, with the remaining estimated using the previous step's residual cache.
200
+
201
+ ```python
202
+ # Custom options, F8B16, higher precision with good performance.
203
+ cache_options = {
204
+ # 0, 2, 4, ..., 14, 15, etc. [0,16)
205
+ "Bn_compute_blocks_ids": CacheType.range(0, 16, 2),
206
+ # If the L1 difference is below this threshold, skip Bn blocks
207
+ # not in `Bn_compute_blocks_ids`(1, 3,..., etc), Otherwise,
208
+ # compute these blocks.
209
+ "non_compute_blocks_diff_threshold": 0.08,
210
+ }
211
+ ```
212
+
213
+ ## 🎉FBCache: First Block Cache
214
+
215
+ <div id="fbcache"></div>
216
+
217
+ ![](https://github.com/user-attachments/assets/0fb66656-b711-457a-92a7-a830f134272d)
218
+
219
+ **DBCache** is a more general cache algorithm than **FBCache**. When Fn=1 and Bn=0, DBCache behaves identically to FBCache. Therefore, you can either use the original FBCache implementation directly or configure **DBCache** with **F1B0** settings to achieve the same functionality.
220
+
221
+ ```python
222
+ from diffusers import FluxPipeline
223
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
224
+
225
+ pipe = FluxPipeline.from_pretrained(
226
+ "black-forest-labs/FLUX.1-dev",
227
+ torch_dtype=torch.bfloat16,
228
+ ).to("cuda")
229
+
230
+ # Using FBCache directly
231
+ cache_options = CacheType.default_options(CacheType.FBCache)
232
+
233
+ # Or using DBCache with F1B0.
234
+ # Fn=1, Bn=0, means FB Cache, otherwise, Dual Block Cache
235
+ cache_options = {
236
+ "cache_type": CacheType.DBCache,
237
+ "warmup_steps": 8,
238
+ "max_cached_steps": 8, # -1 means no limit
239
+ "Fn_compute_blocks": 1, # Fn, F1, etc.
240
+ "Bn_compute_blocks": 0, # Bn, B0, etc.
241
+ "residual_diff_threshold": 0.12,
242
+ }
243
+
244
+ apply_cache_on_pipe(pipe, **cache_options)
245
+ ```
246
+
247
+ ## ⚡️DBPrune: Dynamic Block Prune
248
+
249
+ <div id="dbprune"></div>
250
+
251
+ ![](https://github.com/user-attachments/assets/932b6360-9533-4352-b176-4c4d84bd4695)
252
+
253
+ We have further implemented a new **Dynamic Block Prune** algorithm based on **Residual Caching** for Diffusion Transformers, which is referred to as **DBPrune**. DBPrune caches each block's hidden states and residuals, then dynamically prunes blocks during inference by computing the L1 distance between previous hidden states. When a block is pruned, its output is approximated using the cached residuals. DBPrune is currently in the experimental phase, and we kindly invite you to stay tuned for upcoming updates.
254
+
255
+ ```python
256
+ from diffusers import FluxPipeline
257
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
258
+
259
+ pipe = FluxPipeline.from_pretrained(
260
+ "black-forest-labs/FLUX.1-dev",
261
+ torch_dtype=torch.bfloat16,
262
+ ).to("cuda")
263
+
264
+ # Using DBPrune
265
+ cache_options = CacheType.default_options(CacheType.DBPrune)
266
+
267
+ apply_cache_on_pipe(pipe, **cache_options)
268
+ ```
269
+
270
+ <div align="center">
271
+ <p align="center">
272
+ DBPrune, <b> L20x1 </b>, Steps: 28, "A cat holding a sign that says hello world with complex background"
273
+ </p>
274
+ </div>
275
+
276
+ |Baseline(L20x1)|Pruned(24%)|Pruned(35%)|Pruned(38%)|Pruned(45%)|Pruned(60%)|
277
+ |:---:|:---:|:---:|:---:|:---:|:---:|
278
+ |24.85s|19.43s|16.82s|15.95s|14.24s|10.66s|
279
+ |<img src=https://github.com/vipshop/cache-dit/raw/main/assets/NONE_R0.08_S0.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.03_P24.0_T19.43s.png width=105px> | <img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.04_P34.6_T16.82s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.05_P38.3_T15.95s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.06_P45.2_T14.24s.png width=105px>|<img src=https://github.com/vipshop/cache-dit/raw/main/assets/DBPRUNE_F1B0_R0.2_P59.5_T10.66s.png width=105px>|
280
+
281
+ ## 🎉Context Parallelism
282
+
283
+ <div id="context-parallelism"></div>
284
+
285
+ **CacheDiT** are **plug-and-play** solutions that works hand-in-hand with [ParaAttention](https://github.com/chengzeyi/ParaAttention). Users can **easily tap into** its **Context Parallelism** features for distributed inference. Firstly, install `para-attn` from PyPI:
286
+
287
+ ```bash
288
+ pip3 install para-attn # or install `para-attn` from sources.
289
+ ```
290
+
291
+ Then, you can run **DBCache** with **Context Parallelism** on 4 GPUs:
292
+
293
+ ```python
294
+ from diffusers import FluxPipeline
295
+ from para_attn.context_parallel import init_context_parallel_mesh
296
+ from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
297
+ from cache_dit.cache_factory import apply_cache_on_pipe, CacheType
298
+
299
+ pipe = FluxPipeline.from_pretrained(
300
+ "black-forest-labs/FLUX.1-dev",
301
+ torch_dtype=torch.bfloat16,
302
+ ).to("cuda")
303
+
304
+ # Context Parallel from ParaAttention
305
+ parallelize_pipe(
306
+ pipe, mesh=init_context_parallel_mesh(
307
+ pipe.device.type, max_ulysses_dim_size=4
308
+ )
309
+ )
310
+
311
+ # DBCache with F8B8 from this library
312
+ apply_cache_on_pipe(
313
+ pipe, **CacheType.default_options(CacheType.DBCache)
314
+ )
315
+ ```
316
+
317
+ ## ⚡️Torch Compile
318
+
319
+ <div id="compile"></div>
320
+
321
+ **CacheDiT** are designed to work compatibly with `torch.compile`. For example:
322
+
323
+ ```python
324
+ apply_cache_on_pipe(
325
+ pipe, **CacheType.default_options(CacheType.DBCache)
326
+ )
327
+ # Compile the Transformer module
328
+ pipe.transformer = torch.compile(pipe.transformer)
329
+ ```
330
+ However, users intending to use **CacheDiT** for DiT with **dynamic input shapes** should consider increasing the **recompile** **limit** of `torch._dynamo` to achieve better performance.
331
+
332
+ ```python
333
+ torch._dynamo.config.recompile_limit = 96 # default is 8
334
+ torch._dynamo.config.accumulated_recompile_limit = 2048 # default is 256
335
+ ```
336
+ Otherwise, the recompile_limit error may be triggered, causing the module to fall back to eager mode.
337
+
338
+ ## 🎉Supported Models
339
+
340
+ <div id="supported"></div>
341
+
342
+ - [🚀FLUX.1](https://github.com/vipshop/cache-dit/raw/main/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters)
343
+ - [🚀CogVideoX](https://github.com/vipshop/cache-dit/raw/main/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters)
344
+ - [🚀Mochi](https://github.com/vipshop/cache-dit/raw/main/src/cache_dit/cache_factory/dual_block_cache/diffusers_adapters)
345
+
346
+ ## 👋Contribute
347
+ <div id="contribute"></div>
348
+
349
+ How to contribute? Star this repo or check [CONTRIBUTE.md](./CONTRIBUTE.md).
350
+
351
+ ## ©️License
352
+
353
+ <div id="license"></div>
354
+
355
+
356
+ We have followed the original License from [ParaAttention](https://github.com/chengzeyi/ParaAttention), please check [LICENSE](./LICENSE) for more details.
@@ -1,14 +1,14 @@
1
1
  cache_dit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- cache_dit/_version.py,sha256=lIErBp1sZ_uGq2rboUGas8Ch-hnYN8OtqGh3G0mtds0,524
2
+ cache_dit/_version.py,sha256=NIzzV8ZM0W-CSLuEs1weG4zPrn_-8yr1AwwI1iuS6yo,511
3
3
  cache_dit/logger.py,sha256=dKfNe_RRk9HJwfgHGeRR1f0LbskJpKdGmISCbL9roQs,3443
4
4
  cache_dit/primitives.py,sha256=A2iG9YLot3gOsZSPp-_gyjqjLgJvWQRx8aitD4JQ23Y,3877
5
- cache_dit/cache_factory/__init__.py,sha256=plAOUMsne-dTYA-cq1RLbE7dlH-kFA_Hst9MzbWPqiI,5224
5
+ cache_dit/cache_factory/__init__.py,sha256=5RNuhWakvvqrOV4vkqrEBA7d-V1LwcNSsjtW14mkqK8,5255
6
6
  cache_dit/cache_factory/taylorseer.py,sha256=0W29ykJg3MnyLAB2KFicsl11Xe41cDYPgI60bquG_NY,2495
7
7
  cache_dit/cache_factory/utils.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  cache_dit/cache_factory/dual_block_cache/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  cache_dit/cache_factory/dual_block_cache/cache_context.py,sha256=EJ-uhA2-sWMW1jNDhcBtjHDqSn8lUzfKbYoPfZDQhZU,49665
10
10
  cache_dit/cache_factory/dual_block_cache/diffusers_adapters/__init__.py,sha256=C6tfXHpdY8YFV3gk74dr_IpYH4bO4ItbPCQYud3NgAM,1667
11
- cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py,sha256=g3ua-hmTpVeTOQNVYjUX2gsHuG2NV0B81iKHGa51wwk,2401
11
+ cache_dit/cache_factory/dual_block_cache/diffusers_adapters/cogvideox.py,sha256=1_n-RFMiL3v2SjhSfFrPH5Mn5Dq9z4BesVK8GN_nh2g,2404
12
12
  cache_dit/cache_factory/dual_block_cache/diffusers_adapters/flux.py,sha256=UbE6nIF-EtA92QxIZVMzIssdZKQSPAVX1hchF9R8drU,2754
13
13
  cache_dit/cache_factory/dual_block_cache/diffusers_adapters/mochi.py,sha256=qxMu1L3ycT8F-uxpGsmFQBY_BH1vDiGIOXgS_Qbb7dM,2391
14
14
  cache_dit/cache_factory/dynamic_block_prune/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -24,7 +24,8 @@ cache_dit/cache_factory/first_block_cache/diffusers_adapters/cogvideox.py,sha256
24
24
  cache_dit/cache_factory/first_block_cache/diffusers_adapters/flux.py,sha256=Dcd4OzABCtyQCZNX2KNnUTdVoO1E1ApM7P8gcVYzcK0,2733
25
25
  cache_dit/cache_factory/first_block_cache/diffusers_adapters/mochi.py,sha256=lQTClo52OwPbNEE4jiBZQhfC7hbtYqnYIABp_vbm_dk,2363
26
26
  cache_dit/cache_factory/first_block_cache/diffusers_adapters/wan.py,sha256=IVH-lroOzvYb4XKLk9MOw54EtijBtuzVaKcVGz0KlBA,2656
27
- cache_dit-0.1.1.dev2.dist-info/METADATA,sha256=pQr1yJwVuMWqB9b-IfPUq5x9UrpzvUauKqAzJWmQIZ0,1150
28
- cache_dit-0.1.1.dev2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
29
- cache_dit-0.1.1.dev2.dist-info/top_level.txt,sha256=ZJDydonLEhujzz0FOkVbO-BqfzO9d_VqRHmZU-3MOZo,10
30
- cache_dit-0.1.1.dev2.dist-info/RECORD,,
27
+ cache_dit-0.1.3.dist-info/licenses/LICENSE,sha256=Dqb07Ik2dV41s9nIdMUbiRWEfDqo7-dQeRiY7kPO8PE,3769
28
+ cache_dit-0.1.3.dist-info/METADATA,sha256=PkDyfGzvMzMinTNlqCX_B3VGbNsPUvLdBQTyEywQ8zE,16806
29
+ cache_dit-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
+ cache_dit-0.1.3.dist-info/top_level.txt,sha256=ZJDydonLEhujzz0FOkVbO-BqfzO9d_VqRHmZU-3MOZo,10
31
+ cache_dit-0.1.3.dist-info/RECORD,,
@@ -0,0 +1,53 @@
1
+ # License
2
+
3
+ ## Acceptance
4
+
5
+ By using the software, you agree to all of the terms and conditions below.
6
+
7
+ ## Copyright License
8
+
9
+ The licensor grants you a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable license to use, copy, distribute, make available, and prepare derivative works of the software, in each case subject to the limitations and conditions below.
10
+
11
+ ## Limitations
12
+
13
+ You may not provide the software to third parties as a hosted or managed service, where the service provides users with access to any substantial set of the features or functionality of the software.
14
+
15
+ You may not move, change, disable, or circumvent the license key functionality in the software, and you may not remove or obscure any functionality in the software that is protected by the license key.
16
+
17
+ You may not alter, remove, or obscure any licensing, copyright, or other notices of the licensor in the software. Any use of the licensor’s trademarks is subject to applicable law.
18
+
19
+ ## Patents
20
+
21
+ The licensor grants you a license, under any patent claims the licensor can license, or becomes able to license, to make, have made, use, sell, offer for sale, import and have imported the software, in each case subject to the limitations and conditions in this license. This license does not cover any patent claims that you cause to be infringed by modifications or additions to the software. If you or your company make any written claim that the software infringes or contributes to infringement of any patent, your patent license for the software granted under these terms ends immediately. If your company makes such a claim, your patent license ends immediately for work on behalf of your company.
22
+
23
+ ## Notices
24
+
25
+ You must ensure that anyone who gets a copy of any part of the software from you also gets a copy of these terms.
26
+
27
+ If you modify the software, you must include in any modified copies of the software prominent notices stating that you have modified the software.
28
+ No Other Rights
29
+
30
+ These terms do not imply any licenses other than those expressly granted in these terms.
31
+
32
+ ## Termination
33
+
34
+ If you use the software in violation of these terms, such use is not licensed, and your licenses will automatically terminate. If the licensor provides you with a notice of your violation, and you cease all violation of this license no later than 30 days after you receive that notice, your licenses will be reinstated retroactively. However, if you violate these terms after such reinstatement, any additional violation of these terms will cause your licenses to terminate automatically and permanently.
35
+
36
+ ## No Liability
37
+
38
+ As far as the law allows, the software comes as is, without any warranty or condition, and the licensor will not be liable to you for any damages arising out of these terms or the use or nature of the software, under any kind of legal claim.
39
+ Definitions
40
+
41
+ The licensor is the entity offering these terms, and the software is the software the licensor makes available under these terms, including any portion of it.
42
+
43
+ ## Definitions
44
+
45
+ you refers to the individual or entity agreeing to these terms.
46
+
47
+ your company is any legal entity, sole proprietorship, or other kind of organization that you work for, plus all organizations that have control over, are under the control of, or are under common control with that organization. control means ownership of substantially all the assets of an entity, or the power to direct its management and policies by vote, contract, or otherwise. Control can be direct or indirect.
48
+
49
+ your licenses are all the licenses granted to you for the software under these terms.
50
+
51
+ use means anything you do with the software requiring one of your licenses.
52
+
53
+ trademark means trademarks, service marks, and similar rights.
@@ -1,31 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: cache_dit
3
- Version: 0.1.1.dev2
4
- Summary: ⚡️DBCache: A Training-free UNet-style Cache Acceleration for Diffusion Transformers
5
- Author: DefTruth, vipshop.com, etc.
6
- Maintainer: DefTruth, vipshop.com, etc
7
- Project-URL: Repository, https://github.com/vipshop/DBCache.git
8
- Project-URL: Homepage, https://github.com/vipshop/DBCache.git
9
- Requires-Python: >=3.10
10
- Requires-Dist: packaging
11
- Requires-Dist: torch
12
- Requires-Dist: transformers
13
- Requires-Dist: diffusers
14
- Provides-Extra: all
15
- Provides-Extra: dev
16
- Requires-Dist: pre-commit; extra == "dev"
17
- Requires-Dist: pytest<8.0.0,>=7.0.0; extra == "dev"
18
- Requires-Dist: pytest-html; extra == "dev"
19
- Requires-Dist: expecttest; extra == "dev"
20
- Requires-Dist: hypothesis; extra == "dev"
21
- Requires-Dist: transformers; extra == "dev"
22
- Requires-Dist: diffusers; extra == "dev"
23
- Requires-Dist: accelerate; extra == "dev"
24
- Requires-Dist: peft; extra == "dev"
25
- Requires-Dist: protobuf; extra == "dev"
26
- Requires-Dist: sentencepiece; extra == "dev"
27
- Requires-Dist: opencv-python-headless; extra == "dev"
28
- Requires-Dist: ftfy; extra == "dev"
29
- Dynamic: provides-extra
30
- Dynamic: requires-dist
31
- Dynamic: requires-python