bspy 4.2__py3-none-any.whl → 4.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,233 @@
1
+ import numpy as np
2
+ import bspy.spline
3
+ import bspy.spline_block
4
+
5
+ def line_of_curvature(self, uvStart, is_max, tolerance = 1.0e-3):
6
+ if self.nInd != 2: raise ValueError("Surface must have two independent variables")
7
+ if len(uvStart) != 2: raise ValueError("uvStart must have two components")
8
+ uvDomain = self.domain()
9
+ if uvStart[0] < uvDomain[0, 0] or uvStart[0] > uvDomain[0, 1] or \
10
+ uvStart[1] < uvDomain[1, 0] or uvStart[1] > uvDomain[1, 1]:
11
+ raise ValueError("uvStart is outside domain of the surface")
12
+ is_max = bool(is_max) # Ensure is_max is a boolean for XNOR operation
13
+
14
+ # Define the callback function for the ODE solver
15
+ def curvatureLineCallback(t, u):
16
+ # Evaluate the surface information needed.
17
+ uv = np.maximum(uvDomain[:, 0], np.minimum(uvDomain[:, 1], u[:, 0]))
18
+ su = self.derivative((1, 0), uv)
19
+ sv = self.derivative((0, 1), uv)
20
+ suu = self.derivative((2, 0), uv)
21
+ suv = self.derivative((1, 1), uv)
22
+ svv = self.derivative((0, 2), uv)
23
+ suuu = self.derivative((3, 0), uv)
24
+ suuv = self.derivative((2, 1), uv)
25
+ suvv = self.derivative((1, 2), uv)
26
+ svvv = self.derivative((0, 3), uv)
27
+ normal = self.normal(uv)
28
+
29
+ # Calculate curvature matrix and its derivatives.
30
+ sU = np.concatenate((su, sv)).reshape(2, -1)
31
+ sUu = np.concatenate((suu, suv)).reshape(2, -1)
32
+ sUv = np.concatenate((suv, svv)).reshape(2, -1)
33
+ sUU = np.concatenate((suu, suv, suv, svv)).reshape(2, 2, -1)
34
+ sUUu = np.concatenate((suuu, suuv, suuv, suvv)).reshape(2, 2, -1)
35
+ sUUv = np.concatenate((suuv, suvv, suvv, svvv)).reshape(2, 2, -1)
36
+ fffI = np.linalg.inv(sU @ sU.T) # Inverse of first fundamental form
37
+ k = fffI @ (sUU @ normal) # Curvature matrix
38
+ ku = fffI @ (sUUu @ normal - (sUu @ sU.T + sU @ sUu.T) @ k - sUU @ (sU.T @ k[:, 0]))
39
+ kv = fffI @ (sUUv @ normal - (sUv @ sU.T + sU @ sUv.T) @ k - sUU @ (sU.T @ k[:, 1]))
40
+
41
+ # Determine principle curvatures and directions, and assign new direction.
42
+ curvatures, directions = np.linalg.eig(k)
43
+ curvatureDelta = curvatures[1] - curvatures[0]
44
+ if abs(curvatureDelta) < tolerance:
45
+ # If we're at an umbilic, use the last direction (jacobian is zero at umbilic).
46
+ direction = u[:, 1]
47
+ jacobian = np.zeros((2,2,1), self.coefs.dtype)
48
+ else:
49
+ # Otherwise, compute the lhs inverse for the jacobian.
50
+ directionsInverse = np.linalg.inv(directions)
51
+ eigenIndex = 0 if bool(curvatures[0] > curvatures[1]) == is_max else 1
52
+ direction = directions[:, eigenIndex]
53
+ B = np.zeros((2, 2), self.coefs.dtype)
54
+ B[0, 1 - eigenIndex] = np.dot(directions[:, 1], direction) / curvatureDelta
55
+ B[1, 1 - eigenIndex] = -np.dot(directions[:, 0], direction) / curvatureDelta
56
+ lhsInv = directions @ B @ directionsInverse
57
+
58
+ # Adjust the direction for consistency.
59
+ if np.dot(direction, u[:, 1]) < -tolerance:
60
+ direction *= -1
61
+
62
+ # Compute the jacobian for the direction.
63
+ jacobian = np.empty((2,2,1), self.coefs.dtype)
64
+ jacobian[:,0,0] = lhsInv @ ku @ direction
65
+ jacobian[:,1,0] = lhsInv @ kv @ direction
66
+
67
+ return direction, jacobian
68
+
69
+ # Generate the initial guess for the line of curvature.
70
+ uvStart = np.atleast_1d(uvStart)
71
+ direction = 0.5 * (uvDomain[:,0] + uvDomain[:,1]) - uvStart # Initial guess toward center
72
+ distanceFromCenter = np.linalg.norm(direction)
73
+ if distanceFromCenter < 10 * tolerance:
74
+ # If we're at the center, just point to the far corner.
75
+ direction = np.array((1.0, 1.0)) / np.sqrt(2)
76
+ else:
77
+ direction /= distanceFromCenter
78
+
79
+ # Compute line of curvature direction at start.
80
+ direction, jacobian = curvatureLineCallback(0.0, np.array(((uvStart[0], direction[0]), (uvStart[1], direction[1]))))
81
+
82
+ # Calculate distance to the boundary in that direction.
83
+ if direction[0] < -tolerance:
84
+ uBoundaryDistance = (uvDomain[0, 0] - uvStart[0]) / direction[0]
85
+ elif direction[0] > tolerance:
86
+ uBoundaryDistance = (uvDomain[0, 1] - uvStart[0]) / direction[0]
87
+ else:
88
+ uBoundaryDistance = np.inf
89
+ if direction[1] < -tolerance:
90
+ vBoundaryDistance = (uvDomain[1, 0] - uvStart[1]) / direction[1]
91
+ elif direction[1] > tolerance:
92
+ vBoundaryDistance = (uvDomain[1, 1] - uvStart[1]) / direction[1]
93
+ else:
94
+ vBoundaryDistance = np.inf
95
+ boundaryDistance = min(uBoundaryDistance, vBoundaryDistance)
96
+
97
+ # Construct the initial guess from start point to boundary.
98
+ initialGuess = bspy.spline.Spline.line(uvStart, uvStart + boundaryDistance * direction).elevate([2])
99
+
100
+ # Solve the ODE and return the line of curvature confined to the surface's domain.
101
+ solution = initialGuess.solve_ode(1, 0, curvatureLineCallback, tolerance, includeEstimate = True)
102
+ return solution.confine(uvDomain)
103
+
104
+ def offset(self, edgeRadius, bitRadius=None, angle=np.pi / 2.2, path=None, subtract=False, removeCusps=False, tolerance = 1.0e-4):
105
+ if self.nDep < 2 or self.nDep > 3 or self.nDep - self.nInd != 1: raise ValueError("The offset is only defined for 2D curves and 3D surfaces with well-defined normals.")
106
+ if edgeRadius < 0:
107
+ raise ValueError("edgeRadius must be >= 0")
108
+ elif edgeRadius == 0:
109
+ return self
110
+ if bitRadius is None:
111
+ bitRadius = edgeRadius
112
+ elif bitRadius < edgeRadius:
113
+ raise ValueError("bitRadius must be >= edgeRadius")
114
+ if angle < 0 or angle >= np.pi / 2: raise ValueError("angle must in the range [0, pi/2)")
115
+ if path is not None and (path.nInd != 1 or path.nDep != 2 or self.nInd != 2):
116
+ raise ValueError("path must be a 2D curve and self must be a 3D surface")
117
+
118
+ # Determine geometry of drill bit.
119
+ if subtract:
120
+ edgeRadius *= -1
121
+ bitRadius *= -1
122
+ w = bitRadius - edgeRadius
123
+ h = w * np.tan(angle)
124
+ bottom = np.sin(angle)
125
+ bottomRadius = edgeRadius + h / bottom
126
+
127
+ # Define drill bit function.
128
+ if abs(w) < tolerance and path is None: # Simple offset curve or surface
129
+ def drillBit(uv):
130
+ return self(uv) + edgeRadius * self.normal(uv)
131
+ elif self.nDep == 2: # General offset curve
132
+ def drillBit(u):
133
+ xy = self(u)
134
+ normal = self.normal(u)
135
+ upward = np.sign(normal[1])
136
+ if upward * normal[1] <= bottom:
137
+ xy[0] += edgeRadius * normal[0] + w * np.sign(normal[0])
138
+ xy[1] += edgeRadius * normal[1]
139
+ else:
140
+ xy[0] += bottomRadius * normal[0]
141
+ xy[1] += bottomRadius * normal[1] - upward * h
142
+ return xy
143
+ elif self.nDep == 3 and path is None: # General offset surface
144
+ def drillBit(uv):
145
+ xyz = self(uv)
146
+ normal = self.normal(uv)
147
+ upward = np.sign(normal[1])
148
+ if upward * normal[1] <= bottom:
149
+ norm = np.sqrt(normal[0] * normal[0] + normal[2] * normal[2])
150
+ xyz[0] += edgeRadius * normal[0] + w * normal[0] / norm
151
+ xyz[1] += edgeRadius * normal[1]
152
+ xyz[2] += edgeRadius * normal[2] + w * normal[2] / norm
153
+ else:
154
+ xyz[0] += bottomRadius * normal[0]
155
+ xyz[1] += bottomRadius * normal[1] - upward * h
156
+ xyz[2] += bottomRadius * normal[2]
157
+ return xyz
158
+ elif self.nDep == 3: # General offset of a given path along a surface
159
+ surface = self
160
+ self = path # Redefine self to be the path (used below for fitting)
161
+ def drillBit(u):
162
+ uv = self(u)
163
+ xyz = surface(uv)
164
+ normal = surface.normal(uv)
165
+ upward = np.sign(normal[1])
166
+ if upward * normal[1] <= bottom:
167
+ norm = np.sqrt(normal[0] * normal[0] + normal[2] * normal[2])
168
+ xyz[0] += edgeRadius * normal[0] + w * normal[0] / norm
169
+ xyz[1] += edgeRadius * normal[1]
170
+ xyz[2] += edgeRadius * normal[2] + w * normal[2] / norm
171
+ else:
172
+ xyz[0] += bottomRadius * normal[0]
173
+ xyz[1] += bottomRadius * normal[1] - upward * h
174
+ xyz[2] += bottomRadius * normal[2]
175
+ return xyz
176
+ else: # Should never get here (exception raised earlier)
177
+ raise ValueError("The offset is only defined for 2D curves and 3D surfaces with well-defined normals.")
178
+
179
+ # Compute new order and knots for offset (ensure order is at least 4).
180
+ newOrder = []
181
+ newKnots = []
182
+ for order, knots in zip(self.order, self.knots):
183
+ min4Order = max(order, 4)
184
+ unique, count = np.unique(knots, return_counts=True)
185
+ count += min4Order - order
186
+ newOrder.append(min4Order)
187
+ newKnots.append(np.repeat(unique, count))
188
+
189
+ # Fit new spline to offset by drill bit.
190
+ offset = bspy.spline.Spline.fit(self.domain(), drillBit, newOrder, newKnots, tolerance)
191
+
192
+ # Remove cusps as required (only applies to offset curves).
193
+ if removeCusps and self.nInd == 1:
194
+ # Find the cusps by checking for tangent direction reversal between the spline and offset.
195
+ cusps = []
196
+ previousKnot = None
197
+ start = None
198
+ for knot in np.unique(offset.knots[0][offset.order[0]:offset.nCoef[0]]):
199
+ tangent = self.derivative((1,), knot)
200
+ if path is not None:
201
+ tangent = surface.jacobian(path(knot)) @ tangent
202
+ flipped = np.dot(tangent, offset.derivative((1,), knot)) < 0
203
+ if flipped and start is None:
204
+ start = knot
205
+ if not flipped and start is not None:
206
+ cusps.append((start, previousKnot))
207
+ start = None
208
+ previousKnot = knot
209
+
210
+ # Remove the cusps by intersecting the offset segments before and after each cusp.
211
+ segmentList = []
212
+ for cusp in cusps:
213
+ domain = offset.domain()
214
+ before = offset.trim(((domain[0][0], cusp[0]),))
215
+ after = -offset.trim(((cusp[1], domain[0][1]),))
216
+ if path is not None:
217
+ # Project before and after onto a 2D plane defined by the offset tangent
218
+ # and the surface normal at the start of the cusp.
219
+ # This is necessary to find the intersection point (2 equations, 2 unknowns).
220
+ tangent = offset.derivative((1,), cusp[0])
221
+ projection = np.concatenate((tangent / np.linalg.norm(tangent),
222
+ surface.normal(path(cusp[0])))).reshape((2,3))
223
+ before = before.transform(projection)
224
+ after = after.transform(projection)
225
+ block = bspy.spline_block.SplineBlock([[before, after]])
226
+ intersections = block.zeros()
227
+ for intersection in intersections:
228
+ segmentList.append(offset.trim(((domain[0][0], intersection[0]),)))
229
+ offset = offset.trim(((intersection[1], domain[0][1]),))
230
+ segmentList.append(offset)
231
+ offset = bspy.spline.Spline.join(segmentList)
232
+
233
+ return offset
@@ -13,47 +13,55 @@ def _shiftPolynomial(polynomial, delta):
13
13
 
14
14
  def add(self, other, indMap = None):
15
15
  if not(self.nDep == other.nDep): raise ValueError("self and other must have same nDep")
16
- selfMapped = []
17
- otherMapped = []
16
+ selfMapped = set()
18
17
  otherToSelf = {}
19
18
  if indMap is not None:
20
19
  (self, other) = bspy.Spline.common_basis((self, other), indMap)
21
20
  for map in indMap:
22
- selfMapped.append(map[0])
23
- otherMapped.append(map[1])
21
+ selfMapped.add(map[0])
24
22
  otherToSelf[map[1]] = map[0]
25
23
 
26
24
  # Construct new spline parameters.
27
- # We index backwards because we're adding transposed coefficients (see below).
28
25
  nInd = self.nInd
29
26
  order = [*self.order]
30
27
  nCoef = [*self.nCoef]
31
28
  knots = list(self.knots)
32
- permutation = [] # Used to transpose coefs to match other.coefs.T.
33
- for i in range(self.nInd - 1, -1, -1):
34
- if i not in selfMapped:
35
- permutation.append(i + 1) # Add 1 to account for dependent variables.
36
- for i in range(other.nInd - 1, -1, -1):
37
- if i not in otherMapped:
38
- order.append(other.order[other.nInd - 1 - i])
39
- nCoef.append(other.nCoef[other.nInd - 1 - i])
40
- knots.append(other.knots[other.nInd - 1 - i])
41
- permutation.append(self.nInd + i + 1) # Add 1 to account for dependent variables.
29
+ for i in range(other.nInd):
30
+ if i not in otherToSelf:
31
+ order.append(other.order[i])
32
+ nCoef.append(other.nCoef[i])
33
+ knots.append(other.knots[i])
42
34
  nInd += 1
43
- else:
44
- permutation.append(otherToSelf[i] + 1) # Add 1 to account for dependent variables.
45
- permutation.append(0) # Account for dependent variables.
46
- permutation = np.array(permutation)
35
+
36
+ # Build coefs array.
47
37
  coefs = np.zeros((self.nDep, *nCoef), self.coefs.dtype)
48
38
 
49
- # Build coefs array by transposing the changing coefficients to the end, including the dependent variables.
50
- # First, add in self.coefs.
39
+ # Add in self.coefs (you need to transpose coefs for the addition to work properly).
51
40
  coefs = coefs.T
52
41
  coefs += self.coefs.T
53
- # Permutation for other.coefs.T accounts for coefs being transposed by subtracting permutation from ndim - 1.
54
- coefs = coefs.transpose((coefs.ndim - 1) - permutation)
55
- # Add in other.coefs.
42
+ coefs = coefs.T
43
+
44
+ # Construct permutation of coefs to transpose coefs to match other.coefs.
45
+ otherUnmappedCount = 0
46
+ permutation = [0] # Account for dependent variables
47
+ for i in range(other.nInd):
48
+ if i in otherToSelf:
49
+ permutation.append(otherToSelf[i] + 1) # Add 1 to account for dependent variables.
50
+ else:
51
+ permutation.append(self.nInd + otherUnmappedCount + 1) # Add 1 to account for dependent variables.
52
+ otherUnmappedCount += 1
53
+ for i in range(self.nInd):
54
+ if i not in selfMapped:
55
+ permutation.append(i + 1) # Add 1 to account for dependent variables.
56
+
57
+ # Permute coefs to match other.coefs
58
+ coefs = coefs.transpose(permutation)
59
+
60
+ # Add in other.coefs (you need to transpose coefs for the addition to work properly).
61
+ coefs = coefs.T
56
62
  coefs += other.coefs.T
63
+ coefs = coefs.T
64
+
57
65
  # Reverse the permutation.
58
66
  coefs = coefs.transpose(np.argsort(permutation))
59
67
 
@@ -63,16 +71,20 @@ def confine(self, range_bounds):
63
71
  if self.nInd != 1: raise ValueError("Confine only works on curves (nInd == 1)")
64
72
  if len(range_bounds) != self.nDep: raise ValueError("len(range_bounds) must equal nDep")
65
73
  spline = self.clamp((0,), (0,))
74
+ if spline is self:
75
+ spline = self.copy()
66
76
  order = spline.order[0]
67
77
  degree = order - 1
68
78
  domain = spline.domain()
79
+ dtype = spline.knots[0].dtype
69
80
  unique, counts = np.unique(spline.knots[0], return_counts=True)
70
81
  machineEpsilon = np.finfo(self.coefs.dtype).eps
71
82
  epsilon = np.sqrt(machineEpsilon)
72
83
  intersections = [] # List of tuples (u, boundaryPoint, headingOutside)
73
84
 
74
85
  def addIntersection(u, headedOutside = False):
75
- boundaryPoint = spline(np.atleast_1d(u))
86
+ u = dtype.type(u) # Cast to spline domain type
87
+ boundaryPoint = spline(u)
76
88
  for i in range(spline.nDep):
77
89
  if boundaryPoint[i] < range_bounds[i][0]:
78
90
  headedOutside = True if boundaryPoint[i] < range_bounds[i][0] - epsilon else headedOutside
@@ -80,18 +92,18 @@ def confine(self, range_bounds):
80
92
  if boundaryPoint[i] > range_bounds[i][1]:
81
93
  headedOutside = True if boundaryPoint[i] > range_bounds[i][1] + epsilon else headedOutside
82
94
  boundaryPoint[i] = range_bounds[i][1]
83
- intersections.append((u, boundaryPoint, headedOutside))
95
+ intersections.append([u, boundaryPoint, headedOutside])
84
96
 
85
97
  def intersectBoundary(i, j):
86
98
  zeros = type(spline)(1, 1, spline.order, spline.nCoef, spline.knots, (spline.coefs[i] - range_bounds[i][j],)).zeros()
87
99
  for zero in zeros:
88
100
  if isinstance(zero, tuple):
89
- headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), np.atleast_1d(zero[0]))[i] > epsilon
101
+ headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), zero[0])[i] > 0
90
102
  addIntersection(zero[0], headedOutside)
91
- headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), np.atleast_1d(zero[1]))[i] > epsilon
103
+ headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), zero[1])[i] > 0
92
104
  addIntersection(zero[1], headedOutside)
93
105
  else:
94
- headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), np.atleast_1d(zero))[i] > epsilon
106
+ headedOutside = (-1 if j == 0 else 1) * spline.derivative((1,), zero)[i] > 0
95
107
  addIntersection(zero, headedOutside)
96
108
 
97
109
  addIntersection(domain[0][0]) # Confine starting point
@@ -104,21 +116,22 @@ def confine(self, range_bounds):
104
116
  # Put the intersection points in order.
105
117
  intersections.sort(key=lambda intersection: intersection[0])
106
118
 
107
- # Remove repeat points at start and end.
108
- while intersections[1][0] - intersections[0][0] < epsilon:
109
- del intersections[1]
110
- while intersections[-1][0] - intersections[-2][0] < epsilon:
111
- del intersections[-2]
112
-
113
- # Insert order-1 knots at each intersection point.
114
- for (knot, boundaryPoint, headedOutside) in intersections:
115
- ix = np.searchsorted(unique, knot)
116
- if unique[ix] == knot:
117
- count = (order - 1) - counts[ix]
118
- if count > 0:
119
- spline = spline.insert_knots(([knot] * count,))
119
+ # Insert order-1 (degree) knots at each intersection point.
120
+ previousKnot, previousBoundaryPoint, previousHeadedOutside = intersections[0]
121
+ previousIx = 0
122
+ for i, (knot, boundaryPoint, headedOutside) in enumerate(intersections[1:]):
123
+ if knot - previousKnot < epsilon:
124
+ intersections[previousIx][2] = headedOutside # Keep last headed outside
120
125
  else:
121
- spline = spline.insert_knots(([knot] * (order - 1),))
126
+ ix = np.searchsorted(unique, knot)
127
+ if unique[ix] == knot:
128
+ count = degree - counts[ix]
129
+ if count > 0:
130
+ spline = spline.insert_knots((((knot, count),),))
131
+ else:
132
+ spline = spline.insert_knots((((knot, degree),),))
133
+ previousKnot = knot
134
+ previousIx = i
122
135
 
123
136
  # Go through the boundary points, assigning boundary coefficients, interpolating between boundary points,
124
137
  # and removing knots and coefficients where the curve stalls.
@@ -131,29 +144,37 @@ def confine(self, range_bounds):
131
144
  knotAdjustment = 0.0
132
145
  for knot, boundaryPoint, headedOutside in intersections[1:]:
133
146
  knot += knotAdjustment
134
- ix = np.searchsorted(knots, knot, 'right') - order
135
- ix = min(ix, nCoef - 1)
136
- coefs[:, ix] = boundaryPoint # Assign boundary coefficients
137
- if previousHeadedOutside and np.linalg.norm(boundaryPoint - previousBoundaryPoint) < epsilon:
138
- # Curve has stalled, so remove intervening knots and coefficients, and adjust knot values.
139
- nCoef -= ix - previousIx
140
- knots = np.delete(knots, slice(previousIx + 1, ix + 1))
141
- knots[previousIx + 1:] -= knot - previousKnot
142
- knotAdjustment -= knot - previousKnot
143
- coefs = np.delete(coefs, slice(previousIx, ix), axis=1)
144
- previousHeadedOutside = headedOutside # The previous knot is unchanged, but inherits the new headedOutside value
145
- else:
146
- if previousHeadedOutside:
147
- # If we were outside, linearly interpolate between the previous and current boundary points.
148
- slope = (boundaryPoint - previousBoundaryPoint) / (knot - previousKnot)
149
- for i in range(previousIx + 1, ix):
150
- coefs[:, i] = coefs[:, i - 1] + ((knots[i + degree] - knots[i]) / degree) * slope
151
-
152
- # Update previous knot
153
- previousKnot = knot
154
- previousBoundaryPoint = boundaryPoint
155
- previousHeadedOutside = headedOutside
156
- previousIx = ix
147
+ if knot - previousKnot >= epsilon:
148
+ ix = np.searchsorted(knots, knot, 'right') - order
149
+ ix = min(ix, nCoef - 1)
150
+ coefs[:, ix] = boundaryPoint # Assign boundary coefficients
151
+ if previousHeadedOutside and np.linalg.norm(boundaryPoint - previousBoundaryPoint) < epsilon:
152
+ # Curve has stalled, so remove intervening knots and coefficients, and adjust knot values.
153
+ nCoef -= ix - previousIx
154
+ knots = np.delete(knots, slice(previousIx + 1, ix + 1))
155
+ knots[previousIx + 1:] -= knot - previousKnot
156
+ knotAdjustment -= knot - previousKnot
157
+ coefs = np.delete(coefs, slice(previousIx, ix), axis=1)
158
+ previousHeadedOutside = headedOutside # The previous knot is unchanged, but inherits the new headedOutside value
159
+ else:
160
+ if previousHeadedOutside:
161
+ # If we were outside, linearly interpolate between the previous and current boundary points.
162
+ slope = (boundaryPoint - previousBoundaryPoint) / (knot - previousKnot)
163
+ for i in range(previousIx + 1, ix):
164
+ coefs[:, i] = coefs[:, i - 1] + ((knots[i + degree] - knots[i]) / degree) * slope
165
+
166
+ # Update previous knot
167
+ previousKnot = knot
168
+ previousBoundaryPoint = boundaryPoint
169
+ previousHeadedOutside = headedOutside
170
+ previousIx = ix
171
+ elif previousKnot != knot and knot == domain[0][1] and np.linalg.norm(boundaryPoint - previousBoundaryPoint) < epsilon:
172
+ # Curve stalled at the end. Remove the last knot and its associated coefficients.
173
+ # Keep the last knot if the previous and last knot are the same.
174
+ nCoef -= degree
175
+ knots = knots[:-degree]
176
+ knots[-1] = previousKnot
177
+ coefs = coefs[:,:-degree]
157
178
 
158
179
  spline.nCoef = (nCoef,)
159
180
  spline.knots = (knots,)
@@ -643,21 +664,20 @@ def normal_spline(self, indices=None):
643
664
  knots = None
644
665
  counts = None
645
666
  maxOrder = 0
646
- startInd = 0
647
- endInd = 0
667
+ maxMap = []
648
668
  # First, collect the order, knots, and number of relevant columns for this independent variable.
649
669
  for row in self.block:
650
- rowInd = 0
651
- for spline in row:
652
- if rowInd <= nInd < rowInd + spline.nInd:
653
- ind = nInd - rowInd
670
+ for map, spline in row:
671
+ if nInd in map:
672
+ ind = map.index(nInd)
654
673
  order = spline.order[ind]
655
674
  k, c = np.unique(spline.knots[ind][order-1:spline.nCoef[ind]+1], return_counts=True)
656
675
  if knots:
657
676
  if maxOrder < order:
658
677
  counts += order - maxOrder
659
678
  maxOrder = order
660
- endInd = max(endInd, rowInd + spline.nInd)
679
+ if len(maxMap) < len(map):
680
+ maxMap = map
661
681
  for knot, count in zip(k[1:-1], c[1:-1]):
662
682
  ix = np.searchsorted(knots, knot)
663
683
  if knots[ix] == knot:
@@ -669,30 +689,27 @@ def normal_spline(self, indices=None):
669
689
  knots = k
670
690
  counts = c
671
691
  maxOrder = order
672
- startInd = rowInd
673
- endInd = rowInd + spline.nInd
674
-
692
+ maxMap = map
693
+
675
694
  break
676
695
 
677
- rowInd += spline.nInd
678
-
679
696
  # Next, calculate the order of the normal for this independent variable.
680
697
  # Note that the total order will be one less than usual, because one of
681
698
  # the tangents is the derivative with respect to that independent variable.
682
699
  if self.nInd < self.nDep:
683
700
  # If this normal involves all tangents, simply add the degree of each,
684
701
  # so long as that tangent contains the independent variable.
685
- order = (maxOrder - 1) * (endInd - startInd)
702
+ order = (maxOrder - 1) * len(maxMap)
686
703
  else:
687
704
  # If this normal doesn't involve all tangents, find the max order of
688
705
  # each returned combination (as defined by the indices).
689
706
  order = 0
690
- for index in range(startInd, endInd) if indices is None else indices:
707
+ for index in maxMap if indices is None else indices:
691
708
  # The order will be one larger if this independent variable's tangent is excluded by the index.
692
709
  ord = 0 if index != nInd else 1
693
710
  # Add the degree of each tangent, so long as that tangent contains the
694
711
  # independent variable and is not excluded by the index.
695
- for ind in range(startInd, endInd):
712
+ for ind in maxMap:
696
713
  ord += maxOrder - 1 if index != ind else 0
697
714
  order = max(order, ord)
698
715
 
bspy/hyperplane.py CHANGED
@@ -18,6 +18,9 @@ class Hyperplane(Manifold):
18
18
 
19
19
  tangentSpace : array-like
20
20
  A array of tangents that are linearly independent and orthogonal to the normal.
21
+
22
+ metadata : `dict`, optional
23
+ A dictionary of ancillary data to store with the hyperplane. Default is {}.
21
24
 
22
25
  Notes
23
26
  -----
@@ -28,11 +31,12 @@ class Hyperplane(Manifold):
28
31
  maxAlignment = 0.9999 # 1 - 1/10^4
29
32
  """ If the absolute value of the dot product of two unit normals is greater than maxAlignment, the manifolds are parallel."""
30
33
 
31
- def __init__(self, normal, point, tangentSpace):
34
+ def __init__(self, normal, point, tangentSpace, metadata = {}):
32
35
  self._normal = np.atleast_1d(normal)
33
36
  self._point = np.atleast_1d(point)
34
37
  self._tangentSpace = np.atleast_1d(tangentSpace)
35
38
  if not np.allclose(self._tangentSpace.T @ self._normal, 0.0): raise ValueError("normal must be orthogonal to tangent space")
39
+ self.metadata = dict(metadata)
36
40
 
37
41
  def __repr__(self):
38
42
  return "Hyperplane({0}, {1}, {2})".format(self._normal, self._point, self._tangentSpace)
@@ -207,7 +211,7 @@ class Hyperplane(Manifold):
207
211
  --------
208
212
  `to_dict` : Return a `dict` with `Hyperplane` data.
209
213
  """
210
- return Hyperplane(dictionary["normal"], dictionary["point"], dictionary["tangentSpace"])
214
+ return Hyperplane(dictionary["normal"], dictionary["point"], dictionary["tangentSpace"], dictionary.get("metadata", {}))
211
215
 
212
216
  def full_domain(self):
213
217
  """
@@ -455,7 +459,7 @@ class Hyperplane(Manifold):
455
459
  --------
456
460
  `from_dict` : Create a `Hyperplane` from a data in a `dict`.
457
461
  """
458
- return {"type" : "Hyperplane", "normal" : self._normal, "point" : self._point, "tangentSpace" : self._tangentSpace}
462
+ return {"type" : "Hyperplane", "normal" : self._normal, "point" : self._point, "tangentSpace" : self._tangentSpace, "metadata" : self.metadata}
459
463
 
460
464
  def transform(self, matrix, matrixInverseTranspose = None):
461
465
  """
bspy/manifold.py CHANGED
@@ -5,6 +5,11 @@ class Manifold:
5
5
  """
6
6
  A manifold is an abstract base class for differentiable functions with
7
7
  normals and tangent spaces whose range is one dimension higher than their domain.
8
+
9
+ Parameters
10
+ ----------
11
+ metadata : `dict`, optional
12
+ A dictionary of ancillary data to store with the manifold. Default is {}.
8
13
  """
9
14
 
10
15
  minSeparation = 0.0001
@@ -17,8 +22,8 @@ class Manifold:
17
22
  factory = {}
18
23
  """Factory dictionary for creating manifolds."""
19
24
 
20
- def __init__(self):
21
- pass
25
+ def __init__(self, metadata = {}):
26
+ self.metadata = dict(metadata)
22
27
 
23
28
  def cached_intersect(self, other, cache = None):
24
29
  """
@@ -322,7 +327,7 @@ class Manifold:
322
327
  --------
323
328
  `from_dict` : Create a `Manifold` from a data in a `dict`.
324
329
  """
325
- return None
330
+ return {"metadata" : self.metadata}
326
331
 
327
332
  def transform(self, matrix, matrixInverseTranspose = None):
328
333
  """
bspy/solid.py CHANGED
@@ -59,6 +59,9 @@ class Solid:
59
59
 
60
60
  containsInfinity : `bool`
61
61
  Indicates whether or not the solid contains infinity.
62
+
63
+ metadata : `dict`, optional
64
+ A dictionary of ancillary data to store with the solid. Default is {}.
62
65
 
63
66
  See also
64
67
  --------
@@ -70,10 +73,11 @@ class Solid:
70
73
 
71
74
  Solids can be of zero dimension, typically acting as the domain of boundary endpoints. Zero-dimension solids have no boundaries, they only contain infinity or not.
72
75
  """
73
- def __init__(self, dimension, containsInfinity):
76
+ def __init__(self, dimension, containsInfinity, metadata = {}):
74
77
  assert dimension >= 0
75
78
  self.dimension = dimension
76
79
  self.containsInfinity = containsInfinity
80
+ self.metadata = dict(metadata)
77
81
  self.boundaries = []
78
82
  self.bounds = None
79
83
 
@@ -356,7 +360,7 @@ class Solid:
356
360
  `save` : Save a solids and/or manifolds in json format to the specified filename (full path).
357
361
  """
358
362
  def from_dict(dictionary):
359
- solid = Solid(dictionary["dimension"], dictionary["containsInfinity"])
363
+ solid = Solid(dictionary["dimension"], dictionary["containsInfinity"], dictionary.get("metadata", {}))
360
364
  for boundary in dictionary["boundaries"]:
361
365
  manifold = boundary["manifold"]
362
366
  solid.add_boundary(Boundary(Manifold.factory[manifold.get("type", "Spline")].from_dict(manifold), from_dict(boundary["domain"])))
@@ -428,7 +432,7 @@ class Solid:
428
432
  if isinstance(obj, Boundary):
429
433
  return {"type" : "Boundary", "manifold" : obj.manifold, "domain" : obj.domain}
430
434
  if isinstance(obj, Solid):
431
- return {"type" : "Solid", "dimension" : obj.dimension, "containsInfinity" : obj.containsInfinity, "boundaries" : obj.boundaries}
435
+ return {"type" : "Solid", "dimension" : obj.dimension, "containsInfinity" : obj.containsInfinity, "boundaries" : obj.boundaries, "metadata" : obj.metadata}
432
436
  return super().default(obj)
433
437
 
434
438
  with open(fileName, 'w', encoding='utf-8') as file:
@@ -749,7 +753,7 @@ class Solid:
749
753
 
750
754
  # Calculate Integral(f) * first cofactor. Note that quad returns a tuple: (integral, error bound).
751
755
  returnValue = 0.0
752
- firstCofactor = boundary.manifold.normal(evalPoint, False, (0,))
756
+ firstCofactor = boundary.manifold.normal(evalPoint, False, (0,))[0]
753
757
  if abs(x0 - point[0]) > epsabs and abs(firstCofactor) > epsabs:
754
758
  returnValue = integrate.quad(fHat, x0, point[0], epsabs=epsabs, epsrel=epsrel, *quadArgs)[0] * firstCofactor
755
759
  return returnValue