brainstate 0.2.0__py2.py3-none-any.whl → 0.2.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. brainstate/__init__.py +2 -4
  2. brainstate/_deprecation_test.py +2 -24
  3. brainstate/_state.py +540 -35
  4. brainstate/_state_test.py +1085 -8
  5. brainstate/graph/_operation.py +1 -5
  6. brainstate/mixin.py +14 -0
  7. brainstate/nn/__init__.py +42 -33
  8. brainstate/nn/_collective_ops.py +2 -0
  9. brainstate/nn/_common_test.py +0 -20
  10. brainstate/nn/_delay.py +1 -1
  11. brainstate/nn/_dropout_test.py +9 -6
  12. brainstate/nn/_dynamics.py +67 -464
  13. brainstate/nn/_dynamics_test.py +0 -14
  14. brainstate/nn/_embedding.py +7 -7
  15. brainstate/nn/_exp_euler.py +9 -9
  16. brainstate/nn/_linear.py +21 -21
  17. brainstate/nn/_module.py +25 -18
  18. brainstate/nn/_normalizations.py +27 -27
  19. brainstate/random/__init__.py +6 -6
  20. brainstate/random/{_rand_funs.py → _fun.py} +1 -1
  21. brainstate/random/{_rand_funs_test.py → _fun_test.py} +0 -2
  22. brainstate/random/_impl.py +672 -0
  23. brainstate/random/{_rand_seed.py → _seed.py} +1 -1
  24. brainstate/random/{_rand_state.py → _state.py} +121 -418
  25. brainstate/random/{_rand_state_test.py → _state_test.py} +7 -7
  26. brainstate/transform/__init__.py +6 -9
  27. brainstate/transform/_conditions.py +2 -2
  28. brainstate/transform/_find_state.py +200 -0
  29. brainstate/transform/_find_state_test.py +84 -0
  30. brainstate/transform/_make_jaxpr.py +221 -61
  31. brainstate/transform/_make_jaxpr_test.py +125 -1
  32. brainstate/transform/_mapping.py +287 -209
  33. brainstate/transform/_mapping_test.py +94 -184
  34. {brainstate-0.2.0.dist-info → brainstate-0.2.2.dist-info}/METADATA +1 -1
  35. {brainstate-0.2.0.dist-info → brainstate-0.2.2.dist-info}/RECORD +39 -39
  36. brainstate/transform/_eval_shape.py +0 -145
  37. brainstate/transform/_eval_shape_test.py +0 -38
  38. brainstate/transform/_random.py +0 -171
  39. /brainstate/random/{_rand_seed_test.py → _seed_test.py} +0 -0
  40. {brainstate-0.2.0.dist-info → brainstate-0.2.2.dist-info}/WHEEL +0 -0
  41. {brainstate-0.2.0.dist-info → brainstate-0.2.2.dist-info}/licenses/LICENSE +0 -0
  42. {brainstate-0.2.0.dist-info → brainstate-0.2.2.dist-info}/top_level.txt +0 -0
@@ -1,194 +1,104 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
1
  import unittest
18
2
 
19
3
  import jax
20
4
  import jax.numpy as jnp
21
- from jax import vmap
22
- from jax.lax import psum, pmean, pmax
23
-
24
- import brainstate
25
- import brainstate.transform
26
- from brainstate._error import BatchAxisError
27
5
 
6
+ import brainstate as bst
7
+ from brainstate.transform import StatefulMapping, vmap, vmap_new_states, pmap, map as bst_map
8
+ from brainstate.util import filter as state_filter
28
9
 
29
10
 
30
11
  class TestMap(unittest.TestCase):
31
- def test_map(self):
32
- for dim in [(10,), (10, 10), (10, 10, 10)]:
33
- x = brainstate.random.rand(*dim)
34
- r1 = brainstate.transform.map(lambda a: a + 1, x, batch_size=None)
35
- r2 = brainstate.transform.map(lambda a: a + 1, x, batch_size=2)
36
- r3 = brainstate.transform.map(lambda a: a + 1, x, batch_size=4)
37
- r4 = brainstate.transform.map(lambda a: a + 1, x, batch_size=5)
38
- true_r = x + 1
39
-
40
- self.assertTrue(jnp.allclose(r1, true_r))
41
- self.assertTrue(jnp.allclose(r2, true_r))
42
- self.assertTrue(jnp.allclose(r3, true_r))
43
- self.assertTrue(jnp.allclose(r4, true_r))
44
-
45
-
46
- class TestAxisName:
47
- def test1(self):
48
- def compute_stats_with_axis_name(x):
49
- """Compute statistics using named axis operations"""
50
- # Sum across the named axis 'batch'
51
- total_sum = psum(x, axis_name='batch')
52
-
53
- # Mean across the named axis 'batch'
54
- mean_val = pmean(x, axis_name='batch')
55
-
56
- # Max across the named axis 'batch'
57
- max_val = pmax(x, axis_name='batch')
58
-
59
- return {
60
- 'sum': total_sum,
61
- 'mean': mean_val,
62
- 'max': max_val,
63
- 'original': x
64
- }
65
-
66
- batch_data = jnp.array([1.0, 2.0, 3.0, 4.0, 5.0])
67
- print("Input batch data:", batch_data)
68
-
69
- # vmap with axis name 'batch'
70
- vectorized_stats_jax = jax.jit(vmap(compute_stats_with_axis_name, axis_name='batch'))
71
- result_jax = vectorized_stats_jax(batch_data)
72
-
73
- # vmap with axis name 'batch'
74
- vectorized_stats = brainstate.transform.vmap(compute_stats_with_axis_name, axis_name='batch')
75
- result = vectorized_stats(batch_data)
76
-
77
- # vmap with axis name 'batch'
78
- vectorized_stats_v2 = brainstate.transform.jit(
79
- brainstate.transform.vmap(compute_stats_with_axis_name, axis_name='batch')
12
+ def test_map_matches_vectorized(self):
13
+ xs = jnp.arange(6.0).reshape(6, 1)
14
+
15
+ def fn(x):
16
+ return x + 1.0
17
+
18
+ expected = jax.vmap(fn)(xs)
19
+ result = bst_map(fn, xs)
20
+ self.assertTrue(jnp.allclose(result, expected))
21
+
22
+ def test_map_multiple_inputs_and_batch_size(self):
23
+ xs = jnp.arange(5.0)
24
+ ys = jnp.ones_like(xs) * 2.0
25
+
26
+ def fn(a, b):
27
+ return a * a + b
28
+
29
+ expected = jax.vmap(fn)(xs, ys)
30
+ result = bst_map(fn, xs, ys, batch_size=2)
31
+ self.assertTrue(jnp.allclose(result, expected))
32
+
33
+
34
+ class TestVmapIntegration(unittest.TestCase):
35
+ def test_decorator_batched_stateful_function(self):
36
+ counter = bst.ShortTermState(jnp.zeros(3))
37
+
38
+ @vmap(
39
+ in_axes=0,
40
+ out_axes=0,
41
+ state_in_axes={0: state_filter.OfType(bst.ShortTermState)},
42
+ state_out_axes={0: state_filter.OfType(bst.ShortTermState)},
80
43
  )
81
- result_v2 = vectorized_stats_v2(batch_data)
82
-
83
- for key in result_jax.keys():
84
- print(f" {key}: {result_jax[key]}")
85
- assert jnp.allclose(result_jax[key], result[key]), f"Mismatch in {key}"
86
- assert jnp.allclose(result_jax[key], result_v2[key]), f"Mismatch in {key}"
87
-
88
- def test_nested_vmap(self):
89
- def nested_computation(x):
90
- """Computation with multiple named axes"""
91
- # Sum over 'inner' axis, then mean over 'outer' axis
92
- inner_sum = psum(x, axis_name='inner')
93
- outer_mean = pmean(inner_sum, axis_name='outer')
94
- return outer_mean
95
-
96
- # Create 2D batch data
97
- data_2d = jnp.arange(12.0).reshape(3, 4) # Shape: [outer_batch=3, inner_batch=4]
98
- print("Input 2D data shape:", data_2d.shape)
99
- print("Input 2D data:\n", data_2d)
100
-
101
- # Nested vmap: first over inner dimension, then outer dimension
102
- inner_vmap = vmap(nested_computation, axis_name='inner')
103
- nested_vmap = vmap(inner_vmap, axis_name='outer')
104
-
105
- result_2d = nested_vmap(data_2d)
106
- print("Result after nested vmap:", result_2d)
107
-
108
- inner_vmap_bst = brainstate.transform.vmap(nested_computation, axis_name='inner')
109
- nested_vmap_bst = brainstate.transform.vmap(inner_vmap_bst, axis_name='outer')
110
- result_2d_bst = nested_vmap_bst(data_2d)
111
- print("Result after nested vmap:", result_2d_bst)
112
-
113
- assert jnp.allclose(result_2d, result_2d_bst)
114
-
115
- def _gradient_averaging_simulation_bst(self):
116
- def loss_function(params, x, y):
117
- """Simple quadratic loss"""
118
- pred = params * x
119
- return (pred - y) ** 2
120
-
121
- def compute_gradients_with_averaging(params, batch_x, batch_y):
122
- """Compute gradients and average them across the batch"""
123
- # Compute per-sample gradients
124
- grad_fn = jax.grad(loss_function, argnums=0)
125
- per_sample_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
126
-
127
- # Average gradients across batch using named axis
128
- def average_grads(grads):
129
- return pmean(grads, axis_name='batch')
130
-
131
- # Apply averaging with named axis
132
- averaged_grads = vmap(average_grads, axis_name='batch')(per_sample_grads)
133
- return averaged_grads
134
-
135
- # Example data
136
- params = 2.0
137
- batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
138
- batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
139
-
140
- print("Parameters:", params)
141
- print("Batch X:", batch_x)
142
- print("Batch Y:", batch_y)
143
-
144
- # Compute individual gradients first
145
- grad_fn = jax.grad(loss_function, argnums=0)
146
- individual_grads = vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
147
- print("Individual gradients:", individual_grads)
148
-
149
- # Now compute averaged gradients using axis names
150
- averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
151
- print("Averaged gradients:", averaged_grads)
152
-
153
- return individual_grads, averaged_grads
154
-
155
- def _gradient_averaging_simulation_jax(self):
156
- def loss_function(params, x, y):
157
- """Simple quadratic loss"""
158
- pred = params * x
159
- return (pred - y) ** 2
160
-
161
- def compute_gradients_with_averaging(params, batch_x, batch_y):
162
- """Compute gradients and average them across the batch"""
163
- # Compute per-sample gradients
164
- grad_fn = jax.grad(loss_function, argnums=0)
165
- per_sample_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
166
-
167
- # Average gradients across batch using named axis
168
- def average_grads(grads):
169
- return pmean(grads, axis_name='batch')
170
-
171
- # Apply averaging with named axis
172
- averaged_grads = brainstate.transform.vmap(average_grads, axis_name='batch')(per_sample_grads)
173
- return averaged_grads
174
-
175
- # Example data
176
- params = 2.0
177
- batch_x = jnp.array([1.0, 2.0, 3.0, 4.0])
178
- batch_y = jnp.array([2.0, 4.0, 7.0, 8.0])
179
-
180
- print("Parameters:", params)
181
- print("Batch X:", batch_x)
182
- print("Batch Y:", batch_y)
183
-
184
- # Compute individual gradients first
185
- grad_fn = jax.grad(loss_function, argnums=0)
186
- individual_grads = brainstate.transform.vmap(grad_fn, in_axes=(None, 0, 0))(params, batch_x, batch_y)
187
- print("Individual gradients:", individual_grads)
188
-
189
- # Now compute averaged gradients using axis names
190
- averaged_grads = compute_gradients_with_averaging(params, batch_x, batch_y)
191
- print("Averaged gradients:", averaged_grads)
192
-
193
- return individual_grads, averaged_grads
44
+ def accumulate(x):
45
+ counter.value = counter.value + x
46
+ return counter.value
47
+
48
+ xs = jnp.asarray([1.0, 2.0, 3.0])
49
+ result = accumulate(xs)
50
+ self.assertTrue(jnp.allclose(result, xs))
51
+ self.assertTrue(jnp.allclose(counter.value, xs))
52
+
53
+ def test_vmap_partial_returns_stateful_mapping(self):
54
+ builder = vmap(in_axes=0, out_axes=0)
55
+
56
+ def fn(x):
57
+ return x * 2.0
58
+
59
+ mapped = builder(fn)
60
+ self.assertIsInstance(mapped, StatefulMapping)
61
+ xs = jnp.arange(3.0)
62
+ self.assertTrue(jnp.allclose(mapped(xs), xs * 2.0))
63
+
64
+
65
+ class TestVmapNewStates(unittest.TestCase):
66
+ def test_new_states_are_vectorized(self):
67
+ @vmap_new_states(in_axes=0, out_axes=0)
68
+ def build(x):
69
+ scratch = bst.ShortTermState(jnp.array(0.0), tag='scratch')
70
+ scratch.value = scratch.value + x
71
+ return scratch.value
72
+
73
+ xs = jnp.arange(4.0)
74
+ result_first = build(xs)
75
+ result_second = build(xs)
76
+ self.assertTrue(jnp.allclose(result_first, xs))
77
+ self.assertTrue(jnp.allclose(result_second, xs))
78
+
79
+
80
+ class TestPmapIntegration(unittest.TestCase):
81
+ @unittest.skipIf(jax.local_device_count() < 2, "Requires at least 2 devices")
82
+ def test_pmap_stateful_execution(self):
83
+ param = bst.ParamState(jnp.ones((4,)))
84
+
85
+ @pmap(
86
+ in_axes=0,
87
+ out_axes=0,
88
+ axis_name='devices',
89
+ state_in_axes={0: state_filter.OfType(bst.ParamState)},
90
+ state_out_axes={0: state_filter.OfType(bst.ParamState)},
91
+ )
92
+ def update(delta):
93
+ param.value = param.value + delta
94
+ return param.value
95
+
96
+ device_count = jax.local_device_count()
97
+ deltas = jnp.arange(device_count * 4.0, dtype=param.value.dtype).reshape(device_count, 4)
98
+ updated = update(deltas)
99
+ self.assertEqual(updated.shape, (device_count, 4))
100
+ self.assertTrue(jnp.all(updated >= 1.0))
101
+
194
102
 
103
+ if __name__ == "__main__":
104
+ unittest.main()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: brainstate
3
- Version: 0.2.0
3
+ Version: 0.2.2
4
4
  Summary: A State-based Transformation System for Brain Modeling.
5
5
  Author-email: BrainState Developers <chao.brain@qq.com>
6
6
  License: Apache-2.0 license
@@ -1,55 +1,55 @@
1
- brainstate/__init__.py,sha256=bmCIZG6xMiVlZ5qWk-d5qpkqdnrWxFhLePtpu3ff5WI,6024
1
+ brainstate/__init__.py,sha256=XZZctdLIf_6-IJIbeTyoEHR6r3pyKF2n6MfikCffASA,5915
2
2
  brainstate/_compatible_import.py,sha256=7thV_2F0FD5AF2DETjBfmtNb_2ZQzki8NxFgC62frg0,11037
3
3
  brainstate/_compatible_import_test.py,sha256=6ka26Sa_Kk6F-Ar1HR6UaKJTHquXcUCWglgXBUOovcg,22762
4
4
  brainstate/_deprecation.py,sha256=gSh36_TWLBgQAo0gNfOzscV9ssa26k3te9y25BG6O2w,8381
5
- brainstate/_deprecation_test.py,sha256=5_tJ9JDhG79zLwe5MuBLsqcgl7gi-oXPgDTCujrPmz0,88325
5
+ brainstate/_deprecation_test.py,sha256=vnmcZ7l_FmQRgsMYUA9wMiWL1ltPc01plUTK-pWKCzk,87550
6
6
  brainstate/_error.py,sha256=6A5ILy17ZMMZIjS8LkajTZBDRnwv_Qait5x__h2Levo,1522
7
- brainstate/_state.py,sha256=YCYKrX2xCTojIY15vtQl8WWjtJ0HNMg8y5LCUk1d_3Q,58096
8
- brainstate/_state_test.py,sha256=wCoWTbvARVkhNokMLLBV6sEoHSE9OJRyuUVrNDcRiG8,1589
7
+ brainstate/_state.py,sha256=G5SCjxi42Lb1EoqaIZcyy0fmjNonwrQLLb4ujKt_99E,77867
8
+ brainstate/_state_test.py,sha256=ptul4-BHagOIhnAvnWmb2BFyXnIfWpK0rQClLxhzLBY,39895
9
9
  brainstate/_utils.py,sha256=cmUyO9ds1etrrpV4ucp1G8mDqE15g4ZtbivblH_cD9o,1613
10
10
  brainstate/environ.py,sha256=BmQsvo1aZaMpckHXlJ45dZh9DUdnHHP9Q9JdLNCa9wA,42169
11
11
  brainstate/environ_test.py,sha256=RdVmeP7irbk3_qNjwWoy-DSdpkTRpxqAABtNGZcbB2w,42418
12
- brainstate/mixin.py,sha256=O58rGznYowz-hBQy7iKOhbrg3Dze7FAR8AU4CX8hUEI,44635
12
+ brainstate/mixin.py,sha256=QoZPhBs4hGXTzTfXaF0M8XhsbcbOtT4Ylm54D7pCOSA,45124
13
13
  brainstate/mixin_test.py,sha256=6WmqJf34kT3Z5WaiCNDo3OV3ci0DIHCQp474zECDxEU,34718
14
14
  brainstate/typing.py,sha256=pYiNI-9oHpH7HfjRKYxugK03KGiamCwweagMyO0rsi4,26301
15
15
  brainstate/typing_test.py,sha256=2mmMW0uAzIo3_VXpT5Boq79BohxYkzBlHexBysFUGII,26240
16
16
  brainstate/graph/__init__.py,sha256=kGVtHAnkiWR5MqDYQU0G3AobWnioGeDqjILA--RyDz8,846
17
17
  brainstate/graph/_node.py,sha256=_XH8xx6_glsCK4KCsQnarACK8meyhCdfh3nWfUDko0k,6407
18
18
  brainstate/graph/_node_test.py,sha256=sD2DS0AhDKOU5ZQm0cYz0llnJ6D60ftNfDpztk4i8cM,18687
19
- brainstate/graph/_operation.py,sha256=n2HqfwPzG3f6QHish_7d8lNZRhHUyS4_YHTdPMGgdUk,54096
19
+ brainstate/graph/_operation.py,sha256=5EN_qL08M_BIV-L3YkVP3OwlsDuNKmVV5NaCLvrl7kw,53971
20
20
  brainstate/graph/_operation_test.py,sha256=IVyrJh4io3sDgtrTEIAItGzNs2XEf7rO1rvI1r_KiII,39119
21
- brainstate/nn/__init__.py,sha256=oEQ81xpWppPMUMCRalMhAhUU5faYs0aKcyydwjoxGVo,4759
21
+ brainstate/nn/__init__.py,sha256=JcaVVt01LNbAwxHymNmBUFAZwchtucyHq_sT70rvYc4,5245
22
22
  brainstate/nn/_activations.py,sha256=6jHR67obYR1lpo-imVXmfd3m_NDyU0XZb8t-pVYDvUU,26917
23
23
  brainstate/nn/_activations_test.py,sha256=Ikr8RYBaIpApVKUhY-XAWr6llEG7vYWS8YuqDHyTtBY,13438
24
- brainstate/nn/_collective_ops.py,sha256=UditkuCy0f9ggkFwGUXyJDoFtDdVUIQU3xmD5YOxRKg,21280
24
+ brainstate/nn/_collective_ops.py,sha256=AHda68XjoNUyLOwxRhwQLnXr4zLBqnB8UDLAkfx2eAg,21282
25
25
  brainstate/nn/_collective_ops_test.py,sha256=8mKQkfTjfwuO7DA1i_Yr4QD1yg2ZJgVpX7zhHFo9CuQ,25600
26
26
  brainstate/nn/_common.py,sha256=UyJMJoVF9KfrToOX5Dbv-2s3CD49SsroLRfL17DLl4Q,7184
27
- brainstate/nn/_common_test.py,sha256=NpKQpKPPU4I2nVpz1X_bOGC5R-RyCP2kYlyYqXWoKAE,5966
27
+ brainstate/nn/_common_test.py,sha256=xztvEPYCurvY9LiaZOtHjWcFrwJaYknA8_RLy_XHI1Y,4895
28
28
  brainstate/nn/_conv.py,sha256=3cGToc5UoGN5jp4BUHlrK6md8O_0IcWMCBXFHBQg7nE,82106
29
29
  brainstate/nn/_conv_test.py,sha256=65FlrteUxLQb8ckUUJFhaPZDsQZTlGVAp0HUGUJtt1M,30173
30
- brainstate/nn/_delay.py,sha256=0brSPlKOC7_nNWr1zcdjXNHJFw_I9KUX7PGyVWXENTk,22331
30
+ brainstate/nn/_delay.py,sha256=qssPPKgWeS-vcxKJG6ewn2bQ1KvdHHBrbI6bIJytSfI,22332
31
31
  brainstate/nn/_delay_test.py,sha256=FzBb8vXfse8HEcEid83hpa6aag6oj90mtcHYsDs0DOE,10376
32
32
  brainstate/nn/_dropout.py,sha256=UotjW0PQO4gypfhtSqzkR4UVGkY0kNBncEB_poGL7Sc,22555
33
- brainstate/nn/_dropout_test.py,sha256=5LEN_G6t2TZAbmvJdZ75h1nyKZTHHiNT_i1W-im5wo8,21461
34
- brainstate/nn/_dynamics.py,sha256=V7GA1enppLRRDJCw146RI_CdwpVyRgHUYH9fu2-PJOA,44181
35
- brainstate/nn/_dynamics_test.py,sha256=G1VkrWgKK4CXtcKJmevxiQQ9DVeyf1zcdMsAWyCN0Jw,2356
33
+ brainstate/nn/_dropout_test.py,sha256=87ETtMZ7Aeaa0les7Z5ICO9KVKMewm_WWd-ITCFDo_w,21589
34
+ brainstate/nn/_dynamics.py,sha256=H83WUFWv6ZLBEn01U30qInjgfh8WAgZ5jwgXWA9TEkg,29161
35
+ brainstate/nn/_dynamics_test.py,sha256=XwTBCXXKN8hAaLFtQjmWEOf-ry0MJZmfgx9dAju-rXA,1744
36
36
  brainstate/nn/_elementwise.py,sha256=4kKzrbKn5luwnpY8n7IeaMOtBVVie8oPHEc64hSn8-w,34858
37
37
  brainstate/nn/_elementwise_test.py,sha256=sbWlUyTB8oiu3PRHObTvmUaob99EjIGYE6k6bEpg6K8,27296
38
- brainstate/nn/_embedding.py,sha256=eMwbz9udm6WGVEGeHwhvCr7sJA6kMFyaZsli7lL30eg,14942
38
+ brainstate/nn/_embedding.py,sha256=MXkGja6uCB2OsbwqArEQ8ez_GgwZ2s3DINaUnFyeZWk,14991
39
39
  brainstate/nn/_embedding_test.py,sha256=Gc0y6gHMEagaDrBJoAYQZMDTd47TYQNVrenWUwLWK_w,6242
40
40
  brainstate/nn/_event_fixedprob.py,sha256=ZEnIyjDksxtUWWG5GXLcF-RHR1S33DZTw-rN2lHKs0g,9395
41
41
  brainstate/nn/_event_fixedprob_test.py,sha256=rvTKxEzKwvctQc8-AxXjJ4p4D-if1va2O8KqQYW5nxY,3836
42
42
  brainstate/nn/_event_linear.py,sha256=d0J54Sf9zBl926BzXoy4Oc1p96h9veU3f8YhWrZLRPk,2554
43
43
  brainstate/nn/_event_linear_test.py,sha256=qzcGplDIwxTnZOs4JzD5GX_oNBYtcYFNaf3GpWo8pZY,3765
44
- brainstate/nn/_exp_euler.py,sha256=W5ofUPe6UK8NXO917PY9_nNXOI9chSHgBmnDHMVXHoo,8635
44
+ brainstate/nn/_exp_euler.py,sha256=deKqWu5RvN_Jvj_QHg5j1xkKhlysBFhi3Qvo_Z-QNDo,8698
45
45
  brainstate/nn/_exp_euler_test.py,sha256=21qomGOo96YLmlEQok2hCByAcRpmqREhSr3kxmhKOm8,13014
46
- brainstate/nn/_linear.py,sha256=olbo9AmC35UQBxECyAQW06XeucsJfBAAMoSfwOW6c7s,24047
46
+ brainstate/nn/_linear.py,sha256=LLWBE6eBXjpXUvx5mjdwOjFnolNRGBxNb_ZbhsYOu4M,24201
47
47
  brainstate/nn/_linear_test.py,sha256=5fHx4v4_54dH3Bsyapl2cobvVtMEu3DFR-jDKLbkJFw,17876
48
48
  brainstate/nn/_metrics.py,sha256=TgALwv6i9La4Dm1WAkWDWxvxr9rkd7CJLGFy2sOGQbQ,36481
49
49
  brainstate/nn/_metrics_test.py,sha256=XZiRndchRgEH0X8zsHzg0fsHNMxj43mnd883QChfSik,24104
50
- brainstate/nn/_module.py,sha256=to280ubWAP-HiCV7LknMBqOhet0UkH9Oh-PkLkual_g,12775
50
+ brainstate/nn/_module.py,sha256=W9iXXmLxaX_QyNxukTxajHJfah7s9GqJXZRHQhZqCfU,13076
51
51
  brainstate/nn/_module_test.py,sha256=znjB7FU5evJENQ1Pqw7ZlOGC5faQe4-4VpjW60H8UWI,1414
52
- brainstate/nn/_normalizations.py,sha256=exdIn627ph5pVHdYx_4NIaK_f1xcLaBj-YQ0Ui22CsA,50185
52
+ brainstate/nn/_normalizations.py,sha256=3ivJdQUhhWeMhDpzWhXhRQnu8dRR4zDzM1cOlPvPo2s,50374
53
53
  brainstate/nn/_normalizations_test.py,sha256=y5n7aTaUHRkyAAjq4Oj8dfButJC3ehm4KdUB7226Bow,23350
54
54
  brainstate/nn/_paddings.py,sha256=3u3dbRFtPSlIsLMBYZmHcYDQ6HFl0u_d-yP7ZoYcCrA,32415
55
55
  brainstate/nn/_paddings_test.py,sha256=uY9CRexf9sM5V6AzTfzm8214y4IoGqEbahy92yaKsWM,27409
@@ -61,36 +61,36 @@ brainstate/nn/_utils.py,sha256=VK-Se53e1q-Ip4AtMOZ3SUzYw8u2UllLJRLRtEFRCRE,7403
61
61
  brainstate/nn/_utils_test.py,sha256=uim2SkfNHrBZzNDvN0WOK8qeZC1kaeOd-UQDvrn_M24,14266
62
62
  brainstate/nn/init.py,sha256=7iLHrL-ZHpU-g5d0PlusaqmtkWO7X_KNr2eLx90oHrc,25656
63
63
  brainstate/nn/init_test.py,sha256=bfby6kovvhbc7CCEaohtQawUQj3w3GvaMSDAdTiP2ps,6200
64
- brainstate/random/__init__.py,sha256=2k5aI3GI_ftOtuWO9rosRUhyr5OjnMty82b-CTBkOUU,8383
65
- brainstate/random/_rand_funs.py,sha256=hBkZYTlBNHBLdHTLBecT7sja7mVItMF7TV3ao26vfj0,135339
66
- brainstate/random/_rand_funs_test.py,sha256=mZaSRtlXCwJP3YfF5GsFelR-YACg-uH1gHWG-coZT_k,23040
67
- brainstate/random/_rand_seed.py,sha256=mzSe2lsyhN_0eXhkD8gpRKmSbReQfZF0pZA89cjiiHU,24927
68
- brainstate/random/_rand_seed_test.py,sha256=Y2VCAkUzciDaCfYZWPe_Ewmi3MylK-WzfPA7TzorV8Q,1491
69
- brainstate/random/_rand_state.py,sha256=_62wIrdZKKvmtjBErB0lRCuf1vYEskFyPd4Nhp_FKDU,53591
70
- brainstate/random/_rand_state_test.py,sha256=0Y1kx7rvkACQiiiAHK0plePtLxYeYTzvWUGt3MimSGI,19227
71
- brainstate/transform/__init__.py,sha256=CfzUYGQFt9hAp57ZvffUBBhLjudgzJ9n_aTaor57iOk,2241
64
+ brainstate/random/__init__.py,sha256=yeWQ3RUcFXtXcDkFhaOYa_nwQ_M7hlH_W69YEcGF3Oo,8351
65
+ brainstate/random/_fun.py,sha256=fW2bc2i15sQNodmKT66ZCfXJSIZ8Ygxmn_Xf80Zjygw,135334
66
+ brainstate/random/_fun_test.py,sha256=EcHOcCOsmZPbm1n5TUyiTDxS13Pn3MJbq5IG-twbnPI,22866
67
+ brainstate/random/_impl.py,sha256=A79IK8YNZuN8RGLftASKHcZI0Cdsep7mGYNtCfKl2fQ,21830
68
+ brainstate/random/_seed.py,sha256=mLHqOu-lJQjsXo4nODACY78SSKgYayHx3n5IBZ9L6J0,24922
69
+ brainstate/random/_seed_test.py,sha256=Y2VCAkUzciDaCfYZWPe_Ewmi3MylK-WzfPA7TzorV8Q,1491
70
+ brainstate/random/_state.py,sha256=JPK6-jqFwrzsrb3lrxZ4GahP0TtXycUfWrJSdjHIEg8,42946
71
+ brainstate/random/_state_test.py,sha256=OfW0WxTpJZm_kT_7bZjJJ8ZtLM_X8NBF90h1sDSZxmw,19221
72
+ brainstate/transform/__init__.py,sha256=P7MAmt4pJYcpxLO30gFoT4BO_AHHM3VNOoG2j3OkNRk,2126
72
73
  brainstate/transform/_ad_checkpoint.py,sha256=4dcNCEQVV_CPMSkE32URERDMpQHbyfdGeLT_Nvhyd4o,6912
73
74
  brainstate/transform/_ad_checkpoint_test.py,sha256=fPXBjDxsLHbL2mhIU3x_F5BpitkXLpgIsRCRgm2Us6w,1697
74
75
  brainstate/transform/_autograd.py,sha256=4zGSYa9TMn6bqzPJNLfU9UZGZRyYxmwMXTKZWO4w3QQ,39991
75
76
  brainstate/transform/_autograd_test.py,sha256=saWG1_k3cRXpsyQDzQkOLGvsF7IIxG9aGnjrf5B3HNk,44112
76
- brainstate/transform/_conditions.py,sha256=IIu_V2f7R74saOoURGUxwzI1RpsnxkzpfB2fes9plOs,11399
77
+ brainstate/transform/_conditions.py,sha256=nLc_m0bLlybEPTi42feSlz2zTDIHB-BknSqPTIL_I0w,11376
77
78
  brainstate/transform/_conditions_test.py,sha256=MEuqRq6IFmyORRDi0qWvNo4pWKFyc8aNrW1v9Saqxj0,8493
78
79
  brainstate/transform/_error_if.py,sha256=e9tp3wT5p4bEyjn_Za_SrPNOG3OIoPBMIrvG2CsZzvw,2680
79
80
  brainstate/transform/_error_if_test.py,sha256=yn-qcZ6lZUWciIif4fJOpdpKzJFAAdfgzZm6FfPeq7U,1848
80
- brainstate/transform/_eval_shape.py,sha256=BNbjiFHUsk-qfENiZf1K8yX-x7eIIuAyWR0CjBIBr5w,5355
81
- brainstate/transform/_eval_shape_test.py,sha256=4A2NdHcpksiGPf_UmPlMPgHJnes9ciiQO20ZJHVzA9g,1355
81
+ brainstate/transform/_find_state.py,sha256=nUrVp_DUP78E2H8UHyhH8RL03kwcKjepnkDTqbISFmI,7405
82
+ brainstate/transform/_find_state_test.py,sha256=KahI4HSj6MTlC4ccCPyLiyERy3MryZd_iczGwFXb2bM,2913
82
83
  brainstate/transform/_jit.py,sha256=qYsL3Z9nAAW0UyQe_AyvBEuJvqAan6iw3lN49o1oC0A,15421
83
84
  brainstate/transform/_jit_test.py,sha256=ecw54dGQYdJq2J94itPrXBQrSDNvCY_htUD7z7y4HUM,4013
84
85
  brainstate/transform/_loop_collect_return.py,sha256=HhjC2gq6qzliw4ofP16VxdtR5hW-NmDZdeHxuiLdYGk,25899
85
86
  brainstate/transform/_loop_collect_return_test.py,sha256=BVK-b3CuDtTXciRaA_8t4751N4taQOnIPNzAelSts-k,1753
86
87
  brainstate/transform/_loop_no_collection.py,sha256=ArPpNemMh4jJsq_vUWPxuagCnxTlONN--3P_-44qYq8,10156
87
88
  brainstate/transform/_loop_no_collection_test.py,sha256=3bRo9_Oaypbw3asEevrgTK0WksxDAIZKJgeaWpt7nl8,1371
88
- brainstate/transform/_make_jaxpr.py,sha256=A9ivekPuzLUCoUcgSLm5hUuWPj5_1_ksqn2KvztcWhY,73327
89
- brainstate/transform/_make_jaxpr_test.py,sha256=dFAnEQavYlEddex6h42ulRkXbV5TSGCDHFXWAvPsy7w,49128
90
- brainstate/transform/_mapping.py,sha256=L9Q_1M_GXJA0ZCJtty9x01wViyefgeHyOLga-Jo2AE8,21570
91
- brainstate/transform/_mapping_test.py,sha256=yGG-QSo3epqtBvGX8VxrNDKiC-d6TMN_jv_uKPad6eM,7647
89
+ brainstate/transform/_make_jaxpr.py,sha256=_pSw1oumQ504Emvcgy7eXBTxOw1c1pbnvbcdveKMG8s,80444
90
+ brainstate/transform/_make_jaxpr_test.py,sha256=EfY-ZKR-u-aLfjOTPY6QiwEzZU-QpIUsB5oCCZi5Z-I,53014
91
+ brainstate/transform/_mapping.py,sha256=wBTvmXSg8TW-ZjIhKU5nQLLb6BIkLTCaJWwESZ72Hks,22021
92
+ brainstate/transform/_mapping_test.py,sha256=BkoL9peJGiJvkp7aLErrB6GnDasSviMbBkBqh1yD8LM,3255
92
93
  brainstate/transform/_progress_bar.py,sha256=kZ-mI5hbUQXhqKFVyo0qeKG_LvrR9ZIar7WkXyOeET0,8961
93
- brainstate/transform/_random.py,sha256=ZTH5Smx5SvFy6El7qk-ihoYE9WII6TJXcsC9Vm7VgjA,5259
94
94
  brainstate/transform/_unvmap.py,sha256=cW6fjs5Iy1YBB6Nx2mxlM4IzV8U99bEX5QjT8rBRDho,6319
95
95
  brainstate/transform/_util.py,sha256=IYqJj7oyAYzm_m3d9WEsUQRKDdVLQaAWpwM5O8PD4YQ,11304
96
96
  brainstate/util/__init__.py,sha256=anHdG5BIsMqcBQy7gt8lErKInZv1wf2NOLJGUqltyAQ,1154
@@ -104,8 +104,8 @@ brainstate/util/filter.py,sha256=wY_XUF3OhrXSV1bZkTcVhlEPba4HP1l9N5aRW2zgxqQ,274
104
104
  brainstate/util/filter_test.py,sha256=ZfrEeOc1yMHYzrcSR3p4jbZGj7c_tXC8VcPq7H13q8E,31653
105
105
  brainstate/util/struct.py,sha256=LYPLGDGfPuw14hhx5k4rb8msSH3yZPdAu_0CvjxPWwE,24505
106
106
  brainstate/util/struct_test.py,sha256=q_fWsUH1ON35DKjUUAMq6VtYglqTDyBvd6WMVGD89EI,16526
107
- brainstate-0.2.0.dist-info/licenses/LICENSE,sha256=RJ40fox7u2in2H8wvIS5DsPGlNHaA7JI024thFUlaZE,11348
108
- brainstate-0.2.0.dist-info/METADATA,sha256=GrI-RT31978SYlGNnRP9xodMOYl1g6mPpIiP1XdUaOY,4421
109
- brainstate-0.2.0.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
110
- brainstate-0.2.0.dist-info/top_level.txt,sha256=eQbGgKn0ptx7FDWuua0V0wr4K1VHi2iOUCYo3fUQBRA,11
111
- brainstate-0.2.0.dist-info/RECORD,,
107
+ brainstate-0.2.2.dist-info/licenses/LICENSE,sha256=RJ40fox7u2in2H8wvIS5DsPGlNHaA7JI024thFUlaZE,11348
108
+ brainstate-0.2.2.dist-info/METADATA,sha256=tbhbVxomU2orW-T3WaEjVtYAyZSn4T4uJxAXzPmU9JY,4421
109
+ brainstate-0.2.2.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
110
+ brainstate-0.2.2.dist-info/top_level.txt,sha256=eQbGgKn0ptx7FDWuua0V0wr4K1VHi2iOUCYo3fUQBRA,11
111
+ brainstate-0.2.2.dist-info/RECORD,,
@@ -1,145 +0,0 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import functools
17
- from typing import Any, TypeVar, Callable, Sequence, Union
18
-
19
- import jax
20
-
21
- from brainstate import random
22
- from brainstate._utils import set_module_as
23
- from brainstate.graph import Node, flatten, unflatten
24
- from ._random import restore_rngs
25
-
26
- __all__ = [
27
- 'abstract_init',
28
- ]
29
-
30
- A = TypeVar('A')
31
-
32
-
33
- @set_module_as('brainstate.transform')
34
- def abstract_init(
35
- fn: Callable[..., A],
36
- *args: Any,
37
- rngs: Union[random.RandomState, Sequence[random.RandomState]] = random.DEFAULT,
38
- **kwargs: Any,
39
- ) -> A:
40
- """
41
- Compute the shape/dtype of ``fn`` without any FLOPs.
42
-
43
- This function evaluates the shape and dtype of the output of a function without
44
- actually executing the computational operations. It's particularly useful for
45
- initializing neural network models to understand their structure and parameter
46
- shapes without performing expensive computations.
47
-
48
- Parameters
49
- ----------
50
- fn : callable
51
- The function whose output shape should be evaluated.
52
- *args
53
- Positional argument tuple of arrays, scalars, or (nested) standard
54
- Python containers (tuples, lists, dicts, namedtuples, i.e. pytrees) of
55
- those types. Since only the ``shape`` and ``dtype`` attributes are
56
- accessed, one can use :class:`jax.ShapeDtypeStruct` or another container
57
- that duck-types as ndarrays (note however that duck-typed objects cannot
58
- be namedtuples because those are treated as standard Python containers).
59
- rngs : RandomState or sequence of RandomState, default random.DEFAULT
60
- A :class:`RandomState` or a sequence of :class:`RandomState` objects
61
- representing the random number generators to use. If not provided, the
62
- default random number generator will be used.
63
- **kwargs
64
- Keyword argument dict of arrays, scalars, or (nested) standard
65
- Python containers (pytrees) of those types. As in ``args``, array values
66
- need only be duck-typed to have ``shape`` and ``dtype`` attributes.
67
-
68
- Returns
69
- -------
70
- A
71
- A nested PyTree containing :class:`jax.ShapeDtypeStruct` objects as leaves,
72
- representing the structure and shape/dtype information of the function output.
73
-
74
- Examples
75
- --------
76
- Basic usage with neural network initialization:
77
-
78
- .. code-block:: python
79
-
80
- >>> import brainstate
81
- >>> import jax.numpy as jnp
82
- >>>
83
- >>> class MLP:
84
- ... def __init__(self, n_in, n_mid, n_out):
85
- ... self.dense1 = brainstate.nn.Linear(n_in, n_mid)
86
- ... self.dense2 = brainstate.nn.Linear(n_mid, n_out)
87
- >>>
88
- >>> # Get shape information without actual computation
89
- >>> model_shape = brainstate.transform.abstract_init(lambda: MLP(1, 2, 3))
90
-
91
- With function arguments:
92
-
93
- .. code-block:: python
94
-
95
- >>> def create_model(input_size, hidden_size, output_size):
96
- ... return brainstate.nn.Sequential([
97
- ... brainstate.nn.Linear(input_size, hidden_size),
98
- ... brainstate.nn.ReLU(),
99
- ... brainstate.nn.Linear(hidden_size, output_size)
100
- ... ])
101
- >>>
102
- >>> # Abstract initialization with arguments
103
- >>> model_shape = brainstate.transform.abstract_init(
104
- ... create_model, 784, 256, 10
105
- ... )
106
-
107
- Using custom random number generators:
108
-
109
- .. code-block:: python
110
-
111
- >>> import brainstate.random as random
112
- >>>
113
- >>> # Create custom RNG
114
- >>> rng = random.RandomState(42)
115
- >>>
116
- >>> def init_with_custom_weights():
117
- ... return brainstate.nn.Linear(10, 5)
118
- >>>
119
- >>> model_shape = brainstate.transform.abstract_init(
120
- ... init_with_custom_weights, rngs=rng
121
- ... )
122
-
123
- Evaluating function with array inputs:
124
-
125
- .. code-block:: python
126
-
127
- >>> def model_forward(x):
128
- ... layer = brainstate.nn.Linear(x.shape[-1], 128)
129
- ... return layer(x)
130
- >>>
131
- >>> # Use ShapeDtypeStruct to represent input without actual data
132
- >>> input_shape = jax.ShapeDtypeStruct((32, 784), jnp.float32)
133
- >>> output_shape = brainstate.transform.abstract_init(model_forward, input_shape)
134
- """
135
-
136
- @functools.wraps(fn)
137
- @restore_rngs(rngs=rngs)
138
- def _eval_shape_fn(*args_, **kwargs_):
139
- out = fn(*args_, **kwargs_)
140
- assert isinstance(out, Node), 'The output of the function must be Node'
141
- graph_def, treefy_states = flatten(out)
142
- return graph_def, treefy_states
143
-
144
- graph_def_, treefy_states_ = jax.eval_shape(_eval_shape_fn, *args, **kwargs)
145
- return unflatten(graph_def_, treefy_states_)
@@ -1,38 +0,0 @@
1
- # Copyright 2024 BrainX Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import unittest
18
-
19
- import brainstate
20
-
21
-
22
- class TestEvalShape(unittest.TestCase):
23
- def test1(self):
24
- class MLP(brainstate.nn.Module):
25
- def __init__(self, n_in, n_mid, n_out):
26
- super().__init__()
27
- self.dense1 = brainstate.nn.Linear(n_in, n_mid)
28
- self.dense2 = brainstate.nn.Linear(n_mid, n_out)
29
-
30
- def __call__(self, x):
31
- x = self.dense1(x)
32
- x = brainstate.functional.relu(x)
33
- x = self.dense2(x)
34
- return x
35
-
36
- r = brainstate.augment.abstract_init(lambda: MLP(1, 2, 3))
37
- print(r)
38
- print(brainstate.random.DEFAULT)