britekit 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of britekit might be problematic. Click here for more details.
- britekit/__about__.py +1 -1
- britekit/commands/_audioset.py +1 -0
- britekit/commands/_inat.py +1 -0
- britekit/commands/_train.py +10 -0
- britekit/commands/_xeno.py +1 -0
- britekit/commands/_youtube.py +1 -0
- britekit/install/yaml/{samples/base_config.yaml → base_config.yaml} +10 -7
- britekit/models/base_model.py +3 -18
- {britekit-0.0.4.dist-info → britekit-0.0.5.dist-info}/METADATA +21 -15
- {britekit-0.0.4.dist-info → britekit-0.0.5.dist-info}/RECORD +13 -13
- {britekit-0.0.4.dist-info → britekit-0.0.5.dist-info}/WHEEL +0 -0
- {britekit-0.0.4.dist-info → britekit-0.0.5.dist-info}/entry_points.txt +0 -0
- {britekit-0.0.4.dist-info → britekit-0.0.5.dist-info}/licenses/LICENSE.txt +0 -0
britekit/__about__.py
CHANGED
britekit/commands/_audioset.py
CHANGED
britekit/commands/_inat.py
CHANGED
britekit/commands/_train.py
CHANGED
|
@@ -56,6 +56,16 @@ def _train_cmd(
|
|
|
56
56
|
cfg_path: str,
|
|
57
57
|
):
|
|
58
58
|
util.set_logging()
|
|
59
|
+
|
|
60
|
+
import platform, torch
|
|
61
|
+
if platform.system() == "Windows" and not torch.cuda.is_available():
|
|
62
|
+
logging.warning(
|
|
63
|
+
"CUDA is not available. On Windows, reinstall a CUDA-enabled PyTorch build like this:\n"
|
|
64
|
+
" pip uninstall -y torch torchvision torchaudio\n"
|
|
65
|
+
" pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cuxxx"
|
|
66
|
+
"For example, use cu126 for CUDA 12.6."
|
|
67
|
+
)
|
|
68
|
+
|
|
59
69
|
train(cfg_path)
|
|
60
70
|
|
|
61
71
|
|
britekit/commands/_xeno.py
CHANGED
britekit/commands/_youtube.py
CHANGED
|
@@ -11,7 +11,7 @@ audio: !!python/object:britekit.core.base_config.Audio
|
|
|
11
11
|
sampling_rate: 18000
|
|
12
12
|
spec_duration: 5.0
|
|
13
13
|
spec_height: 128
|
|
14
|
-
spec_width:
|
|
14
|
+
spec_width: 480
|
|
15
15
|
top_db: 80
|
|
16
16
|
win_length: 0.055
|
|
17
17
|
infer: !!python/object:britekit.core.base_config.Inference
|
|
@@ -25,12 +25,12 @@ infer: !!python/object:britekit.core.base_config.Inference
|
|
|
25
25
|
min_score: 0.8
|
|
26
26
|
num_threads: 3
|
|
27
27
|
openvino_block_size: 100
|
|
28
|
+
overlap: 0.0
|
|
28
29
|
raise_min_to_confirm: 0.5
|
|
29
30
|
scaling_coefficient: 1.0
|
|
30
31
|
scaling_intercept: 0.0
|
|
31
32
|
seed: 99
|
|
32
33
|
segment_len: null
|
|
33
|
-
spec_overlap_seconds: 0.0
|
|
34
34
|
misc: !!python/object:britekit.core.base_config.Miscellaneous
|
|
35
35
|
ckpt_folder: data/ckpt
|
|
36
36
|
classes_file: data/classes.txt
|
|
@@ -41,13 +41,16 @@ misc: !!python/object:britekit.core.base_config.Miscellaneous
|
|
|
41
41
|
search_ckpt_path: null
|
|
42
42
|
source_regexes:
|
|
43
43
|
- !!python/tuple
|
|
44
|
-
-
|
|
44
|
+
- ^[A-Za-z0-9_-]{11}-\d+$
|
|
45
|
+
- Audioset
|
|
46
|
+
- !!python/tuple
|
|
47
|
+
- ^XC\d+$
|
|
45
48
|
- Xeno-Canto
|
|
46
49
|
- !!python/tuple
|
|
47
|
-
- N\d
|
|
50
|
+
- ^N\d+$
|
|
48
51
|
- iNaturalist
|
|
49
52
|
- !!python/tuple
|
|
50
|
-
-
|
|
53
|
+
- ^\d+$
|
|
51
54
|
- Macaulay Library
|
|
52
55
|
- !!python/tuple
|
|
53
56
|
- .*
|
|
@@ -108,7 +111,7 @@ train: !!python/object:britekit.core.base_config.Training
|
|
|
108
111
|
noise_class_name: Noise
|
|
109
112
|
num_epochs: 10
|
|
110
113
|
num_folds: 1
|
|
111
|
-
num_workers:
|
|
114
|
+
num_workers: 3
|
|
112
115
|
offpeak_weight: 0.002
|
|
113
116
|
opt_beta1: 0.9
|
|
114
117
|
opt_beta2: 0.999
|
|
@@ -124,6 +127,6 @@ train: !!python/object:britekit.core.base_config.Training
|
|
|
124
127
|
shuffle: true
|
|
125
128
|
test_pickle: null
|
|
126
129
|
train_db: data/training.db
|
|
127
|
-
train_pickle:
|
|
130
|
+
train_pickle: data/training.pkl
|
|
128
131
|
val_portion: 0
|
|
129
132
|
warmup_fraction: 0.0
|
britekit/models/base_model.py
CHANGED
|
@@ -178,15 +178,10 @@ class BaseModel(pl.LightningModule):
|
|
|
178
178
|
else:
|
|
179
179
|
preds = torch.softmax(seg_logits, dim=1)
|
|
180
180
|
|
|
181
|
-
acc = accuracy(preds, y, task="multilabel", num_labels=self.num_classes)
|
|
182
181
|
self.log("val_loss", loss, on_step=False, on_epoch=True, prog_bar=True)
|
|
183
|
-
self.log("val_acc", acc, on_step=False, on_epoch=True, prog_bar=True)
|
|
184
182
|
|
|
185
|
-
pr_auc = metrics.average_precision_score(y.cpu(), preds.cpu(), average="micro")
|
|
186
183
|
roc_auc = metrics.roc_auc_score(y.cpu(), preds.cpu(), average="micro")
|
|
187
|
-
|
|
188
|
-
self.log("val_pr_auc", pr_auc, on_step=False, on_epoch=True, prog_bar=True)
|
|
189
|
-
self.log("val_roc_auc", roc_auc, on_step=False, on_epoch=True, prog_bar=True)
|
|
184
|
+
self.log("val_roc", roc_auc, on_step=False, on_epoch=True, prog_bar=True)
|
|
190
185
|
|
|
191
186
|
return loss
|
|
192
187
|
|
|
@@ -199,18 +194,8 @@ class BaseModel(pl.LightningModule):
|
|
|
199
194
|
|
|
200
195
|
if self.multi_label:
|
|
201
196
|
preds = torch.sigmoid(seg_logits)
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
)
|
|
205
|
-
self.log(
|
|
206
|
-
"test_micro_aps", micro_aps, on_step=False, on_epoch=True, prog_bar=True
|
|
207
|
-
)
|
|
208
|
-
macro_aps = metrics.average_precision_score(
|
|
209
|
-
y.cpu(), preds.cpu(), average="macro"
|
|
210
|
-
)
|
|
211
|
-
self.log(
|
|
212
|
-
"test_macro_aps", macro_aps, on_step=False, on_epoch=True, prog_bar=True
|
|
213
|
-
)
|
|
197
|
+
roc_auc = metrics.roc_auc_score(y.cpu(), preds.cpu(), average="micro")
|
|
198
|
+
self.log("test_roc_auc", roc_auc, on_step=False, on_epoch=True, prog_bar=True)
|
|
214
199
|
|
|
215
200
|
return loss
|
|
216
201
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: britekit
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.5
|
|
4
4
|
Summary: Core functions for bioacoustic recognizers.
|
|
5
5
|
Project-URL: Documentation, https://github.com/jhuus/BriteKit#readme
|
|
6
6
|
Project-URL: Issues, https://github.com/jhuus/BriteKit/issues
|
|
@@ -32,8 +32,8 @@ Requires-Dist: scipy<2.0,>=1.15
|
|
|
32
32
|
Requires-Dist: soundfile<1.0,>=0.13
|
|
33
33
|
Requires-Dist: tensorboard<3.0,>=2.19
|
|
34
34
|
Requires-Dist: timm<2.0,>=1.0.17
|
|
35
|
-
Requires-Dist: torch<2.
|
|
36
|
-
Requires-Dist: torchaudio<2.
|
|
35
|
+
Requires-Dist: torch<2.9,>=2.5
|
|
36
|
+
Requires-Dist: torchaudio<2.9,>=2.5
|
|
37
37
|
Requires-Dist: yt-dlp>=2025.6.25
|
|
38
38
|
Description-Content-Type: text/markdown
|
|
39
39
|
|
|
@@ -65,10 +65,10 @@ Description-Content-Type: text/markdown
|
|
|
65
65
|
|
|
66
66
|
## Reference Guides
|
|
67
67
|
|
|
68
|
-
- [Command Reference](command-reference.md)
|
|
69
|
-
- [Command API Reference](command-api-reference.md)
|
|
70
|
-
- [General API Reference](api-reference.md)
|
|
71
|
-
- [Configuration Reference](config-reference.md)
|
|
68
|
+
- [Command Reference](https://github.com/jhuus/BriteKit/blob/master/command-reference.md)
|
|
69
|
+
- [Command API Reference](https://github.com/jhuus/BriteKit/blob/master/command-api-reference.md)
|
|
70
|
+
- [General API Reference](https://github.com/jhuus/BriteKit/blob/master/api-reference.md)
|
|
71
|
+
- [Configuration Reference](https://github.com/jhuus/BriteKit/blob/master/config-reference.md)
|
|
72
72
|
|
|
73
73
|
# Getting Started
|
|
74
74
|
|
|
@@ -77,7 +77,7 @@ Description-Content-Type: text/markdown
|
|
|
77
77
|
## Introduction
|
|
78
78
|
BriteKit (Bioacoustic Recognizer Technology Kit) is a Python package that facilitates the development of bioacoustic recognizers using deep learning.
|
|
79
79
|
It provides a command-line interface (CLI) as well as a Python API, to support functions such as:
|
|
80
|
-
- downloading recordings from Xeno-Canto, iNaturalist, and
|
|
80
|
+
- downloading recordings from Xeno-Canto, iNaturalist, and YouTube (optionally using Google Audioset metadata)
|
|
81
81
|
- managing training data in a SQLite database
|
|
82
82
|
- training models
|
|
83
83
|
- testing, tuning and calibrating models
|
|
@@ -90,10 +90,16 @@ The classes used by the commands can also be accessed, and are documented [here]
|
|
|
90
90
|
## License
|
|
91
91
|
BriteKit is distributed under the terms of the [MIT](https://spdx.org/licenses/MIT.html) license.
|
|
92
92
|
## Installation
|
|
93
|
-
|
|
93
|
+
It is best to install BriteKit in a virtual environment, such as a [Python venv](https://docs.python.org/3/library/venv.html). Once you have that set up, install the BriteKit package using pip:
|
|
94
94
|
```console
|
|
95
95
|
pip install britekit
|
|
96
96
|
```
|
|
97
|
+
In Windows environments, you then need to uninstall and reinstall PyTorch:
|
|
98
|
+
```
|
|
99
|
+
pip uninstall -y torch torchvision torchaudio
|
|
100
|
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
|
|
101
|
+
```
|
|
102
|
+
Note that cu126 refers to CUDA 12.6.\
|
|
97
103
|
Once BriteKit is installed, initialize a working environment using the `init` command:
|
|
98
104
|
```console
|
|
99
105
|
britekit init --dest=<directory path>
|
|
@@ -118,13 +124,13 @@ cfg, _ = bk.get_config()
|
|
|
118
124
|
cfg.train.model_type = "effnet.4"
|
|
119
125
|
```
|
|
120
126
|
## Downloading Recordings
|
|
121
|
-
The `inat`, `xeno` and `youtube` commands make it easy to download recordings from
|
|
127
|
+
The `inat`, `xeno` and `youtube` commands make it easy to download recordings from Xeno-Canto, iNaturalist and YouTube. For iNaturalist it is important to provide the scientific name. For example, to download recordings of the American Green Frog (lithobates clamitans), type:
|
|
122
128
|
```
|
|
123
129
|
britekit inat --name "lithobates clamitans" --output <output-path>
|
|
124
130
|
```
|
|
125
|
-
For Xeno-Canto, use `--name` for the common name or `--sci` for the scientific name. For
|
|
131
|
+
For Xeno-Canto, use `--name` for the common name or `--sci` for the scientific name. For YouTube, specify the ID of the corresponding video. For example, specify `--id K_EsxukdNXM` to download the audio from https://www.youtube.com/watch?v=K_EsxukdNXM.
|
|
126
132
|
|
|
127
|
-
BriteKit also supports downloads using [Google Audioset](https://research.google.com/audioset/), which is metadata that classifies sounds in
|
|
133
|
+
BriteKit also supports downloads using [Google Audioset](https://research.google.com/audioset/), which is metadata that classifies sounds in YouTube videos. Audioset was released in March 2017, so any videos uploaded later than that are not included. Also, some videos that are tagged in Audioset are no longer available. Type `britekit audioset --help` for more information.
|
|
128
134
|
## Managing Training Data
|
|
129
135
|
Once you have a collection of recordings, the steps to prepare it for training are:
|
|
130
136
|
1. Extract spectrograms from recordings and insert them into the training database.
|
|
@@ -200,7 +206,7 @@ To run a test, you need to annotate a set of test recordings, analyze them with
|
|
|
200
206
|
| Column | Description |
|
|
201
207
|
|---|---|
|
|
202
208
|
| recording | Just the stem of the recording name, e.g. XC12345, not XC12345.mp3. |
|
|
203
|
-
| classes | Defined classes found in the recording, separated by commas. For example
|
|
209
|
+
| classes | Defined classes found in the recording, separated by commas. For example: AMCR,BCCH,COYE.
|
|
204
210
|
|
|
205
211
|
Per-minute annotations are defined in a CSV file with these columns:
|
|
206
212
|
| Column | Description |
|
|
@@ -232,7 +238,7 @@ Here is a practical approach:
|
|
|
232
238
|
2. Do an initial tuning pass of the main training hyperparameters, especially model_type, head_type and num_epochs.
|
|
233
239
|
3. Based on the above, carefully tune the audio/spectrogram parameters.
|
|
234
240
|
|
|
235
|
-
This usually leads to a substantial improvement in scores (see [Metrics (PR-AUC and ROC-AUC)](#metrics-pr-auc-and-roc-auc), and then you can proceed to fine-tuning the training and inference. For inference, it is usually worth tuning the `audio_power` parameter. If you are using a SED classifier head, it is also worth tuning `segment_len` and `overlap`. For
|
|
241
|
+
This usually leads to a substantial improvement in scores (see [Metrics (PR-AUC and ROC-AUC)](#metrics-pr-auc-and-roc-auc), and then you can proceed to fine-tuning the training and inference. For inference, it is usually worth tuning the `audio_power` parameter. If you are using a SED classifier head, it is also worth tuning `segment_len` and `overlap`. For training, it may be worth tuning the data augmentation hyperparameters, which are described in detail in the [Data Augmentation](#data-augmentation) section below.
|
|
236
242
|
|
|
237
243
|
To run the `tune` command, you would typically use a config YAML file as described earlier, plus a special tuning YAML file, as in this example:
|
|
238
244
|
```
|
|
@@ -243,7 +249,7 @@ To run the `tune` command, you would typically use a config YAML file as describ
|
|
|
243
249
|
- 512
|
|
244
250
|
step: 64
|
|
245
251
|
```
|
|
246
|
-
This gives the name of the parameter to tune, its
|
|
252
|
+
This gives the name of the parameter to tune, its data type, and the bounds and step sizes to try. In this case, we want to try spec_width values of 256, 320, 384, 448 and 512. You can also tune multiple parameters at the same time, by simply appending more definitions similar to this one. Parameters that have a choice of defined values rather than a range are specified like this:
|
|
247
253
|
```
|
|
248
254
|
- name: head_type
|
|
249
255
|
type: categorical
|
|
@@ -14,7 +14,7 @@ britekit/core/reextractor.py,sha256=gazhIZN8V1K4T_Q_kc-ihxUYbkNnc_hoAS6bpYQc95I,
|
|
|
14
14
|
britekit/core/trainer.py,sha256=uKSXsrehb7-IPSCaw0oPpGBoDOcjDtaQovTt022kvzw,5467
|
|
15
15
|
britekit/core/tuner.py,sha256=FG81jbcT4H3l9ugtQnLOeB0pY621nZ3iG54LLlyxeBI,15857
|
|
16
16
|
britekit/core/util.py,sha256=0JsEEN09hFPQzuttCKaejWofXAjCGSvWEewjkiLAh3E,19172
|
|
17
|
-
britekit/models/base_model.py,sha256=
|
|
17
|
+
britekit/models/base_model.py,sha256=nuJe01HI8V5PUULr8PGzvFDNDOAV6aw2b8uBQSor57o,16898
|
|
18
18
|
britekit/models/dla.py,sha256=ALMY997AbERN7-sHqQuE5e43llRjpUDPZSFGL-Flv4M,3137
|
|
19
19
|
britekit/models/effnet.py,sha256=e7WdZMsLPXe8jcWChk6n97c8DMV0YyGV6lDP_Jv6Wz4,3129
|
|
20
20
|
britekit/models/gernet.py,sha256=7MEUZaDTfr-6oa8eE8dyDQb2LgahGBOEp1pTZSu1KOE,7022
|
|
@@ -32,7 +32,7 @@ britekit/testing/per_segment_tester.py,sha256=HJ_bDmLaHRtuL_Ucj5cNE9qjCYu8g2-Zpt
|
|
|
32
32
|
britekit/training_db/extractor.py,sha256=pT7lAUsNzYs3RXDzpMv7q0MKg6TktiFLKrRtKTWv6ho,8409
|
|
33
33
|
britekit/training_db/training_data_provider.py,sha256=V5aBjsCvrWViZ0Jv05hgcKRizcAXmqoj4q3hAHedoD8,5651
|
|
34
34
|
britekit/training_db/training_db.py,sha256=OOfD1pcbq5HVJbzhmuI-D-gkPHWSoz0cCO4zIUGFvoY,65011
|
|
35
|
-
britekit/__about__.py,sha256=
|
|
35
|
+
britekit/__about__.py,sha256=UrYd9vY55u2tQudSTDRdiKLK03WbCwYuL-aiQ0QHvTk,122
|
|
36
36
|
britekit/__init__.py,sha256=RpruzdjbvTcFNf21zJYY8HrAhJei91FtNNLjIBmw-kw,1857
|
|
37
37
|
britekit/install/data/classes.csv,sha256=OdTZ8oQdx7N-HKyhftxZStGZYsjhCy4UbanwtQJ2wBM,54
|
|
38
38
|
britekit/install/data/ignore.txt,sha256=RbKvEHtUCbgRYolwR1IucClwyD3q7l2s6QuRjph-Us4,68
|
|
@@ -52,7 +52,7 @@ britekit/install/data/audioset/curated/siren.csv,sha256=_EbIBGHJPsR7VoA0gEYG7DCc
|
|
|
52
52
|
britekit/install/data/audioset/curated/speech.csv,sha256=eBGVyfFTPHr34XrEIQIy3CWQfXMjQP5JqjryRI3IF8c,2439
|
|
53
53
|
britekit/install/data/audioset/curated/truck.csv,sha256=i0cTXlqGQwv2ULnrZTJ68p3EV8UWccU0saw7fqQq_8E,1667
|
|
54
54
|
britekit/install/data/audioset/curated/wind.csv,sha256=77_YrP5LttXjuwahndUiPagjwQB9Uh2tpk3Xa8-JFY4,4482
|
|
55
|
-
britekit/install/yaml/
|
|
55
|
+
britekit/install/yaml/base_config.yaml,sha256=vQ1xtglVkFW2qUo8ls8llpk_1YjdfSdxBJSXPmIYlUU,2744
|
|
56
56
|
britekit/install/yaml/samples/cfg_infer.yaml,sha256=GsBqkL5xPlS1V-bZmXNXGFDS1_hBEGkuer8sqO3CiQw,65
|
|
57
57
|
britekit/install/yaml/samples/train_dla.yaml,sha256=D2xHIgcPMOsoK2doPsF8PmoAVtkl0v2ojuuKfzYv8XI,228
|
|
58
58
|
britekit/install/yaml/samples/train_effnet.yaml,sha256=MD6LEL94FN3Hd05j8N3CHn88LIOp-sERdbyWBSKfk4g,323
|
|
@@ -66,7 +66,7 @@ britekit/install/yaml/samples/tune_optimizer.yaml,sha256=VtGlZmMJ22gaZWJ7CPLNHRZ
|
|
|
66
66
|
britekit/install/yaml/samples/tune_smooth.yaml,sha256=IZq2lohiJWVdzPl-i3aCEwEsJLmG_bg7EvyBUSI-R0o,83
|
|
67
67
|
britekit/commands/__init__.py,sha256=cgiHBDFQ7o1JL-wk9z0R_QEn7UVV_E0SPN7AANzxRdM,1538
|
|
68
68
|
britekit/commands/_analyze.py,sha256=Hss0ubLjGM2FSbQk52S9wvfj73-gkym4uW_o8Td-BOc,4954
|
|
69
|
-
britekit/commands/_audioset.py,sha256=
|
|
69
|
+
britekit/commands/_audioset.py,sha256=BqmAJq6yWpyqBYIUWt9d0khBTQRa3vgUMdCS4U0fxvA,9957
|
|
70
70
|
britekit/commands/_calibrate.py,sha256=338dRyGRj-Bw_4wFxiANDCbo-lZgdl0OR2gD8PmLv8U,4912
|
|
71
71
|
britekit/commands/_ckpt_ops.py,sha256=gutU8wqzrJCIyyuo_kLtIaOm9tq6h7q1Xm9L2QNU56c,5781
|
|
72
72
|
britekit/commands/_db_add.py,sha256=LQD3nR_d8oI19YNi06EzE62kS5DlbvL-q2HZSRmEGeE,7261
|
|
@@ -74,21 +74,21 @@ britekit/commands/_db_delete.py,sha256=rCV2tL8x-sNgsYmHZc6Id7_4-iLynwkK2f2_KRFkA
|
|
|
74
74
|
britekit/commands/_embed.py,sha256=MlP1HMRBmOANWEdbW1qhpnFGaxMUyeGEYOqaXV6K_cg,4391
|
|
75
75
|
britekit/commands/_extract.py,sha256=7c_XnJY42IQ2AA70JmgFU9IkIUodkDoLy2vfYWU99AE,8865
|
|
76
76
|
britekit/commands/_find_dup.py,sha256=yPn2EqG0icYHgUN8_87KuY9uOqEwDxqvhJc-DfBD40w,6353
|
|
77
|
-
britekit/commands/_inat.py,sha256=
|
|
77
|
+
britekit/commands/_inat.py,sha256=ojTre5BCj_jmEh6x2kzNhcminLN6h5bzsYpxyrxGRdQ,4164
|
|
78
78
|
britekit/commands/_init.py,sha256=FmaQRY-7SYSHCLXL__47LEPecWir7X6zEB05KpradFw,2829
|
|
79
79
|
britekit/commands/_pickle.py,sha256=p990FsJGfSXcgjtBzH7nPGPh023b8cH0D7RZywQQ5Aw,3488
|
|
80
80
|
britekit/commands/_plot.py,sha256=7vZXsYP9dv4PbHb8K3YbJFZc65YoPIBjEMBolyh6Has,13084
|
|
81
81
|
britekit/commands/_reextract.py,sha256=kCmSjeghg6mhrJ46ibRTmBkGVytU7flFvTbqsnYhBvY,3770
|
|
82
82
|
britekit/commands/_reports.py,sha256=zbLoYZx_1162v0j_Vk9GXXespQWlxB2m3oHb2xob2k4,21965
|
|
83
83
|
britekit/commands/_search.py,sha256=HIUXwfPvh3rxpgaFSR3bAAI38OtGVPyMo5GMfLtLX-8,9991
|
|
84
|
-
britekit/commands/_train.py,sha256=
|
|
84
|
+
britekit/commands/_train.py,sha256=vGFKlfcv35cOelArQNbVbTRbDWogT_IMg0wZt5virHY,4158
|
|
85
85
|
britekit/commands/_tune.py,sha256=lENPOuPNdY50PwqbFd3n10gzD5ujY1vuM7PByoMzLd0,7242
|
|
86
86
|
britekit/commands/_wav2mp3.py,sha256=2Q4cjT6OhJmBPTNzGRMrDd6dSdBBufuQdjhH1V8ghLo,2167
|
|
87
|
-
britekit/commands/_xeno.py,sha256=
|
|
88
|
-
britekit/commands/_youtube.py,sha256=
|
|
87
|
+
britekit/commands/_xeno.py,sha256=_6YxQ7xFdaSy5DNUaigkbYp3E8EhtOhTC9b6OFS0MFA,6026
|
|
88
|
+
britekit/commands/_youtube.py,sha256=_u1LrwY_2GxllKd505N_2ArFMbACQ_PtVxuqUCYxFe0,2214
|
|
89
89
|
britekit/core/__init__.py,sha256=QcjcFyvO5KqJLF_HBeqiCk925uU5jTUjIV5lJix9XY4,556
|
|
90
|
-
britekit-0.0.
|
|
91
|
-
britekit-0.0.
|
|
92
|
-
britekit-0.0.
|
|
93
|
-
britekit-0.0.
|
|
94
|
-
britekit-0.0.
|
|
90
|
+
britekit-0.0.5.dist-info/METADATA,sha256=e83OWfmsDTnthV098W7kO77uiya1PPhJMmAyGOlrP44,18555
|
|
91
|
+
britekit-0.0.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
92
|
+
britekit-0.0.5.dist-info/entry_points.txt,sha256=ycnPy5DLX14RTf7lKfkQAVyIf1B1zTL1gMsHm455wmg,46
|
|
93
|
+
britekit-0.0.5.dist-info/licenses/LICENSE.txt,sha256=kPoHm6iop8-CUa_720Tt8gqyvLD6D_7218u1hCCpErk,1092
|
|
94
|
+
britekit-0.0.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|