bullishpy 0.50.0__py3-none-any.whl → 0.52.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bullishpy might be problematic. Click here for more details.
- bullish/analysis/indicators.py +18 -0
- bullish/analysis/predefined_filters.py +120 -32
- bullish/app/app.py +26 -30
- bullish/database/alembic/versions/260fcff7212e_.py +45 -0
- {bullishpy-0.50.0.dist-info → bullishpy-0.52.0.dist-info}/METADATA +1 -1
- {bullishpy-0.50.0.dist-info → bullishpy-0.52.0.dist-info}/RECORD +8 -7
- {bullishpy-0.50.0.dist-info → bullishpy-0.52.0.dist-info}/WHEEL +0 -0
- {bullishpy-0.50.0.dist-info → bullishpy-0.52.0.dist-info}/entry_points.txt +0 -0
bullish/analysis/indicators.py
CHANGED
|
@@ -359,6 +359,15 @@ def indicators_factory() -> List[Indicator]:
|
|
|
359
359
|
in_use_backtest=True,
|
|
360
360
|
processing=ProcessingFunction(date=find_last_true_run_start),
|
|
361
361
|
),
|
|
362
|
+
Signal(
|
|
363
|
+
name="SMA_50_BELOW_SMA_200",
|
|
364
|
+
description="SMA 50 is below SMA 200",
|
|
365
|
+
type_info="Overbought",
|
|
366
|
+
type=Optional[date],
|
|
367
|
+
function=lambda d: d.SMA_50 < d.SMA_200,
|
|
368
|
+
in_use_backtest=True,
|
|
369
|
+
processing=ProcessingFunction(date=find_last_true_run_start),
|
|
370
|
+
),
|
|
362
371
|
Signal(
|
|
363
372
|
name="PRICE_ABOVE_SMA_50",
|
|
364
373
|
description="Price is above SMA 50",
|
|
@@ -368,6 +377,15 @@ def indicators_factory() -> List[Indicator]:
|
|
|
368
377
|
in_use_backtest=True,
|
|
369
378
|
processing=ProcessingFunction(date=find_last_true_run_start),
|
|
370
379
|
),
|
|
380
|
+
Signal(
|
|
381
|
+
name="PRICE_BELOW_SMA_50",
|
|
382
|
+
description="Price is below SMA 50",
|
|
383
|
+
type_info="Overbought",
|
|
384
|
+
type=Optional[date],
|
|
385
|
+
function=lambda d: d.SMA_50 > d.CLOSE,
|
|
386
|
+
in_use_backtest=True,
|
|
387
|
+
processing=ProcessingFunction(date=find_last_true_run_start),
|
|
388
|
+
),
|
|
371
389
|
],
|
|
372
390
|
),
|
|
373
391
|
Indicator(
|
|
@@ -119,10 +119,99 @@ class NamedFilterQuery(FilterQuery):
|
|
|
119
119
|
| {"name": f"{self.name} ({suffix})", rsi_parameter_name: DATE_THRESHOLD}
|
|
120
120
|
)
|
|
121
121
|
|
|
122
|
+
def _custom_variant(
|
|
123
|
+
self, suffix: str, properties: Dict[str, Any]
|
|
124
|
+
) -> "NamedFilterQuery":
|
|
125
|
+
return NamedFilterQuery.model_validate(
|
|
126
|
+
self.model_dump() | {"name": f"{self.name} ({suffix})", **properties}
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
def top_performers(self) -> "NamedFilterQuery":
|
|
130
|
+
properties = {
|
|
131
|
+
"volume_above_average": DATE_THRESHOLD,
|
|
132
|
+
"sma_50_above_sma_200": [
|
|
133
|
+
datetime.date.today() - datetime.timedelta(days=5000),
|
|
134
|
+
datetime.date.today(),
|
|
135
|
+
],
|
|
136
|
+
"weekly_growth": [1, 100],
|
|
137
|
+
"monthly_growth": [8, 100],
|
|
138
|
+
}
|
|
139
|
+
return self._custom_variant("Top Performers", properties)
|
|
140
|
+
|
|
141
|
+
def poor_performers(self) -> "NamedFilterQuery":
|
|
142
|
+
properties = {
|
|
143
|
+
"sma_50_below_sma_200": [
|
|
144
|
+
datetime.date.today() - datetime.timedelta(days=5000),
|
|
145
|
+
datetime.date.today(),
|
|
146
|
+
],
|
|
147
|
+
"price_below_sma_50": [
|
|
148
|
+
datetime.date.today() - datetime.timedelta(days=5000),
|
|
149
|
+
datetime.date.today(),
|
|
150
|
+
],
|
|
151
|
+
"monthly_growth": [-100, 0],
|
|
152
|
+
}
|
|
153
|
+
return self._custom_variant("Poor Performers", properties)
|
|
154
|
+
|
|
155
|
+
def short_term_profitability(self) -> "NamedFilterQuery":
|
|
156
|
+
properties = {
|
|
157
|
+
"income": [
|
|
158
|
+
"positive_operating_income",
|
|
159
|
+
"positive_net_income",
|
|
160
|
+
"quarterly_positive_operating_income",
|
|
161
|
+
"quarterly_positive_net_income",
|
|
162
|
+
],
|
|
163
|
+
"cash_flow": [
|
|
164
|
+
"positive_free_cash_flow",
|
|
165
|
+
"quarterly_positive_free_cash_flow",
|
|
166
|
+
],
|
|
167
|
+
"eps": [
|
|
168
|
+
"positive_basic_eps",
|
|
169
|
+
"positive_diluted_eps",
|
|
170
|
+
"quarterly_positive_basic_eps",
|
|
171
|
+
"quarterly_positive_diluted_eps",
|
|
172
|
+
],
|
|
173
|
+
"properties": [
|
|
174
|
+
"positive_return_on_assets",
|
|
175
|
+
"positive_return_on_equity",
|
|
176
|
+
"positive_debt_to_equity",
|
|
177
|
+
"operating_cash_flow_is_higher_than_net_income",
|
|
178
|
+
"quarterly_positive_return_on_assets",
|
|
179
|
+
"quarterly_positive_return_on_equity",
|
|
180
|
+
"quarterly_positive_debt_to_equity",
|
|
181
|
+
"quarterly_operating_cash_flow_is_higher_than_net_income",
|
|
182
|
+
],
|
|
183
|
+
}
|
|
184
|
+
return self._custom_variant("Short-term profitability", properties)
|
|
185
|
+
|
|
186
|
+
def long_term_profitability(self) -> "NamedFilterQuery":
|
|
187
|
+
properties = {
|
|
188
|
+
"income": [
|
|
189
|
+
"growing_net_income",
|
|
190
|
+
"growing_operating_income",
|
|
191
|
+
"quarterly_growing_net_income",
|
|
192
|
+
"quarterly_growing_operating_income",
|
|
193
|
+
],
|
|
194
|
+
"cash_flow": [
|
|
195
|
+
"growing_operating_cash_flow",
|
|
196
|
+
"quarterly_growing_operating_cash_flow",
|
|
197
|
+
],
|
|
198
|
+
"eps": [
|
|
199
|
+
"growing_basic_eps",
|
|
200
|
+
"growing_diluted_eps",
|
|
201
|
+
"quarterly_growing_basic_eps",
|
|
202
|
+
"quarterly_growing_diluted_eps",
|
|
203
|
+
],
|
|
204
|
+
}
|
|
205
|
+
return self._custom_variant("Long-term profitability", properties)
|
|
206
|
+
|
|
122
207
|
def variants(self) -> List["NamedFilterQuery"]:
|
|
123
|
-
|
|
208
|
+
variants_ = [
|
|
124
209
|
self.country_variant("Europe", list(get_args(Europe))),
|
|
125
210
|
self.country_variant("Us", list(get_args(Us))),
|
|
211
|
+
self.country_variant("Europe", list(get_args(Europe))).top_performers(),
|
|
212
|
+
self.country_variant("Us", list(get_args(Us))).top_performers(),
|
|
213
|
+
self.country_variant("Europe", list(get_args(Europe))).poor_performers(),
|
|
214
|
+
self.country_variant("Us", list(get_args(Us))).poor_performers(),
|
|
126
215
|
self.country_variant("Europe", list(get_args(Europe)))
|
|
127
216
|
.update_indicator_filter("RSI 30", "rsi_bullish_crossover_30")
|
|
128
217
|
.update_indicator_filter("MACD", "macd_12_26_9_bullish_crossover"),
|
|
@@ -142,6 +231,17 @@ class NamedFilterQuery(FilterQuery):
|
|
|
142
231
|
.update_indicator_filter("RSI Neutral", "rsi_neutral")
|
|
143
232
|
.update_indicator_filter("MACD", "macd_12_26_9_bullish_crossover"),
|
|
144
233
|
]
|
|
234
|
+
variants_short_term_profitability = [
|
|
235
|
+
v.short_term_profitability() for v in variants_
|
|
236
|
+
]
|
|
237
|
+
variants_long_term_profitability = [
|
|
238
|
+
v.long_term_profitability() for v in variants_
|
|
239
|
+
]
|
|
240
|
+
return [
|
|
241
|
+
*variants_,
|
|
242
|
+
*variants_short_term_profitability,
|
|
243
|
+
*variants_long_term_profitability,
|
|
244
|
+
]
|
|
145
245
|
|
|
146
246
|
|
|
147
247
|
def load_custom_filters() -> List[NamedFilterQuery]:
|
|
@@ -174,39 +274,16 @@ SMALL_CAP = NamedFilterQuery(
|
|
|
174
274
|
order_by_desc="market_capitalization",
|
|
175
275
|
).variants()
|
|
176
276
|
|
|
177
|
-
|
|
178
|
-
name="
|
|
179
|
-
volume_above_average=DATE_THRESHOLD,
|
|
180
|
-
sma_50_above_sma_200=[
|
|
181
|
-
datetime.date.today() - datetime.timedelta(days=5000),
|
|
182
|
-
datetime.date.today(),
|
|
183
|
-
],
|
|
184
|
-
weekly_growth=[1, 100],
|
|
185
|
-
monthly_growth=[8, 100],
|
|
186
|
-
order_by_desc="market_capitalization",
|
|
187
|
-
).variants()
|
|
188
|
-
|
|
189
|
-
TOP_PERFORMERS_YEARLY = NamedFilterQuery(
|
|
190
|
-
name="Top Performers Yearly",
|
|
191
|
-
sma_50_above_sma_200=[
|
|
192
|
-
datetime.date.today() - datetime.timedelta(days=5000),
|
|
193
|
-
datetime.date.today(),
|
|
194
|
-
],
|
|
195
|
-
price_above_sma_50=[
|
|
196
|
-
datetime.date.today() - datetime.timedelta(days=5000),
|
|
197
|
-
datetime.date.today(),
|
|
198
|
-
],
|
|
199
|
-
volume_above_average=DATE_THRESHOLD,
|
|
200
|
-
weekly_growth=[1, 100],
|
|
201
|
-
monthly_growth=[8, 100],
|
|
202
|
-
yearly_growth=[30, 100],
|
|
277
|
+
LARGE_CAPS = NamedFilterQuery(
|
|
278
|
+
name="Large caps",
|
|
203
279
|
order_by_desc="market_capitalization",
|
|
280
|
+
market_capitalization=[1e10, 1e14],
|
|
204
281
|
).variants()
|
|
205
282
|
|
|
206
|
-
|
|
207
|
-
name="
|
|
283
|
+
MID_CAPS = NamedFilterQuery(
|
|
284
|
+
name="Mid-caps",
|
|
208
285
|
order_by_desc="market_capitalization",
|
|
209
|
-
|
|
286
|
+
market_capitalization=[5e8, 1e10],
|
|
210
287
|
).variants()
|
|
211
288
|
|
|
212
289
|
NEXT_EARNINGS_DATE = NamedFilterQuery(
|
|
@@ -217,15 +294,26 @@ NEXT_EARNINGS_DATE = NamedFilterQuery(
|
|
|
217
294
|
datetime.date.today() + timedelta(days=20),
|
|
218
295
|
],
|
|
219
296
|
).variants()
|
|
297
|
+
SEMICONDUCTORS = NamedFilterQuery(
|
|
298
|
+
name="Semiconductors",
|
|
299
|
+
order_by_desc="market_capitalization",
|
|
300
|
+
industry=["Semiconductors"],
|
|
301
|
+
).variants()
|
|
302
|
+
SOFTWARE = NamedFilterQuery(
|
|
303
|
+
name="Software - Application",
|
|
304
|
+
order_by_desc="market_capitalization",
|
|
305
|
+
industry=["Software - Application"],
|
|
306
|
+
).variants()
|
|
220
307
|
|
|
221
308
|
|
|
222
309
|
def predefined_filters() -> list[NamedFilterQuery]:
|
|
223
310
|
return [
|
|
224
311
|
*SMALL_CAP,
|
|
225
|
-
*TOP_PERFORMERS,
|
|
226
|
-
*TOP_PERFORMERS_YEARLY,
|
|
227
312
|
*LARGE_CAPS,
|
|
228
313
|
*NEXT_EARNINGS_DATE,
|
|
314
|
+
*MID_CAPS,
|
|
315
|
+
*SEMICONDUCTORS,
|
|
316
|
+
*SOFTWARE,
|
|
229
317
|
*load_custom_filters(),
|
|
230
318
|
]
|
|
231
319
|
|
bullish/app/app.py
CHANGED
|
@@ -234,33 +234,28 @@ def load() -> None:
|
|
|
234
234
|
|
|
235
235
|
@st.dialog("🔍 Filter", width="large")
|
|
236
236
|
def filter() -> None:
|
|
237
|
+
with st.container(), st.expander("Predefined filters"):
|
|
238
|
+
predefined_filter_names = PredefinedFilters().get_predefined_filter_names()
|
|
239
|
+
option = st.selectbox(
|
|
240
|
+
"Select a predefined filter",
|
|
241
|
+
["", *predefined_filter_names],
|
|
242
|
+
)
|
|
243
|
+
if option:
|
|
244
|
+
data_ = PredefinedFilters().get_predefined_filter(option)
|
|
245
|
+
st.session_state.filter_query.update(data_)
|
|
237
246
|
with st.container():
|
|
238
|
-
|
|
239
|
-
with
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
data_ = PredefinedFilters().get_predefined_filter(option)
|
|
251
|
-
st.session_state.filter_query.update(data_)
|
|
252
|
-
with st.expander("Technical Analysis"):
|
|
253
|
-
for filter in TechnicalAnalysisFilters:
|
|
254
|
-
with st.expander(filter._description): # type: ignore
|
|
255
|
-
build_filter(filter, st.session_state.filter_query)
|
|
256
|
-
|
|
257
|
-
with column_2:
|
|
258
|
-
with st.expander("Fundamental Analysis"):
|
|
259
|
-
for filter in FundamentalAnalysisFilters:
|
|
260
|
-
with st.expander(filter._description): # type: ignore
|
|
261
|
-
build_filter(filter, st.session_state.filter_query)
|
|
262
|
-
with st.expander("General filter"):
|
|
263
|
-
build_filter(GeneralFilter, st.session_state.filter_query)
|
|
247
|
+
|
|
248
|
+
with st.expander("Technical Analysis"):
|
|
249
|
+
for filter in TechnicalAnalysisFilters:
|
|
250
|
+
with st.expander(filter._description): # type: ignore
|
|
251
|
+
build_filter(filter, st.session_state.filter_query)
|
|
252
|
+
|
|
253
|
+
with st.expander("Fundamental Analysis"):
|
|
254
|
+
for filter in FundamentalAnalysisFilters:
|
|
255
|
+
with st.expander(filter._description): # type: ignore
|
|
256
|
+
build_filter(filter, st.session_state.filter_query)
|
|
257
|
+
with st.expander("General filter"):
|
|
258
|
+
build_filter(GeneralFilter, st.session_state.filter_query)
|
|
264
259
|
|
|
265
260
|
if st.button("🔍 Apply"):
|
|
266
261
|
query = FilterQuery.model_validate(st.session_state.filter_query)
|
|
@@ -419,11 +414,12 @@ def main() -> None:
|
|
|
419
414
|
|
|
420
415
|
if st.session_state.database_path is None:
|
|
421
416
|
dialog_pick_database()
|
|
417
|
+
initialize(
|
|
418
|
+
database_path=st.session_state.database_path,
|
|
419
|
+
job_type="Initialize",
|
|
420
|
+
)
|
|
422
421
|
bearish_db_ = bearish_db(st.session_state.database_path)
|
|
423
|
-
|
|
424
|
-
database_path=st.session_state.database_path,
|
|
425
|
-
job_type="Initialize",
|
|
426
|
-
)
|
|
422
|
+
|
|
427
423
|
charts_tab, jobs_tab = st.tabs(["Charts", "Jobs"])
|
|
428
424
|
if "data" not in st.session_state:
|
|
429
425
|
st.session_state.data = load_analysis_data(bearish_db_)
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
Revision ID: 260fcff7212e
|
|
4
|
+
Revises: 4ee82b171449
|
|
5
|
+
Create Date: 2025-08-11 10:08:17.582390
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
from typing import Sequence, Union
|
|
10
|
+
|
|
11
|
+
from alembic import op
|
|
12
|
+
import sqlalchemy as sa
|
|
13
|
+
from sqlalchemy.dialects import sqlite
|
|
14
|
+
|
|
15
|
+
# revision identifiers, used by Alembic.
|
|
16
|
+
revision: str = "260fcff7212e"
|
|
17
|
+
down_revision: Union[str, None] = "4ee82b171449"
|
|
18
|
+
branch_labels: Union[str, Sequence[str], None] = None
|
|
19
|
+
depends_on: Union[str, Sequence[str], None] = None
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def upgrade() -> None:
|
|
23
|
+
# ### commands auto generated by Alembic - please adjust! ###
|
|
24
|
+
with op.batch_alter_table("analysis", schema=None) as batch_op:
|
|
25
|
+
batch_op.add_column(sa.Column("sma_50_below_sma_200", sa.Date(), nullable=True))
|
|
26
|
+
batch_op.add_column(sa.Column("price_below_sma_50", sa.Date(), nullable=True))
|
|
27
|
+
batch_op.create_index(
|
|
28
|
+
"ix_analysis_price_below_sma_50", ["price_below_sma_50"], unique=False
|
|
29
|
+
)
|
|
30
|
+
batch_op.create_index(
|
|
31
|
+
"ix_analysis_sma_50_below_sma_200", ["sma_50_below_sma_200"], unique=False
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
# ### end Alembic commands ###
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def downgrade() -> None:
|
|
38
|
+
# ### commands auto generated by Alembic - please adjust! ###
|
|
39
|
+
with op.batch_alter_table("analysis", schema=None) as batch_op:
|
|
40
|
+
batch_op.drop_index("ix_analysis_sma_50_below_sma_200")
|
|
41
|
+
batch_op.drop_index("ix_analysis_price_below_sma_50")
|
|
42
|
+
batch_op.drop_column("price_below_sma_50")
|
|
43
|
+
batch_op.drop_column("sma_50_below_sma_200")
|
|
44
|
+
|
|
45
|
+
# ### end Alembic commands ###
|
|
@@ -5,11 +5,11 @@ bullish/analysis/backtest.py,sha256=x91ek5kOzJHvYq0TmJh1Q8wBDDduIaieE0zDaoZFXew,
|
|
|
5
5
|
bullish/analysis/constants.py,sha256=X3oCyYNA6B-jsZSYJLeGQ94S453Z7jIVNPmv3lMPp8Q,9922
|
|
6
6
|
bullish/analysis/filter.py,sha256=LKmsO3ei7Eo_SJsEVbZqETyIdOpW55xVheO6_GNoA0s,9286
|
|
7
7
|
bullish/analysis/functions.py,sha256=CuMgOjpQeg4KsDMUBdHRlxL1dRlos16KRyLhQe8PYUQ,14819
|
|
8
|
-
bullish/analysis/indicators.py,sha256=
|
|
8
|
+
bullish/analysis/indicators.py,sha256=f5FReOeM1qgs_v3yEFp2ebPYqIQNib_4tftG0WDkhRQ,27648
|
|
9
9
|
bullish/analysis/industry_views.py,sha256=-B4CCAYz2arGQtWTXLLMpox0loO_MGdVQd2ycCRMOQQ,6799
|
|
10
|
-
bullish/analysis/predefined_filters.py,sha256=
|
|
10
|
+
bullish/analysis/predefined_filters.py,sha256=LD_68Gi84gGifT4I4Vgz6VN8y8o1hFBKyQBbpE1i9Bo,12340
|
|
11
11
|
bullish/app/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
-
bullish/app/app.py,sha256
|
|
12
|
+
bullish/app/app.py,sha256=oF0ew2TtWSZ9iIsBK7H0Dy-FvOCjzSA4MdEsBzeRI9g,16630
|
|
13
13
|
bullish/cli.py,sha256=yYqiEQAvOIQ-pTn77RPuE449gwaEGBeQwNHHAJ5yQDM,2739
|
|
14
14
|
bullish/database/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
15
|
bullish/database/alembic/README,sha256=heMzebYwlGhnE8_4CWJ4LS74WoEZjBy-S-mIJRxAEKI,39
|
|
@@ -22,6 +22,7 @@ bullish/database/alembic/versions/08ac1116e055_.py,sha256=zMEiCbraMEAZItT4ibc3ev
|
|
|
22
22
|
bullish/database/alembic/versions/11d35a452b40_.py,sha256=j2PaU1RssLQ20OevGmBC7S9E9ocWiXpBue9SOS4AQoY,11521
|
|
23
23
|
bullish/database/alembic/versions/12889a2cbd7d_.py,sha256=LT_-dM-UstatA1xloCAQnvVgFXMyIAR_LpHPbQnWyVo,1668
|
|
24
24
|
bullish/database/alembic/versions/17e51420e7ad_.py,sha256=xeiVIm1YUZb08opE9rocHZP1__9WQWXsKsXgeFV9cvs,2960
|
|
25
|
+
bullish/database/alembic/versions/260fcff7212e_.py,sha256=3Gx9WTyYcFWuMYunJEez0545eLWBxqTsu2Mmd7UDlDY,1498
|
|
25
26
|
bullish/database/alembic/versions/49c83f9eb5ac_.py,sha256=kCBItp7KmqpJ03roy5ikQjhefZia1oKgfZwournQDq8,3890
|
|
26
27
|
bullish/database/alembic/versions/4b0a2f40b7d3_.py,sha256=G0K7w7pOPYjPZkXTB8LWhxoxuWBPcPwOfnubTBtdeEY,1827
|
|
27
28
|
bullish/database/alembic/versions/4ee82b171449_.py,sha256=QtPy5VyZPyZxS7MVkk_wGi3C44PVDoHyJ-9m9fWdqqc,1047
|
|
@@ -55,7 +56,7 @@ bullish/jobs/models.py,sha256=rBXxtGFBpgZprrxq5_X2Df-bh8BLYEfw-VLMRucrqa8,784
|
|
|
55
56
|
bullish/jobs/tasks.py,sha256=vmglWAADUUkhc_2ArzgAGdjtWotkYymvK6LQt08vGo4,6096
|
|
56
57
|
bullish/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
57
58
|
bullish/utils/checks.py,sha256=g-5QXNWNe1_BwHKrc2PtvPiLraL0tqGgxnzG7u-Wkgo,2189
|
|
58
|
-
bullishpy-0.
|
|
59
|
-
bullishpy-0.
|
|
60
|
-
bullishpy-0.
|
|
61
|
-
bullishpy-0.
|
|
59
|
+
bullishpy-0.52.0.dist-info/METADATA,sha256=ieDfl02-98ddCFh7GVTQZFfhNeyx8o6b1-2ILF4ecRg,830
|
|
60
|
+
bullishpy-0.52.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
61
|
+
bullishpy-0.52.0.dist-info/entry_points.txt,sha256=eaPpmL6vmSBFo0FBtwibCXGqAW4LFJ83whJzT1VjD-0,43
|
|
62
|
+
bullishpy-0.52.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|