bulk-chain 0.24.2__py3-none-any.whl → 0.25.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
bulk_chain/api.py ADDED
@@ -0,0 +1,79 @@
1
+ import os
2
+ from itertools import chain
3
+
4
+ from bulk_chain.core.llm_base import BaseLM
5
+ from bulk_chain.core.service_batch import BatchIterator, BatchService
6
+ from bulk_chain.core.service_data import DataService
7
+ from bulk_chain.core.service_dict import DictionaryService
8
+ from bulk_chain.core.service_json import JsonService
9
+ from bulk_chain.core.service_schema import SchemaService
10
+
11
+
12
+ INFER_MODES = {
13
+ "default": lambda llm, prompt, limit_prompt=None: llm.ask_core(
14
+ prompt[:limit_prompt] if limit_prompt is not None else prompt),
15
+ "batch": lambda llm, batch, limit_prompt=None: llm.ask_core(
16
+ DataService.limit_prompts(batch, limit=limit_prompt))
17
+ }
18
+
19
+
20
+ CWD = os.getcwd()
21
+
22
+
23
+ def _update_batch_content(c, batch, schema, infer_func):
24
+ assert (isinstance(batch, list))
25
+ assert (isinstance(c, str))
26
+
27
+ if c in schema.p2r:
28
+ for batch_item in batch:
29
+ batch_item[c] = DataService.get_prompt_text(prompt=batch_item[c]["prompt"], data_dict=batch_item)
30
+ if c in schema.r2p:
31
+ p_column = schema.r2p[c]
32
+ # This instruction takes a lot of time in a non-batching mode.
33
+ BatchService.handle_param_as_batch(batch=batch,
34
+ src_param=p_column,
35
+ tgt_param=c,
36
+ handle_func=lambda b: infer_func(b))
37
+
38
+
39
+ def _infer_batch(batch, schema, infer_func, cols=None):
40
+ assert (isinstance(batch, list))
41
+ assert (callable(infer_func))
42
+
43
+ if len(batch) == 0:
44
+ return batch
45
+
46
+ if cols is None:
47
+ first_item = batch[0]
48
+ cols = first_item.keys() if cols is None else cols
49
+
50
+ for c in cols:
51
+ _update_batch_content(c=c, batch=batch, schema=schema, infer_func=infer_func)
52
+
53
+ return batch
54
+
55
+
56
+ def iter_content(input_dicts_it, llm, schema, batch_size=1, return_batch=True, limit_prompt=None):
57
+ """ This method represent Python API aimed at application of `llm` towards
58
+ iterator of input_dicts via cache_target that refers to the SQLite using
59
+ the given `schema`
60
+ """
61
+ assert (isinstance(llm, BaseLM))
62
+
63
+ # Quick initialization of the schema.
64
+ if isinstance(schema, str):
65
+ schema = JsonService.read(schema)
66
+ if isinstance(schema, dict):
67
+ schema = SchemaService(json_data=schema)
68
+
69
+ prompts_it = map(
70
+ lambda data: DictionaryService.custom_update(src_dict=data, other_dict=schema.cot_args),
71
+ input_dicts_it
72
+ )
73
+
74
+ content_it = (_infer_batch(batch=batch,
75
+ infer_func=lambda batch: INFER_MODES["batch"](llm, batch, limit_prompt),
76
+ schema=schema)
77
+ for batch in BatchIterator(prompts_it, batch_size=batch_size))
78
+
79
+ yield from content_it if return_batch else chain.from_iterable(content_it)
@@ -6,29 +6,46 @@ from bulk_chain.core.utils import format_model_name
6
6
 
7
7
  class BaseLM(object):
8
8
 
9
- def __init__(self, name, attempts=None, delay_sec=1, enable_log=True, **kwargs):
9
+ def __init__(self, name=None, attempts=None, delay_sec=1, enable_log=True,
10
+ support_batching=False, **kwargs):
11
+
10
12
  self.__name = name
11
13
  self.__attempts = 1 if attempts is None else attempts
12
14
  self.__delay_sec = delay_sec
15
+ self.__support_batching = support_batching
13
16
 
14
17
  if enable_log:
15
18
  self.__logger = logging.getLogger(__name__)
16
19
  logging.basicConfig(level=logging.INFO)
17
20
 
18
- def ask_safe(self, prompt):
21
+ def ask_core(self, batch):
19
22
 
20
23
  for i in range(self.__attempts):
21
24
  try:
22
- response = self.ask(prompt)
23
- return response
24
- except:
25
+ if self.__support_batching:
26
+ # Launch in batch mode.
27
+ content = self.ask(batch)
28
+ else:
29
+ # Launch in non-batch mode.
30
+ assert len(batch) == 1, "The LM does not support batching," \
31
+ f" while size of the content is {len(batch)} which is not equal 1. " \
32
+ f"Please enable batch-supporting or set required inference settings."
33
+ content = batch[0]
34
+
35
+ response = self.ask(content)
36
+
37
+ # Wrapping into batch the response in the case of non-batching mode.
38
+ return response if self.__support_batching else [response]
39
+
40
+ except Exception as e:
25
41
  if self.__logger is not None:
26
42
  self.__logger.info("Unable to infer the result. Try {} out of {}.".format(i, self.__attempts))
43
+ self.__logger.info(e)
27
44
  time.sleep(self.__delay_sec)
28
45
 
29
46
  raise Exception("Can't infer")
30
47
 
31
- def ask(self, prompt):
48
+ def ask(self, content):
32
49
  raise NotImplemented()
33
50
 
34
51
  def name(self):
@@ -33,14 +33,33 @@ class CmdArgsService:
33
33
  yield __release()
34
34
 
35
35
  @staticmethod
36
- def partition_list(lst, sep):
36
+ def __find_suffix_ind(lst, idx_from, end_prefix):
37
+ for i in range(idx_from, len(lst)):
38
+ if lst[i].startswith(end_prefix):
39
+ return i
40
+ return len(lst)
41
+
42
+ @staticmethod
43
+ def extract_native_args(lst, end_prefix):
44
+ return lst[:CmdArgsService.__find_suffix_ind(lst, idx_from=0, end_prefix=end_prefix)]
45
+
46
+ @staticmethod
47
+ def find_grouped_args(lst, starts_with, end_prefix):
37
48
  """Slices a list in two, cutting on index matching "sep"
38
49
  """
39
- if sep in lst:
40
- idx = lst.index(sep)
41
- return (lst[:idx], lst[idx+1:])
42
- else:
43
- return (lst[:], None)
50
+
51
+ # Checking the presence of starts_with.
52
+ # We have to return empty content in the case of absence starts_with in the lst.
53
+ if starts_with not in lst:
54
+ return []
55
+
56
+ # Assigning start index.
57
+ idx_from = lst.index(starts_with) + 1
58
+
59
+ # Assigning end index.
60
+ idx_to = CmdArgsService.__find_suffix_ind(lst, idx_from=idx_from, end_prefix=end_prefix)
61
+
62
+ return lst[idx_from:idx_to]
44
63
 
45
64
  @staticmethod
46
65
  def args_to_dict(args):
@@ -0,0 +1,51 @@
1
+ class BatchService(object):
2
+
3
+ @staticmethod
4
+ def handle_param_as_batch(batch, src_param, tgt_param, handle_func):
5
+ assert (isinstance(batch, list))
6
+ assert (isinstance(src_param, str))
7
+ assert (callable(handle_func))
8
+
9
+ _batch = [item[src_param] for item in batch]
10
+
11
+ # Do handling for the batch.
12
+ _handled_batch = handle_func(_batch)
13
+ assert (isinstance(_handled_batch, list))
14
+
15
+ # Apply changes.
16
+ for i, item in enumerate(batch):
17
+ item[tgt_param] = _handled_batch[i]
18
+
19
+
20
+ class BatchIterator:
21
+
22
+ def __init__(self, data_iter, batch_size, end_value=None):
23
+ assert(isinstance(batch_size, int) and batch_size > 0)
24
+ assert(callable(end_value) or end_value is None)
25
+ self.__data_iter = data_iter
26
+ self.__index = 0
27
+ self.__batch_size = batch_size
28
+ self.__end_value = end_value
29
+
30
+ def __iter__(self):
31
+ return self
32
+
33
+ def __next__(self):
34
+ buffer = []
35
+ while True:
36
+ try:
37
+ data = next(self.__data_iter)
38
+ except StopIteration:
39
+ break
40
+ buffer.append(data)
41
+ if len(buffer) == self.__batch_size:
42
+ break
43
+
44
+ if len(buffer) > 0:
45
+ self.__index += 1
46
+ return buffer
47
+
48
+ if self.__end_value is None:
49
+ raise StopIteration
50
+ else:
51
+ return self.__end_value()
@@ -20,3 +20,7 @@ class DataService(object):
20
20
  field_names = list(parse_fields_func(prompt))
21
21
  return DataService.compose_prompt_text(
22
22
  prompt=prompt, data_dict=data_dict, field_names=field_names)
23
+
24
+ @staticmethod
25
+ def limit_prompts(prompts_list, limit=None):
26
+ return [p[:limit] if limit is not None else p for p in prompts_list]
@@ -0,0 +1,10 @@
1
+ class DictionaryService:
2
+
3
+ @staticmethod
4
+ def custom_update(src_dict, other_dict):
5
+ for k, v in other_dict.items():
6
+ if k in src_dict:
7
+ raise Exception(f"The key `{k}` is already defined in both dicts with values: "
8
+ f"`{src_dict[k]}` (src) and `{v}` (other)")
9
+ src_dict[k] = v
10
+ return src_dict
@@ -74,9 +74,9 @@ def chat_with_lm(lm, chain=None, model_name=None):
74
74
  logger.info(nice_output(actual_prompt, pad=pad*2, remove_new_line=True, width=80))
75
75
 
76
76
  # Response.
77
- response = lm.ask_safe(actual_prompt)
77
+ response_batch = lm.ask_core(batch=[actual_prompt])
78
78
  logger.info(pad_str(f"{model_name} (resp)->", pad=pad))
79
- logger.info(nice_output(response, pad=pad*2, remove_new_line=False, width=80))
79
+ logger.info(nice_output(response_batch[0], pad=pad * 2, remove_new_line=False, width=80))
80
80
 
81
81
  # Collecting the answer for the next turn.
82
- data_dict[prompt_args["out"]] = response
82
+ data_dict[prompt_args["out"]] = response_batch[0]
@@ -2,12 +2,11 @@ class SchemaService(object):
2
2
 
3
3
  def __init__(self, json_data):
4
4
  self.src = json_data
5
- self.name = self.src["name"]
6
5
  self.r2p, self.p2r, self.cot_args, self.chain = SchemaService.__init_schema(prompts=json_data["schema"])
7
6
 
8
7
  @classmethod
9
8
  def from_prompt(cls, prompt):
10
- prompt_schema = {"name": "prompt", "schema": [{"prompt": prompt, "out": "response", "in": "prompt"}]}
9
+ prompt_schema = {"schema": [{"prompt": prompt, "out": "response", "in": "prompt"}]}
11
10
  return cls(prompt_schema)
12
11
 
13
12
  @staticmethod
bulk_chain/infer.py CHANGED
@@ -1,19 +1,18 @@
1
- import os
2
1
  from os.path import join, basename
3
2
 
4
3
  import argparse
5
4
  import logging
6
5
  import sys
7
6
 
8
- from tqdm import tqdm
9
-
10
7
  from source_iter.service_csv import CsvService
11
8
  from source_iter.service_jsonl import JsonlService
12
9
  from source_iter.service_sqlite import SQLite3Service
10
+ from tqdm import tqdm
13
11
 
12
+ from bulk_chain.api import INFER_MODES, _infer_batch, CWD
14
13
  from bulk_chain.core.llm_base import BaseLM
15
14
  from bulk_chain.core.service_args import CmdArgsService
16
- from bulk_chain.core.service_data import DataService
15
+ from bulk_chain.core.service_dict import DictionaryService
17
16
  from bulk_chain.core.service_json import JsonService
18
17
  from bulk_chain.core.service_llm import chat_with_lm
19
18
  from bulk_chain.core.service_schema import SchemaService
@@ -23,7 +22,16 @@ logger = logging.getLogger(__name__)
23
22
  logging.basicConfig(level=logging.INFO)
24
23
 
25
24
 
26
- CWD = os.getcwd()
25
+ WRITER_PROVIDERS = {
26
+ "sqlite": lambda filepath, table_name, data_it, infer_data_func, **kwargs: SQLite3Service.write(
27
+ data_it=data_it, target=filepath, table_name=table_name, data2col_func=infer_data_func,
28
+ skip_existed=True, **kwargs)
29
+ }
30
+
31
+
32
+ READER_PROVIDERS = {
33
+ "sqlite": lambda filepath, table_name: SQLite3Service.read(filepath, table=table_name)
34
+ }
27
35
 
28
36
 
29
37
  def init_llm(**model_kwargs):
@@ -46,53 +54,37 @@ def init_llm(**model_kwargs):
46
54
  return llm, llm_model_name
47
55
 
48
56
 
49
- def init_schema(json_filepath):
50
- return SchemaService(json_data=JsonService.read(json_filepath))
51
-
52
-
53
- def iter_content(input_dicts_iter, llm, schema, cache_target, cache_table, id_column_name):
54
- """ This method represent Python API aimed at application of `llm` towards
55
- iterator of input_dicts via cache_target that refers to the SQLite using
56
- the given `schema`
57
- """
57
+ def iter_content_cached(input_dicts_it, llm, schema, cache_target, limit_prompt=None, **cache_kwargs):
58
58
  assert (isinstance(llm, BaseLM))
59
- assert (isinstance(schema, SchemaService))
60
59
  assert (isinstance(cache_target, str))
61
- assert (isinstance(cache_table, str))
62
-
63
- infer_modes = {
64
- "default": lambda prompt: llm.ask_safe(prompt[:args.limit_prompt] if args.limit_prompt is not None else prompt)
65
- }
66
-
67
- def optional_update_data_records(c, data):
68
- assert (isinstance(c, str))
69
60
 
70
- if c in schema.p2r:
71
- data[c] = DataService.get_prompt_text(prompt=data[c]["prompt"], data_dict=data)
72
- if c in schema.r2p:
73
- p_column = schema.r2p[c]
74
- # This instruction takes a lot of time in a non-batching mode.
75
- data[c] = infer_modes["default"](data[p_column])
61
+ # Quick initialization of the schema.
62
+ if isinstance(schema, str):
63
+ schema = JsonService.read(schema)
64
+ if isinstance(schema, dict):
65
+ schema = SchemaService(json_data=schema)
76
66
 
77
- return data[c]
67
+ # Iterator of the queries.
68
+ prompts_it = map(
69
+ lambda data: DictionaryService.custom_update(src_dict=data, other_dict=schema.cot_args),
70
+ input_dicts_it
71
+ )
78
72
 
79
- cache_providers = {
80
- "sqlite": lambda filepath, table_name, data_it: SQLite3Service.write_missed(
81
- data_it=data_it, target=filepath,
82
- data2col_func=optional_update_data_records,
83
- table_name=handle_table_name(table_name if table_name is not None else "contents"),
84
- id_column_name=id_column_name)
85
- }
73
+ # Parse target.
74
+ cache_filepath, _, cache_table = parse_filepath(filepath=cache_target)
86
75
 
87
- # We optionally wrap into limiter.
88
- queries_it = optional_limit_iter(
89
- it_data=map(lambda data: data.update(schema.cot_args) or data, input_dicts_iter),
90
- limit=args.limit)
76
+ # Perform caching first.
77
+ WRITER_PROVIDERS["sqlite"](
78
+ filepath=cache_filepath, table_name=cache_table,
79
+ data_it=tqdm(prompts_it, desc="Iter content"),
80
+ infer_data_func=lambda c, prompt: _infer_batch(
81
+ batch=[prompt], cols=[c],
82
+ infer_func=lambda batch: INFER_MODES["default"](llm, batch, limit_prompt),
83
+ schema=schema)[0][c],
84
+ **cache_kwargs)
91
85
 
92
- # Provide data caching.
93
- cache_providers["sqlite"](cache_target, table_name=tgt_meta, data_it=tqdm(queries_it, desc="Iter content"))
94
-
95
- return SQLite3Service.read(cache_target, table=cache_table)
86
+ # Then retrieve data.
87
+ return READER_PROVIDERS["sqlite"](filepath=cache_filepath, table_name=cache_table)
96
88
 
97
89
 
98
90
  if __name__ == '__main__':
@@ -111,31 +103,49 @@ if __name__ == '__main__':
111
103
  parser.add_argument('--limit-prompt', dest="limit_prompt", type=int, default=None,
112
104
  help="Optional trimming prompt by the specified amount of characters.")
113
105
 
114
- native_args, model_args = CmdArgsService.partition_list(lst=sys.argv, sep="%%")
115
-
106
+ # Extract native arguments.
107
+ native_args = CmdArgsService.extract_native_args(sys.argv, end_prefix="%%")
116
108
  args = parser.parse_args(args=native_args[1:])
117
109
 
118
- # Initialize Large Language Model.
110
+ # Extract csv-related arguments.
111
+ csv_args = CmdArgsService.find_grouped_args(lst=sys.argv, starts_with="%%csv", end_prefix="%%")
112
+ csv_args_dict = CmdArgsService.args_to_dict(csv_args)
113
+
114
+ # Extract model-related arguments and Initialize Large Language Model.
115
+ model_args = CmdArgsService.find_grouped_args(lst=sys.argv, starts_with="%%m", end_prefix="%%")
119
116
  model_args_dict = CmdArgsService.args_to_dict(model_args) | {"attempts": args.attempts}
120
117
  llm, llm_model_name = init_llm(**model_args_dict)
121
118
 
122
119
  # Setup schema.
123
- schema = init_schema(args.schema)
120
+ schema = SchemaService(json_data=JsonService.read(args.schema))
121
+ schema_name = schema.src.get("name", None)
124
122
  if schema is not None:
125
- logger.info(f"Using schema: {schema.name}")
123
+ logger.info(f"Using schema: {schema_name}")
126
124
 
127
125
  input_providers = {
128
126
  None: lambda _: chat_with_lm(llm, chain=schema.chain, model_name=llm_model_name),
129
127
  "csv": lambda filepath: CsvService.read(src=filepath, row_id_key=args.id_col,
130
128
  as_dict=True, skip_header=True,
131
- delimiter=model_args_dict.get("delimiter", "\t"),
132
- escapechar=model_args_dict.get("escapechar", None)),
129
+ delimiter=csv_args_dict.get("delimiter", ","),
130
+ escapechar=csv_args_dict.get("escapechar", None)),
131
+ "tsv": lambda filepath: CsvService.read(src=filepath, row_id_key=args.id_col,
132
+ as_dict=True, skip_header=True,
133
+ delimiter=csv_args_dict.get("delimiter", "\t"),
134
+ escapechar=csv_args_dict.get("escapechar", None)),
133
135
  "jsonl": lambda filepath: JsonlService.read(src=filepath, row_id_key=args.id_col)
134
136
  }
135
137
 
136
138
  output_providers = {
137
- "csv": lambda filepath, data_it, header:
138
- CsvService.write(target=filepath, data_it=data_it, header=header, it_type=None),
139
+ "csv": lambda filepath, data_it, header: CsvService.write(target=filepath,
140
+ data_it=data_it, header=header,
141
+ delimiter=csv_args_dict.get("delimiter", ","),
142
+ escapechar=csv_args_dict.get("escapechar", None),
143
+ it_type=None),
144
+ "tsv": lambda filepath, data_it, header: CsvService.write(target=filepath,
145
+ data_it=data_it, header=header,
146
+ delimiter=csv_args_dict.get("delimiter", "\t"),
147
+ escapechar=csv_args_dict.get("escapechar", None),
148
+ it_type=None),
139
149
  "jsonl": lambda filepath, data_it, header:
140
150
  JsonlService.write(target=filepath,
141
151
  data_it=map(lambda item: {key: item[i] for i, key in enumerate(header)}, data_it))
@@ -153,24 +163,29 @@ if __name__ == '__main__':
153
163
  input_providers[src_ext](None)
154
164
  exit(0)
155
165
 
166
+ def default_output_file_template(ext):
167
+ # This is a default template for output files to be generated.
168
+ return "".join(["_".join([join(CWD, basename(src_filepath)), llm.name(), schema_name]), ext])
169
+
156
170
  # Setup cache target as well as the related table.
157
- cache_target = "".join(["_".join([join(CWD, basename(src_filepath)), llm.name(), schema.name]), f".sqlite"]) \
158
- if tgt_filepath is None else tgt_filepath
171
+ cache_filepath = default_output_file_template(".sqlite") if tgt_filepath is None else tgt_filepath
159
172
  cache_table = handle_table_name(tgt_meta if tgt_meta is not None else "contents")
160
173
 
161
- data_it = iter_content(input_dicts_iter=input_providers[src_ext](src_filepath),
162
- schema=schema,
163
- llm=llm,
164
- id_column_name=args.id_col,
165
- cache_target=cache_target,
166
- cache_table=cache_table)
174
+ # This is a content that we extracted via input provider.
175
+ it_data = input_providers[src_ext](src_filepath)
176
+
177
+ data_it = iter_content_cached(input_dicts_it=optional_limit_iter(it_data=it_data, limit=args.limit),
178
+ limit_prompt=args.limit_prompt,
179
+ schema=schema,
180
+ llm=llm,
181
+ id_column_name=args.id_col,
182
+ cache_target=":".join([cache_filepath, cache_table]))
167
183
 
168
184
  # Setup output target
169
185
  tgt_ext = src_ext if tgt_ext is None else tgt_ext
170
- output_target = "".join(["_".join([join(CWD, basename(src_filepath)), llm.name(), schema.name]), f".{tgt_ext}"]) \
171
- if tgt_filepath is None else tgt_filepath
186
+ output_target = default_output_file_template(f".{tgt_ext}") if tgt_filepath is None else tgt_filepath
172
187
 
173
188
  # Perform output writing process.
174
189
  output_providers[tgt_ext](filepath=output_target,
175
190
  data_it=data_it,
176
- header=SQLite3Service.read_columns(target=cache_target, table=cache_table))
191
+ header=SQLite3Service.read_columns(target=cache_filepath, table=cache_table))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bulk_chain
3
- Version: 0.24.2
3
+ Version: 0.25.0
4
4
  Summary: A lightweight, no-strings-attached Chain-of-Thought framework for your LLM, ensuring reliable results for bulk input requests.
5
5
  Home-page: https://github.com/nicolay-r/bulk-chain
6
6
  Author: Nicolay Rusnachenko
@@ -15,33 +15,42 @@ Classifier: Topic :: Text Processing :: Linguistic
15
15
  Requires-Python: >=3.6
16
16
  Description-Content-Type: text/markdown
17
17
  License-File: LICENSE
18
- Requires-Dist: tqdm
19
- Requires-Dist: source-iter ==0.24.2
20
18
 
21
- # bulk-chain 0.24.2
19
+ # bulk-chain 0.25.0
22
20
  ![](https://img.shields.io/badge/Python-3.9-brightgreen.svg)
23
21
  [![](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nicolay-r/bulk-chain/blob/master/bulk_chain_tutorial.ipynb)
24
22
  [![twitter](https://img.shields.io/twitter/url/https/shields.io.svg?style=social)](https://x.com/nicolayr_/status/1847969224636961033)
23
+ [![PyPI downloads](https://img.shields.io/pypi/dm/bulk-chain.svg)](https://pypistats.org/packages/bulk-chain)
25
24
 
26
25
  <p align="center">
27
26
  <img src="logo.png"/>
28
27
  </p>
29
28
 
30
- A lightweight, no-strings-attached **[Chain-of-Thought](https://arxiv.org/abs/2201.11903) framework** for your LLM, ensuring reliable results for bulk input requests stored in `CSV` / `JSONL` / `sqlite`.
31
- It allows applying series of prompts formed into `schema` (See [related section](#chain-of-thought-schema))
29
+ A lightweight, no-strings-attached **framework** for your LLM that allows applying [Chain-of-Thought](https://arxiv.org/abs/2201.11903) prompt `schema` (See [related section](#chain-of-thought-schema)) towards a massive textual collections.
32
30
 
33
- ### Features
31
+ ### Main Features
34
32
  * ✅ **No-strings**: you're free to LLM dependencies and flexible `venv` customization.
35
- * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
36
- * ✅ **Progress caching**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
37
33
  * ✅ **Support schemas descriptions** for Chain-of-Thought concept.
34
+ * ✅ **Provides iterator over infinite amount of input contexts** served in `CSV`/`JSONL`.
35
+
36
+ ### Extra Features
37
+ * ✅ **Progress caching [for remote LLMs]**: withstanding exception during LLM calls by using `sqlite3` engine for caching LLM answers;
38
+
38
39
 
39
40
  # Installation
40
41
 
42
+ From PyPI:
43
+
41
44
  ```bash
42
45
  pip install bulk-chain
43
46
  ```
44
47
 
48
+ or latest version from here:
49
+
50
+ ```bash
51
+ pip install git+https://github.com/nicolay-r/bulk-chain@master
52
+ ```
53
+
45
54
  ## Chain-of-Thought Schema
46
55
 
47
56
  To declare Chain-of-Though (CoT) schema, this project exploits `JSON` format.
@@ -64,35 +73,37 @@ Below, is an example on how to declare your own schema:
64
73
  }
65
74
  ```
66
75
 
67
- Another templates are available [here](/ext/schema/thor_cot_schema.json).
76
+ Another templates are available [here](/ext/schema/).
68
77
 
69
78
  # Usage
70
79
 
71
- Just **three** simple steps:
80
+ Preliminary steps:
72
81
 
73
- 1. Define your [CoT Schema](#chain-of-thought-schema), or fetch it as shown below:
74
- ```bash
75
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/schema/default.json
76
- ```
77
- 2. Fetch or write your own **model** or pick the one [preset here](/ext/):
78
- ```bash
79
- !wget https://raw.githubusercontent.com/nicolay-r/bulk-chain/refs/heads/master/ext/flan_t5.py
80
- ```
82
+ 1. Define your [schema](#chain-of-thought-schema) ([Example for Sentiment Analysis](/ext/schema/thor_cot_schema.json)))
83
+ 2. Wrap or pick **LLM model** from the [list of presets](/ext/).
84
+
85
+ ## API
86
+
87
+ Please take a look at the [**related Wiki page**](https://github.com/nicolay-r/bulk-chain/wiki)
88
+
89
+ ## Shell
90
+
91
+ > **NOTE:** You have to install `source-iter` package
81
92
 
82
- 3. Launch inference in (chat mode):
83
93
  ```bash
84
- !python -m bulk_chain.infer \
85
- --schema "default.json" \
86
- --adapter "dynamic:flan_t5.py:FlanT5" \
87
- %% \
88
- --device "cpu" \
94
+ python3 -m bulk_chain.infer \
95
+ --src "<PATH-TO-YOUR-CSV-or-JSONL>" \
96
+ --schema "ext/schema/default.json" \
97
+ --adapter "dynamic:ext/replicate.py:Replicate" \
98
+ %%m \
99
+ --api_token "<REPLICATE-API-TOKEN>" \
89
100
  --temp 0.1
90
101
  ```
91
102
 
92
103
  # Embed your LLM
93
104
 
94
105
  All you have to do is to implement `BaseLM` class, that includes:
95
- * `__init__` -- for initialization;
106
+ * `__init__` -- for setting up *batching mode support* and (optional) *model name*;
96
107
  * `ask(prompt)` -- infer your model with the given `prompt`.
97
108
 
98
109
  See examples with models [here](/ext).
@@ -0,0 +1,18 @@
1
+ bulk_chain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ bulk_chain/api.py,sha256=08i2tgFa_CCA0obC_Yr3rURI6MkuXYKgmuZaLcs4NLk,2807
3
+ bulk_chain/infer.py,sha256=oWtBf2itZeM3fD-_QAzABKUMbsl4BqvHmW21TUTr880,9110
4
+ bulk_chain/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ bulk_chain/core/llm_base.py,sha256=uX_uibm5y8STfMKNYL64EeF8UowfJGwCD_t-uftHoJE,1849
6
+ bulk_chain/core/service_args.py,sha256=x-QHaKLD1d6qaJkD4lNwx7640ku9-6Uyr3mooB_6kLc,1981
7
+ bulk_chain/core/service_batch.py,sha256=yQr6fbQd4ifQBGMhZMrQQeZpXtDchMKMGJi8XPG7thc,1430
8
+ bulk_chain/core/service_data.py,sha256=ZjJDtd1jrQm9hRCXMqe4CT_qF2XDbWBE1lVibP7tAWo,942
9
+ bulk_chain/core/service_dict.py,sha256=lAghLU-3V3xYGv5BTA327Qcw8UJYmgQRMFdggzlrUgo,383
10
+ bulk_chain/core/service_json.py,sha256=6o1xM_8c9QEjH9Q3qEmJylU9nahfRXhUd5sFF2dGJwo,182
11
+ bulk_chain/core/service_llm.py,sha256=1xbFW5OQY2ckKwIDZjsgNtnxKDp2wDjKKwyNS_yMU2s,2776
12
+ bulk_chain/core/service_schema.py,sha256=KIP4n0Tz2h1i7SIMGhgAhoiCgUFXOT1rzMt38yACS2U,1154
13
+ bulk_chain/core/utils.py,sha256=UV6Cefaw7yZiYblsCr-s9LsbcI83xe7eESBvha9A2Og,2784
14
+ bulk_chain-0.25.0.dist-info/LICENSE,sha256=VF9SjNpwwSSFEY_eP_8A1ocDCrbwfjI1pZexXdCkOwo,1076
15
+ bulk_chain-0.25.0.dist-info/METADATA,sha256=-Ky6ZekXHUCBByhSTgDYgMpC64ew8lGmQ7-I9dKsv6U,3874
16
+ bulk_chain-0.25.0.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
17
+ bulk_chain-0.25.0.dist-info/top_level.txt,sha256=Hxq_wyH-GDXKBaA63UfBIiMJO2eCHJG5EOrXDphpeB4,11
18
+ bulk_chain-0.25.0.dist-info/RECORD,,
@@ -1,15 +0,0 @@
1
- bulk_chain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- bulk_chain/infer.py,sha256=QgbR64A1JS8B9oh0_ruynEfdCpoG1rPHVMtk5Z0Ch2U,7476
3
- bulk_chain/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- bulk_chain/core/llm_base.py,sha256=Cakuuy4jTVPOta5TyEPFTPGvFpJfM6m0dAIAYSu7zFM,1008
5
- bulk_chain/core/service_args.py,sha256=Qr3rHsAB8wnajB-DbU-GjiEpRZFP4D6s1lVTpLkPPX4,1294
6
- bulk_chain/core/service_data.py,sha256=18gQwSCTEsI7XFukq8AE5lDJX_QQRpasaH69g6EddV0,797
7
- bulk_chain/core/service_json.py,sha256=6o1xM_8c9QEjH9Q3qEmJylU9nahfRXhUd5sFF2dGJwo,182
8
- bulk_chain/core/service_llm.py,sha256=NoD5KHGtXCmN8SlpgH0Z5KCmSxZcnVVfp65vhVRoG84,2742
9
- bulk_chain/core/service_schema.py,sha256=JVhOv2YP5VEtiwOq_zgCzhS2uF_BOATAgg6fmKRf2NQ,1209
10
- bulk_chain/core/utils.py,sha256=UV6Cefaw7yZiYblsCr-s9LsbcI83xe7eESBvha9A2Og,2784
11
- bulk_chain-0.24.2.dist-info/LICENSE,sha256=VF9SjNpwwSSFEY_eP_8A1ocDCrbwfjI1pZexXdCkOwo,1076
12
- bulk_chain-0.24.2.dist-info/METADATA,sha256=yEKF0X90AvNw6yq-W7oBdTLiH8KSrCKRHaERhOFLXFA,3685
13
- bulk_chain-0.24.2.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
14
- bulk_chain-0.24.2.dist-info/top_level.txt,sha256=Hxq_wyH-GDXKBaA63UfBIiMJO2eCHJG5EOrXDphpeB4,11
15
- bulk_chain-0.24.2.dist-info/RECORD,,