bulk-chain 1.0.0__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bulk_chain/api.py +153 -67
- bulk_chain/core/llm_base.py +21 -42
- bulk_chain/core/service_asyncio.py +65 -0
- bulk_chain/core/service_batch.py +2 -2
- bulk_chain/core/service_schema.py +5 -1
- bulk_chain/core/utils.py +50 -7
- bulk_chain-1.2.1.dist-info/METADATA +136 -0
- bulk_chain-1.2.1.dist-info/RECORD +16 -0
- {bulk_chain-1.0.0.dist-info → bulk_chain-1.2.1.dist-info}/WHEEL +1 -1
- bulk_chain-1.0.0.dist-info/METADATA +0 -99
- bulk_chain-1.0.0.dist-info/RECORD +0 -15
- {bulk_chain-1.0.0.dist-info → bulk_chain-1.2.1.dist-info}/LICENSE +0 -0
- {bulk_chain-1.0.0.dist-info → bulk_chain-1.2.1.dist-info}/top_level.txt +0 -0
bulk_chain/api.py
CHANGED
|
@@ -1,41 +1,36 @@
|
|
|
1
|
+
import asyncio
|
|
1
2
|
import collections
|
|
3
|
+
import logging
|
|
2
4
|
import os
|
|
3
5
|
from itertools import chain
|
|
6
|
+
from types import AsyncGeneratorType
|
|
4
7
|
|
|
5
8
|
from bulk_chain.core.llm_base import BaseLM
|
|
9
|
+
from bulk_chain.core.service_asyncio import AsyncioService
|
|
6
10
|
from bulk_chain.core.service_batch import BatchIterator
|
|
7
11
|
from bulk_chain.core.service_data import DataService
|
|
8
12
|
from bulk_chain.core.service_dict import DictionaryService
|
|
9
13
|
from bulk_chain.core.service_json import JsonService
|
|
10
14
|
from bulk_chain.core.service_schema import SchemaService
|
|
11
|
-
from bulk_chain.core.utils import
|
|
15
|
+
from bulk_chain.core.utils import attempt_wrapper
|
|
12
16
|
|
|
13
17
|
|
|
14
18
|
INFER_MODES = {
|
|
15
|
-
"
|
|
16
|
-
|
|
19
|
+
"single": lambda llm, batch, **kwargs: [llm.ask(prompt) for prompt in batch],
|
|
20
|
+
"batch": lambda llm, batch, **kwargs: llm.ask_batch(batch),
|
|
21
|
+
"single_stream": lambda llm, batch, **kwargs: [llm.ask_stream(prompt) for prompt in batch],
|
|
22
|
+
"batch_async": lambda llm, batch, **kwargs: AsyncioService.run_tasks(
|
|
23
|
+
batch=batch, async_handler=llm.ask_async, event_loop=kwargs.get("event_loop")
|
|
24
|
+
),
|
|
25
|
+
"batch_stream_async": lambda llm, batch, **kwargs: AsyncioService.run_tasks(
|
|
26
|
+
batch=batch, async_handler=llm.ask_stream_async, event_loop=kwargs.get("event_loop")
|
|
27
|
+
),
|
|
17
28
|
}
|
|
18
29
|
|
|
19
30
|
|
|
20
31
|
CWD = os.getcwd()
|
|
21
32
|
|
|
22
33
|
|
|
23
|
-
def _iter_entry_content(entry, entry_info=None, **kwargs):
|
|
24
|
-
|
|
25
|
-
if isinstance(entry, str):
|
|
26
|
-
kwargs.get("callback_str_func", lambda *_: None)(entry, entry_info)
|
|
27
|
-
yield entry
|
|
28
|
-
elif isinstance(entry, collections.abc.Iterable):
|
|
29
|
-
h = kwargs.get("callback_stream_func", lambda *_: None)
|
|
30
|
-
h(None, entry_info | {"action": "start"})
|
|
31
|
-
for chunk in map(lambda item: str(item), entry):
|
|
32
|
-
yield chunk
|
|
33
|
-
h(chunk, entry_info)
|
|
34
|
-
h(None, entry_info | {"action": "end"})
|
|
35
|
-
else:
|
|
36
|
-
raise Exception(f"Non supported type `{type(entry)}` for handling output from batch")
|
|
37
|
-
|
|
38
|
-
|
|
39
34
|
def _iter_batch_prompts(c, batch_content_it, **kwargs):
|
|
40
35
|
for ind_in_batch, entry in enumerate(batch_content_it):
|
|
41
36
|
content = DataService.get_prompt_text(
|
|
@@ -45,19 +40,63 @@ def _iter_batch_prompts(c, batch_content_it, **kwargs):
|
|
|
45
40
|
yield ind_in_batch, content
|
|
46
41
|
|
|
47
42
|
|
|
48
|
-
def
|
|
43
|
+
def __handle_agen_to_gen(handle, batch, event_loop):
|
|
44
|
+
""" This handler provides conversion of the async generator to generator (sync).
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
def __wrap_with_index(async_gens):
|
|
48
|
+
async def wrapper(index, agen):
|
|
49
|
+
async for item in agen:
|
|
50
|
+
yield index, item
|
|
51
|
+
return [wrapper(i, agen) for i, agen in enumerate(async_gens)]
|
|
52
|
+
|
|
53
|
+
agen_list = handle(batch, event_loop=event_loop)
|
|
54
|
+
|
|
55
|
+
it = AsyncioService.async_gen_to_iter(
|
|
56
|
+
gen=AsyncioService.merge_generators(*__wrap_with_index(agen_list)),
|
|
57
|
+
loop=event_loop)
|
|
58
|
+
|
|
59
|
+
for ind_in_batch, chunk in it:
|
|
60
|
+
yield ind_in_batch, str(chunk)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def __handle_gen(handle, batch, event_loop):
|
|
64
|
+
""" This handler deals with the iteration of each individual element of the batch.
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
def _iter_entry_content(entry):
|
|
68
|
+
if isinstance(entry, str):
|
|
69
|
+
yield entry
|
|
70
|
+
elif isinstance(entry, collections.abc.Iterable):
|
|
71
|
+
for chunk in map(lambda item: str(item), entry):
|
|
72
|
+
yield chunk
|
|
73
|
+
elif isinstance(entry, AsyncGeneratorType):
|
|
74
|
+
for chunk in AsyncioService.async_gen_to_iter(entry, loop=event_loop):
|
|
75
|
+
yield str(chunk)
|
|
76
|
+
else:
|
|
77
|
+
raise Exception(f"Non supported type `{type(entry)}` for handling output from batch")
|
|
78
|
+
|
|
79
|
+
for ind_in_batch, entry in enumerate(handle(batch, event_loop=event_loop)):
|
|
80
|
+
for chunk in _iter_entry_content(entry=entry):
|
|
81
|
+
yield ind_in_batch, chunk
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _iter_chunks(p_column, batch_content_it, **kwargs):
|
|
85
|
+
handler = __handle_agen_to_gen if kwargs["infer_mode"] == "batch_stream_async" else __handle_gen
|
|
49
86
|
p_batch = [item[p_column] for item in batch_content_it]
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
yield ind_in_batch, _iter_entry_content(entry=entry, entry_info={"ind": ind_in_batch, "param": c}, **kwargs)
|
|
87
|
+
it = handler(handle=kwargs["handle_batch_func"], batch=p_batch, event_loop=kwargs["event_loop"])
|
|
88
|
+
for ind_in_batch, chunk in it:
|
|
89
|
+
yield ind_in_batch, chunk
|
|
54
90
|
|
|
55
91
|
|
|
56
|
-
def
|
|
92
|
+
def _column_ordered_chunks_iter(batch, schema, cols=None, keep_prompts=True, **kwargs):
|
|
93
|
+
"""
|
|
94
|
+
NOTE: we populate `batch` content automatically
|
|
95
|
+
"""
|
|
57
96
|
assert (isinstance(batch, list))
|
|
58
97
|
|
|
59
98
|
if len(batch) == 0:
|
|
60
|
-
return
|
|
99
|
+
return
|
|
61
100
|
|
|
62
101
|
if cols is None:
|
|
63
102
|
first_item = batch[0]
|
|
@@ -73,71 +112,118 @@ def _infer_batch(batch, schema, return_mode, cols=None, **kwargs):
|
|
|
73
112
|
|
|
74
113
|
# Handling column for inference.
|
|
75
114
|
if c in schema.r2p:
|
|
76
|
-
content_it =
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
115
|
+
content_it = _iter_chunks(p_column=schema.r2p[c], batch_content_it=iter(batch), **kwargs)
|
|
116
|
+
# Register values.
|
|
117
|
+
for item in batch:
|
|
118
|
+
item[c] = []
|
|
119
|
+
for ind_in_batch, chunk in content_it:
|
|
120
|
+
# Append batch.
|
|
121
|
+
batch[ind_in_batch][c].append(chunk)
|
|
122
|
+
yield [ind_in_batch, c, chunk]
|
|
123
|
+
|
|
124
|
+
# Convert content to string.
|
|
125
|
+
for item in batch:
|
|
126
|
+
item[c] = "".join(item[c])
|
|
127
|
+
|
|
128
|
+
if not keep_prompts:
|
|
129
|
+
for batch_item in batch:
|
|
130
|
+
for key in list(batch_item.keys()):
|
|
131
|
+
prompt_col = SchemaService.col_to_prompt(col_name=key, prompt_data=batch_item)
|
|
132
|
+
if prompt_col in batch_item:
|
|
133
|
+
del batch_item[prompt_col]
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def _infer_batch(return_type, batch, batch_ind, **kwargs):
|
|
137
|
+
assert (return_type in ["batch", "chunk", "record"])
|
|
138
|
+
|
|
139
|
+
# Filling batch with inference content.
|
|
140
|
+
for ind_in_batch, column, chunk in _column_ordered_chunks_iter(batch=batch, **kwargs):
|
|
141
|
+
if return_type == "chunk":
|
|
142
|
+
global_ind = batch_ind * len(batch) + ind_in_batch
|
|
143
|
+
yield [global_ind, column, chunk]
|
|
144
|
+
|
|
145
|
+
if return_type == "record":
|
|
89
146
|
for record in batch:
|
|
90
147
|
yield record
|
|
91
148
|
|
|
92
|
-
if
|
|
149
|
+
if return_type == "batch":
|
|
93
150
|
yield batch
|
|
94
151
|
|
|
95
152
|
|
|
96
|
-
def
|
|
153
|
+
def get_infer_mode(stream, batch_size, async_mode):
|
|
154
|
+
if not stream and batch_size == 1:
|
|
155
|
+
return 'single', 'record'
|
|
156
|
+
elif not stream and batch_size > 1:
|
|
157
|
+
if async_mode:
|
|
158
|
+
return 'batch_async', 'batch'
|
|
159
|
+
else:
|
|
160
|
+
return 'batch', 'batch'
|
|
161
|
+
elif stream and batch_size == 1:
|
|
162
|
+
return 'single_stream', 'chunk'
|
|
163
|
+
elif stream and batch_size > 1:
|
|
164
|
+
return 'batch_stream_async', 'chunk'
|
|
165
|
+
|
|
166
|
+
raise ValueError(f"Invalid combination of stream and batch_size: {stream}, {batch_size}")
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def iter_content(input_dicts_it, llm, schema, batch_size=1, limit_prompt=None,
|
|
170
|
+
stream=False, async_mode=False, attempts=1, event_loop=None,
|
|
171
|
+
handle_missed_value_func=lambda *_: None, **kwargs):
|
|
97
172
|
""" This method represent Python API aimed at application of `llm` towards
|
|
98
173
|
iterator of input_dicts via cache_target that refers to the SQLite using
|
|
99
174
|
the given `schema`
|
|
100
175
|
"""
|
|
101
|
-
assert (return_mode in ["batch", "chunk"])
|
|
102
176
|
assert (isinstance(llm, BaseLM))
|
|
177
|
+
assert (isinstance(batch_size, int) and batch_size > 0)
|
|
178
|
+
assert (isinstance(async_mode, bool))
|
|
179
|
+
|
|
180
|
+
infer_type, return_type = get_infer_mode(stream=stream, batch_size=batch_size, async_mode=async_mode)
|
|
181
|
+
infer_mode = INFER_MODES[infer_type]
|
|
182
|
+
|
|
183
|
+
# Setup event loop.
|
|
184
|
+
event_loop = asyncio.get_event_loop_policy().get_event_loop() \
|
|
185
|
+
if event_loop is None else event_loop
|
|
103
186
|
|
|
104
187
|
# Quick initialization of the schema.
|
|
105
188
|
if isinstance(schema, str):
|
|
106
189
|
schema = JsonService.read(schema)
|
|
107
190
|
if isinstance(schema, dict):
|
|
108
191
|
schema = SchemaService(json_data=schema)
|
|
192
|
+
if isinstance(schema, list):
|
|
193
|
+
schema = SchemaService(json_data={"schema": schema})
|
|
109
194
|
|
|
110
195
|
prompts_it = map(
|
|
111
196
|
lambda data: DictionaryService.custom_update(src_dict=dict(data), other_dict=schema.cot_args),
|
|
112
197
|
input_dicts_it
|
|
113
198
|
)
|
|
114
199
|
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
200
|
+
handle_batch_func = lambda batch, **handle_kwargs: infer_mode(
|
|
201
|
+
llm,
|
|
202
|
+
DataService.limit_prompts(batch, limit=limit_prompt),
|
|
203
|
+
**handle_kwargs
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
# Optional wrapping into attempts.
|
|
207
|
+
if attempts > 1:
|
|
208
|
+
# Optional setup of the logger.
|
|
209
|
+
logger = logging.getLogger(__name__)
|
|
210
|
+
logging.basicConfig(level=logging.INFO)
|
|
211
|
+
|
|
212
|
+
attempt_dec = attempt_wrapper(attempts=attempts,
|
|
213
|
+
delay_sec=kwargs.get("attempt_delay_sec", 1),
|
|
214
|
+
logger=logger)
|
|
215
|
+
handle_batch_func = attempt_dec(handle_batch_func)
|
|
216
|
+
|
|
217
|
+
kwargs["handle_missed_value_func"] = handle_missed_value_func
|
|
218
|
+
|
|
219
|
+
content_it = (_infer_batch(return_type=return_type,
|
|
220
|
+
batch=batch,
|
|
221
|
+
batch_ind=batch_ind,
|
|
222
|
+
infer_mode=infer_mode,
|
|
223
|
+
handle_batch_func=handle_batch_func,
|
|
118
224
|
schema=schema,
|
|
225
|
+
event_loop=event_loop,
|
|
119
226
|
**kwargs)
|
|
120
|
-
for batch in BatchIterator(prompts_it, batch_size=batch_size))
|
|
227
|
+
for batch_ind, batch in enumerate(BatchIterator(prompts_it, batch_size=batch_size)))
|
|
121
228
|
|
|
122
229
|
yield from chain.from_iterable(content_it)
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
def init_llm(adapter, **model_kwargs):
|
|
126
|
-
""" This method perform dynamic initialization of LLM from third-party resource.
|
|
127
|
-
"""
|
|
128
|
-
assert (isinstance(adapter, str))
|
|
129
|
-
|
|
130
|
-
# List of the Supported models and their API wrappers.
|
|
131
|
-
models_preset = {
|
|
132
|
-
"dynamic": lambda: dynamic_init(class_dir=CWD, class_filepath=llm_model_name,
|
|
133
|
-
class_name=llm_model_params)(**model_kwargs)
|
|
134
|
-
}
|
|
135
|
-
|
|
136
|
-
# Initialize LLM model.
|
|
137
|
-
params = adapter.split(':')
|
|
138
|
-
llm_model_type = params[0]
|
|
139
|
-
llm_model_name = params[1] if len(params) > 1 else params[-1]
|
|
140
|
-
llm_model_params = ':'.join(params[2:]) if len(params) > 2 else None
|
|
141
|
-
llm = find_by_prefix(d=models_preset, key=llm_model_type)()
|
|
142
|
-
|
|
143
|
-
return llm, llm_model_name
|
bulk_chain/core/llm_base.py
CHANGED
|
@@ -1,50 +1,29 @@
|
|
|
1
|
-
import logging
|
|
2
|
-
import time
|
|
3
|
-
|
|
4
|
-
|
|
5
1
|
class BaseLM(object):
|
|
6
2
|
|
|
7
|
-
def __init__(self,
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
self.__name = name
|
|
11
|
-
self.__attempts = 1 if attempts is None else attempts
|
|
12
|
-
self.__delay_sec = delay_sec
|
|
13
|
-
self.__support_batching = support_batching
|
|
14
|
-
|
|
15
|
-
if enable_log:
|
|
16
|
-
self.__logger = logging.getLogger(__name__)
|
|
17
|
-
logging.basicConfig(level=logging.INFO)
|
|
18
|
-
|
|
19
|
-
def ask_core(self, batch):
|
|
20
|
-
|
|
21
|
-
for i in range(self.__attempts):
|
|
22
|
-
try:
|
|
23
|
-
if self.__support_batching:
|
|
24
|
-
# Launch in batch mode.
|
|
25
|
-
content = batch
|
|
26
|
-
else:
|
|
27
|
-
# Launch in non-batch mode.
|
|
28
|
-
assert len(batch) == 1, "The LM does not support batching," \
|
|
29
|
-
f" while size of the content is {len(batch)} which is not equal 1. " \
|
|
30
|
-
f"Please enable batch-supporting or set required inference settings."
|
|
31
|
-
content = batch[0]
|
|
3
|
+
def __init__(self, **kwargs):
|
|
4
|
+
pass
|
|
32
5
|
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
6
|
+
def ask(self, prompt):
|
|
7
|
+
""" Assumes to return str.
|
|
8
|
+
"""
|
|
9
|
+
raise NotImplemented()
|
|
37
10
|
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
time.sleep(self.__delay_sec)
|
|
11
|
+
def ask_batch(self, batch):
|
|
12
|
+
""" Assumes to return generator.
|
|
13
|
+
"""
|
|
14
|
+
raise NotImplemented()
|
|
43
15
|
|
|
44
|
-
|
|
16
|
+
def ask_stream(self, prompt):
|
|
17
|
+
""" Assumes to return generator.
|
|
18
|
+
"""
|
|
19
|
+
raise NotImplemented()
|
|
45
20
|
|
|
46
|
-
def
|
|
21
|
+
async def ask_async(self, prompt):
|
|
22
|
+
""" Assumes to return co-routine.
|
|
23
|
+
"""
|
|
47
24
|
raise NotImplemented()
|
|
48
25
|
|
|
49
|
-
def
|
|
50
|
-
return
|
|
26
|
+
async def ask_stream_async(self, prompt):
|
|
27
|
+
""" Assumes to return AsyncGenerator.
|
|
28
|
+
"""
|
|
29
|
+
raise NotImplemented()
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
from typing import AsyncGenerator, Any
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class AsyncioService:
|
|
6
|
+
|
|
7
|
+
@staticmethod
|
|
8
|
+
async def _run_tasks_async(batch, async_handler):
|
|
9
|
+
tasks = [async_handler(prompt) for prompt in batch]
|
|
10
|
+
return await asyncio.gather(*tasks)
|
|
11
|
+
|
|
12
|
+
@staticmethod
|
|
13
|
+
async def _run_generator(gen, output_queue, idx):
|
|
14
|
+
try:
|
|
15
|
+
async for item in gen:
|
|
16
|
+
await output_queue.put((idx, item))
|
|
17
|
+
finally:
|
|
18
|
+
await output_queue.put((idx, StopAsyncIteration))
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@staticmethod
|
|
22
|
+
def run_tasks(event_loop, **tasks_kwargs):
|
|
23
|
+
return event_loop.run_until_complete(AsyncioService._run_tasks_async(**tasks_kwargs))
|
|
24
|
+
|
|
25
|
+
@staticmethod
|
|
26
|
+
async def merge_generators(*gens: AsyncGenerator[Any, None]) -> AsyncGenerator[Any, None]:
|
|
27
|
+
|
|
28
|
+
output_queue = asyncio.Queue()
|
|
29
|
+
tasks = [
|
|
30
|
+
asyncio.create_task(AsyncioService._run_generator(gen, output_queue, idx))
|
|
31
|
+
for idx, gen in enumerate(gens)
|
|
32
|
+
]
|
|
33
|
+
|
|
34
|
+
finished = set()
|
|
35
|
+
while len(finished) < len(tasks):
|
|
36
|
+
idx, item = await output_queue.get()
|
|
37
|
+
if item is StopAsyncIteration:
|
|
38
|
+
finished.add(idx)
|
|
39
|
+
else:
|
|
40
|
+
yield item
|
|
41
|
+
|
|
42
|
+
for task in tasks:
|
|
43
|
+
task.cancel()
|
|
44
|
+
|
|
45
|
+
@staticmethod
|
|
46
|
+
def async_gen_to_iter(gen, loop=None):
|
|
47
|
+
""" This approach is limited. Could be considered as legacy.
|
|
48
|
+
https://stackoverflow.com/questions/71580727/translating-async-generator-into-sync-one/78573267#78573267
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
loop_created = False
|
|
52
|
+
if loop is None:
|
|
53
|
+
loop_created = True
|
|
54
|
+
loop = asyncio.new_event_loop()
|
|
55
|
+
|
|
56
|
+
asyncio.set_event_loop(loop)
|
|
57
|
+
try:
|
|
58
|
+
while True:
|
|
59
|
+
try:
|
|
60
|
+
yield loop.run_until_complete(gen.__anext__())
|
|
61
|
+
except StopAsyncIteration:
|
|
62
|
+
break
|
|
63
|
+
finally:
|
|
64
|
+
if loop_created:
|
|
65
|
+
loop.close()
|
bulk_chain/core/service_batch.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
class BatchIterator:
|
|
2
2
|
|
|
3
3
|
def __init__(self, data_iter, batch_size, end_value=None, filter_func=None):
|
|
4
|
-
assert(isinstance(batch_size, int) and batch_size > 0)
|
|
5
|
-
assert(callable(end_value) or end_value is None)
|
|
4
|
+
assert (isinstance(batch_size, int) and batch_size > 0)
|
|
5
|
+
assert (callable(end_value) or end_value is None)
|
|
6
6
|
self.__data_iter = data_iter
|
|
7
7
|
self.__index = 0
|
|
8
8
|
self.__batch_size = batch_size
|
|
@@ -9,6 +9,10 @@ class SchemaService(object):
|
|
|
9
9
|
prompt_schema = {"schema": [{"prompt": prompt, "out": "response", "in": "prompt"}]}
|
|
10
10
|
return cls(prompt_schema)
|
|
11
11
|
|
|
12
|
+
@staticmethod
|
|
13
|
+
def col_to_prompt(col_name, prompt_data):
|
|
14
|
+
return col_name + "_prompt" if "in" not in prompt_data else prompt_data["in"]
|
|
15
|
+
|
|
12
16
|
@staticmethod
|
|
13
17
|
def __init_schema(prompts):
|
|
14
18
|
|
|
@@ -19,7 +23,7 @@ class SchemaService(object):
|
|
|
19
23
|
|
|
20
24
|
for prompt in prompts:
|
|
21
25
|
r_col_name = prompt["out"]
|
|
22
|
-
p_col_name = r_col_name
|
|
26
|
+
p_col_name = SchemaService.col_to_prompt(col_name=r_col_name, prompt_data=prompt)
|
|
23
27
|
|
|
24
28
|
assert r_col_name not in schema_r2p, f"`{r_col_name}` has been already declared!"
|
|
25
29
|
assert p_col_name not in schema_p2r, f"`{p_col_name}` has been already declared!"
|
bulk_chain/core/utils.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
1
|
+
import ast
|
|
1
2
|
import importlib
|
|
2
3
|
import logging
|
|
3
4
|
import sys
|
|
5
|
+
import time
|
|
4
6
|
from collections import Counter
|
|
5
7
|
from os.path import dirname, join, basename
|
|
6
8
|
|
|
@@ -34,18 +36,30 @@ def find_by_prefix(d, key):
|
|
|
34
36
|
return d[matches[0]]
|
|
35
37
|
|
|
36
38
|
|
|
39
|
+
def check_is_param_name(param_name):
|
|
40
|
+
return param_name.replace("_", "").isalpha()
|
|
41
|
+
|
|
42
|
+
|
|
37
43
|
def iter_params(text):
|
|
38
44
|
assert(isinstance(text, str))
|
|
39
45
|
beg = 0
|
|
40
46
|
while beg < len(text):
|
|
47
|
+
print(beg)
|
|
41
48
|
try:
|
|
42
49
|
pb = text.index('{', beg)
|
|
43
50
|
except ValueError:
|
|
44
51
|
break
|
|
45
|
-
pe = text.index('}',
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
52
|
+
pe = text.index('}', pb+1)
|
|
53
|
+
param_name = text[pb + 1:pe]
|
|
54
|
+
|
|
55
|
+
# Check parameter validity.
|
|
56
|
+
if not check_is_param_name(param_name):
|
|
57
|
+
beg = pb + 1
|
|
58
|
+
continue
|
|
59
|
+
|
|
60
|
+
# Passing.
|
|
61
|
+
yield param_name
|
|
62
|
+
beg = pe + 1
|
|
49
63
|
|
|
50
64
|
|
|
51
65
|
def auto_import(name, is_class=False):
|
|
@@ -60,10 +74,21 @@ def auto_import(name, is_class=False):
|
|
|
60
74
|
return m() if is_class else m
|
|
61
75
|
|
|
62
76
|
|
|
63
|
-
def
|
|
77
|
+
def get_class_name(file_path):
|
|
78
|
+
with open(file_path, 'r') as f:
|
|
79
|
+
tree = ast.parse(f.read(), filename=file_path)
|
|
80
|
+
|
|
81
|
+
for node in ast.walk(tree):
|
|
82
|
+
if isinstance(node, ast.ClassDef):
|
|
83
|
+
return node.name
|
|
84
|
+
|
|
85
|
+
return None
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def dynamic_init(class_filepath, class_name=None):
|
|
64
89
|
|
|
65
90
|
# Registering path.
|
|
66
|
-
target = join(
|
|
91
|
+
target = join(dirname(class_filepath))
|
|
67
92
|
logger.info(f"Adding sys path for `{target}`")
|
|
68
93
|
sys.path.insert(1, target)
|
|
69
94
|
class_path_list = class_filepath.split('/')
|
|
@@ -74,7 +99,7 @@ def dynamic_init(class_dir, class_filepath, class_name=None):
|
|
|
74
99
|
class_filename = class_filename[:-len(".py")]
|
|
75
100
|
|
|
76
101
|
# Loading library.
|
|
77
|
-
class_name =
|
|
102
|
+
class_name = get_class_name(class_filepath) if class_name is None else class_name
|
|
78
103
|
class_path = ".".join([class_filename, class_name])
|
|
79
104
|
logger.info(f"Dynamic loading for the file and class `{class_path}`")
|
|
80
105
|
cls = auto_import(class_path, is_class=False)
|
|
@@ -89,3 +114,21 @@ def optional_limit_iter(it_data, limit=None):
|
|
|
89
114
|
if limit is not None and counter["returned"] > limit:
|
|
90
115
|
break
|
|
91
116
|
yield data
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def attempt_wrapper(attempts, delay_sec=1, logger=None):
|
|
120
|
+
def decorator(func):
|
|
121
|
+
def wrapper(*args, **kwargs):
|
|
122
|
+
for i in range(attempts):
|
|
123
|
+
try:
|
|
124
|
+
# Do action.
|
|
125
|
+
return func(*args, **kwargs)
|
|
126
|
+
except Exception as e:
|
|
127
|
+
if logger is not None:
|
|
128
|
+
logger.info(f"Unable to infer the result. Try {i} out of {attempts}.")
|
|
129
|
+
logger.info(e)
|
|
130
|
+
if delay_sec is not None:
|
|
131
|
+
time.sleep(delay_sec)
|
|
132
|
+
raise Exception(f"Failed after {attempts} attempts")
|
|
133
|
+
return wrapper
|
|
134
|
+
return decorator
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: bulk-chain
|
|
3
|
+
Version: 1.2.1
|
|
4
|
+
Summary: A lightweight, no-strings-attached Chain-of-Thought framework for your LLM, ensuring reliable results for bulk input requests.
|
|
5
|
+
Home-page: https://github.com/nicolay-r/bulk-chain
|
|
6
|
+
Author: Nicolay Rusnachenko
|
|
7
|
+
Author-email: rusnicolay@gmail.com
|
|
8
|
+
License: MIT License
|
|
9
|
+
Keywords: natural language processing,chain-of-thought,reasoning
|
|
10
|
+
Platform: UNKNOWN
|
|
11
|
+
Classifier: Programming Language :: Python
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
13
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
14
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
15
|
+
Classifier: Topic :: Text Processing :: Linguistic
|
|
16
|
+
Requires-Python: >=3.6
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
|
|
19
|
+
# bulk-chain 1.2.1
|
|
20
|
+

|
|
21
|
+
[](https://colab.research.google.com/github/nicolay-r/bulk-chain/blob/master/bulk_chain_tutorial.ipynb)
|
|
22
|
+
[](https://x.com/nicolayr_/status/1847969224636961033)
|
|
23
|
+
[](https://pypistats.org/packages/bulk-chain)
|
|
24
|
+
|
|
25
|
+
<p align="center">
|
|
26
|
+
<img src="logo.png"/>
|
|
27
|
+
</p>
|
|
28
|
+
|
|
29
|
+
<p align="center">
|
|
30
|
+
<a href="https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm"><b>Third-party providers hosting</b>↗️</a>
|
|
31
|
+
<br>
|
|
32
|
+
<a href="https://github.com/nicolay-r/bulk-chain-shell">👉<b>demo</b>👈</a>
|
|
33
|
+
</p>
|
|
34
|
+
|
|
35
|
+
A no-strings-attached **framework** for your LLM that allows applying Chain-of-Thought-alike [prompt `schema`](#chain-of-thought-schema) towards a massive textual collections using custom **[third-party providers ↗️](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm)**.
|
|
36
|
+
|
|
37
|
+
### Main Features
|
|
38
|
+
* ✅ **No-strings**: you're free to LLM dependencies and flexible `venv` customization.
|
|
39
|
+
* ✅ **Support schemas descriptions** for Chain-of-Thought concept.
|
|
40
|
+
* ✅ **Provides iterator over infinite amount of input contexts**
|
|
41
|
+
|
|
42
|
+
# Installation
|
|
43
|
+
|
|
44
|
+
From PyPI:
|
|
45
|
+
|
|
46
|
+
```bash
|
|
47
|
+
pip install --no-deps bulk-chain
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
or latest version from here:
|
|
51
|
+
|
|
52
|
+
```bash
|
|
53
|
+
pip install git+https://github.com/nicolay-r/bulk-chain@master
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
## Chain-of-Thought Schema
|
|
57
|
+
|
|
58
|
+
To declare Chain-of-Though (CoT) schema we use `JSON` format.
|
|
59
|
+
The field `schema` is a list of CoT instructions for the Large Language Model.
|
|
60
|
+
Each item of the list represent a dictionary with `prompt` and `out` keys that corresponds to the input prompt and output variable name respectively.
|
|
61
|
+
All the variable names should be mentioned in `{}`.
|
|
62
|
+
|
|
63
|
+
**Example**:
|
|
64
|
+
```python
|
|
65
|
+
[
|
|
66
|
+
{"prompt": "extract topic: {text}", "out": "topic"},
|
|
67
|
+
{"prompt": "extract subject: {text}", "out": "subject"},
|
|
68
|
+
]
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
# Usage
|
|
72
|
+
|
|
73
|
+
## 🤖 Prepare
|
|
74
|
+
|
|
75
|
+
1. [schema](#chain-of-thought-schema)
|
|
76
|
+
* [Example for Sentiment Analysis](test/schema/thor_cot_schema.json)
|
|
77
|
+
2. **LLM model** from the [<b>Third-party providers hosting</b>↗️](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm).
|
|
78
|
+
3. Data (iter of dictionaries)
|
|
79
|
+
|
|
80
|
+
## 🚀 Launch
|
|
81
|
+
|
|
82
|
+
> **API**: For more details see the [**related Wiki page**](https://github.com/nicolay-r/bulk-chain/wiki)
|
|
83
|
+
|
|
84
|
+
```python
|
|
85
|
+
from bulk_chain.core.utils import dynamic_init
|
|
86
|
+
from bulk_chain.api import iter_content
|
|
87
|
+
|
|
88
|
+
content_it = iter_content(
|
|
89
|
+
# 1. Your schema.
|
|
90
|
+
schema=[
|
|
91
|
+
{"prompt": "extract topic: {text}", "out": "topic" },
|
|
92
|
+
{"prompt": "extract subject: {text}", "out": "subject"},
|
|
93
|
+
],
|
|
94
|
+
# 2. Your third-party model implementation.
|
|
95
|
+
llm=dynamic_init(class_filepath="replicate_104.py")(
|
|
96
|
+
api_token="<API-KEY>",
|
|
97
|
+
model_name="meta/meta-llama-3-70b-instruct"),
|
|
98
|
+
# 3. Toggle streaming if needed
|
|
99
|
+
stream=False,
|
|
100
|
+
# 4. Toggle Async API mode usage.
|
|
101
|
+
async_mode=True,
|
|
102
|
+
# 5. Batch size.
|
|
103
|
+
batch_size=10,
|
|
104
|
+
# 6. Your iterator of dictionaries
|
|
105
|
+
input_dicts_it=[
|
|
106
|
+
# Example of data ...
|
|
107
|
+
{ "text": "Rocks are hard" },
|
|
108
|
+
{ "text": "Water is wet" },
|
|
109
|
+
{ "text": "Fire is hot" }
|
|
110
|
+
],
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
for batch in content_it:
|
|
114
|
+
for entry in batch:
|
|
115
|
+
print(entry)
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
Outputs entries represent texts augmented with `topic` and `subject`:
|
|
119
|
+
```jsonl
|
|
120
|
+
{'text': 'Rocks are hard', 'topic': 'The topic is: Geology/Rocks', 'subject': 'The subject is: "Rocks"'}
|
|
121
|
+
{'text': 'Water is wet', 'topic': 'The topic is: Properties of Water', 'subject': 'The subject is: Water'}
|
|
122
|
+
{'text': 'Fire is hot', 'topic': 'The topic is: Temperature/Properties of Fire', 'subject': 'The subject is: "Fire"'}
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
# API
|
|
126
|
+
|
|
127
|
+
| Method | Mode | Description |
|
|
128
|
+
|----------------------|------------|---------------------------------------------------------------------|
|
|
129
|
+
| `ask(prompt)` | Sync | Infers the model with a single prompt. |
|
|
130
|
+
| `ask_stream(prompt)` | Sync | Returns a generator that yields chunks of the inferred result. |
|
|
131
|
+
| `ask_async(prompt)` | Async | Asynchronously infers the model with a single prompt. |
|
|
132
|
+
| `ask_stream_async(prompt)` | Async | Asynchronously returns a generator of result chunks of the inferred result. |
|
|
133
|
+
|
|
134
|
+
See examples with models [at nlp-thirdgate 🌌](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm).
|
|
135
|
+
|
|
136
|
+
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
bulk_chain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
bulk_chain/api.py,sha256=bLZXdp58i6LDayZQxRBxsFK4lVT8cZZn1uOY0iaZ5TE,8500
|
|
3
|
+
bulk_chain/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
+
bulk_chain/core/llm_base.py,sha256=H2KmCqChKp9sKOkROE-4zjMRCxizT9xWvNZSF22HeFU,673
|
|
5
|
+
bulk_chain/core/service_asyncio.py,sha256=S-D4K3LBa3noKTm0tXazluYVI8cBgN1IB6v6MFoMyNQ,1972
|
|
6
|
+
bulk_chain/core/service_batch.py,sha256=lWmjO0aU6h2rmfx_kGmNqt0Rdeaf2a4Dn5VyfKFkfDs,1033
|
|
7
|
+
bulk_chain/core/service_data.py,sha256=OWWHHnr_plwxYTxLuvMrhEc1PbSx-XC3rbFzV0hy3vk,1107
|
|
8
|
+
bulk_chain/core/service_dict.py,sha256=lAghLU-3V3xYGv5BTA327Qcw8UJYmgQRMFdggzlrUgo,383
|
|
9
|
+
bulk_chain/core/service_json.py,sha256=6o1xM_8c9QEjH9Q3qEmJylU9nahfRXhUd5sFF2dGJwo,182
|
|
10
|
+
bulk_chain/core/service_schema.py,sha256=YAsdm3N2G4-eTpeJazg4Y-KQ2w9bEPpqreVl8a-M7H0,1311
|
|
11
|
+
bulk_chain/core/utils.py,sha256=hml0zLmnZe865gvc1CagEzRE19Gdh1pF8kx_KueDY3A,3667
|
|
12
|
+
bulk_chain-1.2.1.dist-info/LICENSE,sha256=VF9SjNpwwSSFEY_eP_8A1ocDCrbwfjI1pZexXdCkOwo,1076
|
|
13
|
+
bulk_chain-1.2.1.dist-info/METADATA,sha256=xx1vcG6wkHzh_Ga3iZJV3MBdR97RBGpCf7JO5_lonN0,5339
|
|
14
|
+
bulk_chain-1.2.1.dist-info/WHEEL,sha256=g4nMs7d-Xl9-xC9XovUrsDHGXt-FT0E17Yqo92DEfvY,92
|
|
15
|
+
bulk_chain-1.2.1.dist-info/top_level.txt,sha256=Hxq_wyH-GDXKBaA63UfBIiMJO2eCHJG5EOrXDphpeB4,11
|
|
16
|
+
bulk_chain-1.2.1.dist-info/RECORD,,
|
|
@@ -1,99 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: bulk_chain
|
|
3
|
-
Version: 1.0.0
|
|
4
|
-
Summary: A lightweight, no-strings-attached Chain-of-Thought framework for your LLM, ensuring reliable results for bulk input requests.
|
|
5
|
-
Home-page: https://github.com/nicolay-r/bulk-chain
|
|
6
|
-
Author: Nicolay Rusnachenko
|
|
7
|
-
Author-email: rusnicolay@gmail.com
|
|
8
|
-
License: MIT License
|
|
9
|
-
Keywords: natural language processing,chain-of-thought,reasoning
|
|
10
|
-
Classifier: Programming Language :: Python
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
12
|
-
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
13
|
-
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
14
|
-
Classifier: Topic :: Text Processing :: Linguistic
|
|
15
|
-
Requires-Python: >=3.6
|
|
16
|
-
Description-Content-Type: text/markdown
|
|
17
|
-
License-File: LICENSE
|
|
18
|
-
Requires-Dist: tqdm
|
|
19
|
-
|
|
20
|
-
# bulk-chain 1.0.0
|
|
21
|
-

|
|
22
|
-
[](https://colab.research.google.com/github/nicolay-r/bulk-chain/blob/master/bulk_chain_tutorial.ipynb)
|
|
23
|
-
[](https://x.com/nicolayr_/status/1847969224636961033)
|
|
24
|
-
[](https://pypistats.org/packages/bulk-chain)
|
|
25
|
-
|
|
26
|
-
<p align="center">
|
|
27
|
-
<img src="logo.png"/>
|
|
28
|
-
</p>
|
|
29
|
-
|
|
30
|
-
<p align="center">
|
|
31
|
-
<a href="https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm"><b>Third-party providers hosting</b>↗️</a>
|
|
32
|
-
<br>
|
|
33
|
-
<a href="https://github.com/nicolay-r/bulk-chain-shell">👉<b>demo</b>👈</a>
|
|
34
|
-
</p>
|
|
35
|
-
|
|
36
|
-
A no-strings-attached **framework** for your LLM that allows applying Chain-of-Thought-alike [prompt `schema`](#chain-of-thought-schema) towards a massive textual collections using custom **[third-party providers ↗️](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm)**.
|
|
37
|
-
|
|
38
|
-
### Main Features
|
|
39
|
-
* ✅ **No-strings**: you're free to LLM dependencies and flexible `venv` customization.
|
|
40
|
-
* ✅ **Support schemas descriptions** for Chain-of-Thought concept.
|
|
41
|
-
* ✅ **Provides iterator over infinite amount of input contexts**
|
|
42
|
-
|
|
43
|
-
# Installation
|
|
44
|
-
|
|
45
|
-
From PyPI:
|
|
46
|
-
|
|
47
|
-
```bash
|
|
48
|
-
pip install --no-deps bulk-chain
|
|
49
|
-
```
|
|
50
|
-
|
|
51
|
-
or latest version from here:
|
|
52
|
-
|
|
53
|
-
```bash
|
|
54
|
-
pip install git+https://github.com/nicolay-r/bulk-chain@master
|
|
55
|
-
```
|
|
56
|
-
|
|
57
|
-
## Chain-of-Thought Schema
|
|
58
|
-
|
|
59
|
-
To declare Chain-of-Though (CoT) schema, this project exploits `JSON` format.
|
|
60
|
-
This format adopts `name` field for declaring a name and `schema` is a list of CoT instructions for the Large Language Model.
|
|
61
|
-
|
|
62
|
-
Each step represents a dictionary with `prompt` and `out` keys that corresponds to the input prompt and output variable name respectively.
|
|
63
|
-
All the variable names are expected to be mentioned in `{}`.
|
|
64
|
-
|
|
65
|
-
Below, is an example on how to declare your own schema:
|
|
66
|
-
|
|
67
|
-
```python
|
|
68
|
-
{
|
|
69
|
-
"name": "schema-name",
|
|
70
|
-
"schema": [
|
|
71
|
-
{"prompt": "Given the question '{text}', let's think step-by-step.",
|
|
72
|
-
"out": "steps"},
|
|
73
|
-
{"prompt": "For the question '{text}' the reasoining steps are '{steps}'. what would be an answer?",
|
|
74
|
-
"out": "answer"},
|
|
75
|
-
]
|
|
76
|
-
}
|
|
77
|
-
```
|
|
78
|
-
|
|
79
|
-
# Usage
|
|
80
|
-
|
|
81
|
-
Preliminary steps:
|
|
82
|
-
|
|
83
|
-
1. Define your [schema](#chain-of-thought-schema) ([Example for Sentiment Analysis](/ext/schema/thor_cot_schema.json)))
|
|
84
|
-
2. Wrap or pick **LLM model** from the [<b>Third-party providers hosting</b>↗️](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm).
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
## API
|
|
89
|
-
|
|
90
|
-
Please take a look at the [**related Wiki page**](https://github.com/nicolay-r/bulk-chain/wiki)
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
# Embed your LLM
|
|
94
|
-
|
|
95
|
-
All you have to do is to implement `BaseLM` class, that includes:
|
|
96
|
-
* `__init__` -- for setting up *batching mode support* and (optional) *model name*;
|
|
97
|
-
* `ask(prompt)` -- infer your model with the given `prompt`.
|
|
98
|
-
|
|
99
|
-
See examples with models [at nlp-thirdgate 🌌](https://github.com/nicolay-r/nlp-thirdgate?tab=readme-ov-file#llm).
|
|
@@ -1,15 +0,0 @@
|
|
|
1
|
-
bulk_chain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
bulk_chain/api.py,sha256=d_c10Je8wUSnCdQjyWCHVx4FGW6M2_pBMMqKsI_YJaY,5119
|
|
3
|
-
bulk_chain/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
-
bulk_chain/core/llm_base.py,sha256=DZ9l4HpCs9uKTZp68miw_XCqmRAJBqQPuYSK889CeUk,1785
|
|
5
|
-
bulk_chain/core/service_batch.py,sha256=LMxrZeQXV_AJAoCaMCHVx8TvjcmCaKUQhNE8K4D8pCo,1031
|
|
6
|
-
bulk_chain/core/service_data.py,sha256=OWWHHnr_plwxYTxLuvMrhEc1PbSx-XC3rbFzV0hy3vk,1107
|
|
7
|
-
bulk_chain/core/service_dict.py,sha256=lAghLU-3V3xYGv5BTA327Qcw8UJYmgQRMFdggzlrUgo,383
|
|
8
|
-
bulk_chain/core/service_json.py,sha256=6o1xM_8c9QEjH9Q3qEmJylU9nahfRXhUd5sFF2dGJwo,182
|
|
9
|
-
bulk_chain/core/service_schema.py,sha256=KIP4n0Tz2h1i7SIMGhgAhoiCgUFXOT1rzMt38yACS2U,1154
|
|
10
|
-
bulk_chain/core/utils.py,sha256=Dx9Gy-jPpk-w_8WUekN0Ij4RBIWVAPg74vA3N0JgGqc,2471
|
|
11
|
-
bulk_chain-1.0.0.dist-info/LICENSE,sha256=VF9SjNpwwSSFEY_eP_8A1ocDCrbwfjI1pZexXdCkOwo,1076
|
|
12
|
-
bulk_chain-1.0.0.dist-info/METADATA,sha256=TR86CmhcHJ3Sep8TlHZ0Ede_PnH8G5iMILUvVvSskJY,3810
|
|
13
|
-
bulk_chain-1.0.0.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
|
|
14
|
-
bulk_chain-1.0.0.dist-info/top_level.txt,sha256=Hxq_wyH-GDXKBaA63UfBIiMJO2eCHJG5EOrXDphpeB4,11
|
|
15
|
-
bulk_chain-1.0.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|