broccoli-ml 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
broccoli/vit.py CHANGED
@@ -49,7 +49,7 @@ class SequencePool(nn.Module):
49
49
  return self.norm(projection)
50
50
 
51
51
 
52
- class CCTEncoder(nn.Module):
52
+ class DCTEncoder(nn.Module):
53
53
  """
54
54
  Based on the Compact Convolutional Transformer (CCT) of [Hasani et al. (2021)
55
55
  *''Escaping the Big Data Paradigm with Compact Transformers''*](
@@ -69,20 +69,20 @@ class CCTEncoder(nn.Module):
69
69
  cnn_kernel_padding="same",
70
70
  cnn_kernel_dilation=1,
71
71
  cnn_kernel_groups=1,
72
- cnn_activation: nn.Module = nn.ReLU,
72
+ cnn_activation: nn.Module = ReLU,
73
73
  cnn_activation_kwargs: Optional[dict] = None,
74
74
  cnn_dropout=0.0,
75
- pooling_type="maxpool",
75
+ pooling_type="concat", # maxpool or concat
76
76
  pooling_kernel_size=3,
77
77
  pooling_kernel_stride=2,
78
78
  pooling_kernel_padding=1,
79
- transformer_position_embedding="absolute", # absolute or relative
79
+ transformer_position_embedding="relative", # absolute or relative
80
80
  transformer_embedding_size=256,
81
81
  transformer_layers=7,
82
82
  transformer_heads=4,
83
83
  transformer_mlp_ratio=2,
84
84
  transformer_bos_tokens=4,
85
- transformer_activation: nn.Module = nn.GELU,
85
+ transformer_activation: nn.Module = SquaredReLU,
86
86
  transformer_activation_kwargs: Optional[dict] = None,
87
87
  mlp_dropout=0.0,
88
88
  msa_dropout=0.1,
@@ -291,8 +291,9 @@ class CCTEncoder(nn.Module):
291
291
  return self.encoder(x)
292
292
 
293
293
 
294
- class CCT(nn.Module):
294
+ class DCT(nn.Module):
295
295
  """
296
+ Denoising convolutional transformer
296
297
  Based on the Compact Convolutional Transformer (CCT) of [Hasani et al. (2021)
297
298
  *''Escaping the Big Data Paradigm with Compact Transformers''*](
298
299
  https://arxiv.org/abs/2104.05704). It's a convolutional neural network
@@ -309,20 +310,20 @@ class CCT(nn.Module):
309
310
  cnn_kernel_padding="same",
310
311
  cnn_kernel_dilation=1,
311
312
  cnn_kernel_groups=1,
312
- cnn_activation: nn.Module = nn.ReLU,
313
+ cnn_activation: nn.Module = ReLU,
313
314
  cnn_activation_kwargs: Optional[dict] = None,
314
315
  cnn_dropout=0.0,
315
- pooling_type="maxpool",
316
+ pooling_type="concat", # maxpool or concat
316
317
  pooling_kernel_size=3,
317
318
  pooling_kernel_stride=2,
318
319
  pooling_kernel_padding=1,
319
- transformer_position_embedding="absolute", # absolute or relative
320
+ transformer_position_embedding="relative", # absolute or relative
320
321
  transformer_embedding_size=256,
321
322
  transformer_layers=7,
322
323
  transformer_heads=4,
323
324
  transformer_mlp_ratio=2,
324
325
  transformer_bos_tokens=4,
325
- transformer_activation: nn.Module = nn.GELU,
326
+ transformer_activation: nn.Module = SquaredReLU,
326
327
  transformer_activation_kwargs: Optional[dict] = None,
327
328
  mlp_dropout=0.0,
328
329
  msa_dropout=0.1,
@@ -350,7 +351,7 @@ class CCT(nn.Module):
350
351
  "SwiGLU": SwiGLU,
351
352
  }[transformer_activation]
352
353
 
353
- self.encoder = CCTEncoder(
354
+ self.encoder = DCTEncoder(
354
355
  input_size=input_size,
355
356
  cnn_in_channels=cnn_in_channels,
356
357
  minimum_cnn_out_channels=minimum_cnn_out_channels,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: broccoli-ml
3
- Version: 0.3.0
3
+ Version: 0.4.0
4
4
  Summary: Some useful Pytorch models, circa 2025
5
5
  License: MIT
6
6
  Author: Nicholas Bailey
@@ -10,8 +10,8 @@ broccoli/rope.py,sha256=hw7kBPNR9GQXj4GxyIAffsGKPfcTPOFh8Bc7oEHtaZY,12108
10
10
  broccoli/tensor.py,sha256=E2JK5mQwJf75e23-JGcDoT7QxQf89DJReUo2et1LhRY,1716
11
11
  broccoli/transformer.py,sha256=23R58t3TLZMb9ulhCtQ3gXu0mPlfyPvLM8TaGOpaz58,16310
12
12
  broccoli/utils.py,sha256=htq_hOsdhUhL0nJi9WkKiEYOjEoWqFpK5X49PtgTf-0,299
13
- broccoli/vit.py,sha256=NuHW2xcaUEv_IHAZbrrGHUWKu9D7JMR1iKDCCX07RQs,13787
14
- broccoli_ml-0.3.0.dist-info/LICENSE,sha256=0BAzJE5BqQ7Iixp_AFdB2W1uO-HCRX-Qfun8PHt6yVM,1073
15
- broccoli_ml-0.3.0.dist-info/METADATA,sha256=sAbHQ0Q2yM5kaovkF22cTKCk4SU_z6vi6QtmOMMwJlQ,1256
16
- broccoli_ml-0.3.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
17
- broccoli_ml-0.3.0.dist-info/RECORD,,
13
+ broccoli/vit.py,sha256=wPovWrrK-s7rPcAqvvGUWXu2v_77-GMIgmgb6G_y2x8,13869
14
+ broccoli_ml-0.4.0.dist-info/LICENSE,sha256=0BAzJE5BqQ7Iixp_AFdB2W1uO-HCRX-Qfun8PHt6yVM,1073
15
+ broccoli_ml-0.4.0.dist-info/METADATA,sha256=88B7KqQ9zmxkzelSdhVirPbla09qQbpQrwilC6xTCng,1256
16
+ broccoli_ml-0.4.0.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
17
+ broccoli_ml-0.4.0.dist-info/RECORD,,