broccoli-ml 0.4.0__py3-none-any.whl → 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
broccoli/vit.py CHANGED
@@ -66,7 +66,7 @@ class DCTEncoder(nn.Module):
66
66
  minimum_cnn_out_channels=16,
67
67
  cnn_kernel_size=3,
68
68
  cnn_kernel_stride=1,
69
- cnn_kernel_padding="same",
69
+ cnn_padding="same",
70
70
  cnn_kernel_dilation=1,
71
71
  cnn_kernel_groups=1,
72
72
  cnn_activation: nn.Module = ReLU,
@@ -75,13 +75,13 @@ class DCTEncoder(nn.Module):
75
75
  pooling_type="concat", # maxpool or concat
76
76
  pooling_kernel_size=3,
77
77
  pooling_kernel_stride=2,
78
- pooling_kernel_padding=1,
78
+ pooling_padding=1,
79
79
  transformer_position_embedding="relative", # absolute or relative
80
80
  transformer_embedding_size=256,
81
81
  transformer_layers=7,
82
82
  transformer_heads=4,
83
83
  transformer_mlp_ratio=2,
84
- transformer_bos_tokens=4,
84
+ transformer_bos_tokens=0,
85
85
  transformer_activation: nn.Module = SquaredReLU,
86
86
  transformer_activation_kwargs: Optional[dict] = None,
87
87
  mlp_dropout=0.0,
@@ -131,7 +131,7 @@ class DCTEncoder(nn.Module):
131
131
  input_size,
132
132
  kernel_size=cnn_kernel_size,
133
133
  stride=cnn_kernel_stride,
134
- padding=cnn_kernel_padding,
134
+ padding=cnn_padding,
135
135
  dilation=cnn_kernel_dilation,
136
136
  )
137
137
 
@@ -142,7 +142,7 @@ class DCTEncoder(nn.Module):
142
142
  cnn_output_size,
143
143
  kernel_size=pooling_kernel_size,
144
144
  stride=pooling_kernel_stride,
145
- padding=pooling_kernel_padding,
145
+ padding=pooling_padding,
146
146
  dilation=1,
147
147
  )
148
148
  )
@@ -174,7 +174,7 @@ class DCTEncoder(nn.Module):
174
174
  cnn_out_channels,
175
175
  cnn_kernel_size,
176
176
  stride=cnn_kernel_stride,
177
- padding=cnn_kernel_padding,
177
+ padding=cnn_padding,
178
178
  dilation=cnn_kernel_dilation,
179
179
  groups=cnn_kernel_groups,
180
180
  bias=True,
@@ -212,7 +212,7 @@ class DCTEncoder(nn.Module):
212
212
  maxpoolxd(
213
213
  pooling_kernel_size,
214
214
  stride=pooling_kernel_stride,
215
- padding=pooling_kernel_padding,
215
+ padding=pooling_padding,
216
216
  ),
217
217
  Rearrange(
218
218
  f"N C {spatial_dim_names} -> N ({spatial_dim_names}) C"
@@ -238,7 +238,7 @@ class DCTEncoder(nn.Module):
238
238
  SpaceToDepth(
239
239
  pooling_kernel_size,
240
240
  stride=pooling_kernel_stride,
241
- padding=pooling_kernel_padding,
241
+ padding=pooling_padding,
242
242
  spatial_dimensions=self.spatial_dimensions,
243
243
  ),
244
244
  Rearrange( # for transformer
@@ -307,7 +307,7 @@ class DCT(nn.Module):
307
307
  minimum_cnn_out_channels=16,
308
308
  cnn_kernel_size=3,
309
309
  cnn_kernel_stride=1,
310
- cnn_kernel_padding="same",
310
+ cnn_padding="same",
311
311
  cnn_kernel_dilation=1,
312
312
  cnn_kernel_groups=1,
313
313
  cnn_activation: nn.Module = ReLU,
@@ -316,13 +316,13 @@ class DCT(nn.Module):
316
316
  pooling_type="concat", # maxpool or concat
317
317
  pooling_kernel_size=3,
318
318
  pooling_kernel_stride=2,
319
- pooling_kernel_padding=1,
319
+ pooling_padding=1,
320
320
  transformer_position_embedding="relative", # absolute or relative
321
321
  transformer_embedding_size=256,
322
322
  transformer_layers=7,
323
323
  transformer_heads=4,
324
324
  transformer_mlp_ratio=2,
325
- transformer_bos_tokens=4,
325
+ transformer_bos_tokens=0,
326
326
  transformer_activation: nn.Module = SquaredReLU,
327
327
  transformer_activation_kwargs: Optional[dict] = None,
328
328
  mlp_dropout=0.0,
@@ -357,7 +357,7 @@ class DCT(nn.Module):
357
357
  minimum_cnn_out_channels=minimum_cnn_out_channels,
358
358
  cnn_kernel_size=cnn_kernel_size,
359
359
  cnn_kernel_stride=cnn_kernel_stride,
360
- cnn_kernel_padding=cnn_kernel_padding,
360
+ cnn_padding=cnn_padding,
361
361
  cnn_kernel_dilation=cnn_kernel_dilation,
362
362
  cnn_kernel_groups=cnn_kernel_groups,
363
363
  cnn_activation=cnn_activation,
@@ -366,7 +366,7 @@ class DCT(nn.Module):
366
366
  pooling_type=pooling_type,
367
367
  pooling_kernel_size=pooling_kernel_size,
368
368
  pooling_kernel_stride=pooling_kernel_stride,
369
- pooling_kernel_padding=pooling_kernel_padding,
369
+ pooling_padding=pooling_padding,
370
370
  transformer_position_embedding=transformer_position_embedding,
371
371
  transformer_embedding_size=transformer_embedding_size,
372
372
  transformer_layers=transformer_layers,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: broccoli-ml
3
- Version: 0.4.0
3
+ Version: 0.4.2
4
4
  Summary: Some useful Pytorch models, circa 2025
5
5
  License: MIT
6
6
  Author: Nicholas Bailey
@@ -10,8 +10,8 @@ broccoli/rope.py,sha256=hw7kBPNR9GQXj4GxyIAffsGKPfcTPOFh8Bc7oEHtaZY,12108
10
10
  broccoli/tensor.py,sha256=E2JK5mQwJf75e23-JGcDoT7QxQf89DJReUo2et1LhRY,1716
11
11
  broccoli/transformer.py,sha256=23R58t3TLZMb9ulhCtQ3gXu0mPlfyPvLM8TaGOpaz58,16310
12
12
  broccoli/utils.py,sha256=htq_hOsdhUhL0nJi9WkKiEYOjEoWqFpK5X49PtgTf-0,299
13
- broccoli/vit.py,sha256=wPovWrrK-s7rPcAqvvGUWXu2v_77-GMIgmgb6G_y2x8,13869
14
- broccoli_ml-0.4.0.dist-info/LICENSE,sha256=0BAzJE5BqQ7Iixp_AFdB2W1uO-HCRX-Qfun8PHt6yVM,1073
15
- broccoli_ml-0.4.0.dist-info/METADATA,sha256=88B7KqQ9zmxkzelSdhVirPbla09qQbpQrwilC6xTCng,1256
16
- broccoli_ml-0.4.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
17
- broccoli_ml-0.4.0.dist-info/RECORD,,
13
+ broccoli/vit.py,sha256=-z8LjUo0_EujEQIZE89cpGOoRnu6WjML0CoQzFBJu78,13778
14
+ broccoli_ml-0.4.2.dist-info/LICENSE,sha256=0BAzJE5BqQ7Iixp_AFdB2W1uO-HCRX-Qfun8PHt6yVM,1073
15
+ broccoli_ml-0.4.2.dist-info/METADATA,sha256=6_s36Pt-_tZSRnA-2ggxPtgvXx8fEJ3qH7O8pUBFUEs,1256
16
+ broccoli_ml-0.4.2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
17
+ broccoli_ml-0.4.2.dist-info/RECORD,,