brainstate 0.1.2__py2.py3-none-any.whl → 0.1.4__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +1 -1
- brainstate/_compatible_import.py +0 -15
- brainstate/compile/_jit.py +14 -5
- brainstate/compile/_make_jaxpr.py +78 -22
- brainstate/compile/_make_jaxpr_test.py +13 -2
- brainstate/graph/_graph_node.py +1 -1
- brainstate/graph/_graph_operation.py +4 -4
- brainstate/mixin.py +30 -14
- brainstate/nn/__init__.py +84 -17
- brainstate/nn/{_interaction/_conv.py → _conv.py} +1 -1
- brainstate/nn/{_dynamics/_state_delay.py → _delay.py} +19 -3
- brainstate/nn/{_elementwise/_dropout.py → _dropout.py} +6 -5
- brainstate/nn/{_dynamics/_dynamics_base.py → _dynamics.py} +137 -21
- brainstate/nn/{_elementwise/_elementwise.py → _elementwise.py} +1 -1
- brainstate/nn/{_interaction/_embedding.py → _embedding.py} +1 -1
- brainstate/nn/{_event/_fixedprob_mv.py → _fixedprob.py} +96 -25
- brainstate/nn/{_dyn_impl/_inputs.py → _inputs.py} +4 -5
- brainstate/nn/{_interaction/_linear.py → _linear.py} +2 -5
- brainstate/nn/{_event/_linear_mv.py → _linear_mv.py} +2 -2
- brainstate/nn/{_event/__init__.py → _ltp.py} +7 -5
- brainstate/nn/_module.py +5 -5
- brainstate/nn/{_dyn_impl/_dynamics_neuron.py → _neuron.py} +2 -2
- brainstate/nn/{_interaction/_normalizations.py → _normalizations.py} +1 -1
- brainstate/nn/{_interaction/_poolings.py → _poolings.py} +1 -1
- brainstate/nn/{_interaction/_poolings_test.py → _poolings_test.py} +1 -1
- brainstate/nn/_projection.py +486 -0
- brainstate/nn/{_dyn_impl/_rate_rnns.py → _rate_rnns.py} +2 -2
- brainstate/nn/{_dyn_impl/_readout.py → _readout.py} +3 -3
- brainstate/nn/_stp.py +236 -0
- brainstate/nn/{_dyn_impl/_dynamics_synapse.py → _synapse.py} +19 -212
- brainstate/nn/_synaptic_projection.py +423 -0
- brainstate/nn/{_dynamics/_synouts.py → _synouts.py} +4 -1
- brainstate/surrogate.py +1 -1
- brainstate/typing.py +1 -1
- brainstate/util/__init__.py +14 -14
- brainstate/util/{_pretty_pytree.py → pretty_pytree.py} +2 -2
- {brainstate-0.1.2.dist-info → brainstate-0.1.4.dist-info}/METADATA +1 -1
- {brainstate-0.1.2.dist-info → brainstate-0.1.4.dist-info}/RECORD +61 -63
- brainstate/nn/_dyn_impl/__init__.py +0 -42
- brainstate/nn/_dynamics/__init__.py +0 -37
- brainstate/nn/_dynamics/_projection_base.py +0 -362
- brainstate/nn/_elementwise/__init__.py +0 -22
- brainstate/nn/_interaction/__init__.py +0 -41
- /brainstate/nn/{_interaction/_conv_test.py → _conv_test.py} +0 -0
- /brainstate/nn/{_elementwise/_dropout_test.py → _dropout_test.py} +0 -0
- /brainstate/nn/{_dynamics/_dynamics_base_test.py → _dynamics_test.py} +0 -0
- /brainstate/nn/{_elementwise/_elementwise_test.py → _elementwise_test.py} +0 -0
- /brainstate/nn/{_event/_fixedprob_mv_test.py → _fixedprob_test.py} +0 -0
- /brainstate/nn/{_event/_linear_mv_test.py → _linear_mv_test.py} +0 -0
- /brainstate/nn/{_interaction/_linear_test.py → _linear_test.py} +0 -0
- /brainstate/nn/{_dyn_impl/_dynamics_neuron_test.py → _neuron_test.py} +0 -0
- /brainstate/nn/{_interaction/_normalizations_test.py → _normalizations_test.py} +0 -0
- /brainstate/nn/{_dyn_impl/_rate_rnns_test.py → _rate_rnns_test.py} +0 -0
- /brainstate/nn/{_dyn_impl/_readout_test.py → _readout_test.py} +0 -0
- /brainstate/nn/{_dyn_impl/_dynamics_synapse_test.py → _synapse_test.py} +0 -0
- /brainstate/nn/{_dynamics/_synouts_test.py → _synouts_test.py} +0 -0
- /brainstate/util/{_caller.py → caller.py} +0 -0
- /brainstate/util/{_error.py → error.py} +0 -0
- /brainstate/util/{_others.py → others.py} +0 -0
- /brainstate/util/{_pretty_repr.py → pretty_repr.py} +0 -0
- /brainstate/util/{_pretty_table.py → pretty_table.py} +0 -0
- /brainstate/util/{_scaling.py → scaling.py} +0 -0
- /brainstate/util/{_struct.py → struct.py} +0 -0
- {brainstate-0.1.2.dist-info → brainstate-0.1.4.dist-info}/LICENSE +0 -0
- {brainstate-0.1.2.dist-info → brainstate-0.1.4.dist-info}/WHEEL +0 -0
- {brainstate-0.1.2.dist-info → brainstate-0.1.4.dist-info}/top_level.txt +0 -0
brainstate/nn/_stp.py
ADDED
@@ -0,0 +1,236 @@
|
|
1
|
+
# Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
from typing import Optional
|
19
|
+
|
20
|
+
import brainunit as u
|
21
|
+
|
22
|
+
from brainstate import init
|
23
|
+
from brainstate._state import HiddenState
|
24
|
+
from brainstate.typing import ArrayLike, Size
|
25
|
+
from ._exp_euler import exp_euler_step
|
26
|
+
from ._synapse import Synapse
|
27
|
+
|
28
|
+
__all__ = [
|
29
|
+
'ShortTermPlasticity', 'STP', 'STD',
|
30
|
+
]
|
31
|
+
|
32
|
+
|
33
|
+
class ShortTermPlasticity(Synapse):
|
34
|
+
pass
|
35
|
+
|
36
|
+
|
37
|
+
class STP(ShortTermPlasticity):
|
38
|
+
r"""
|
39
|
+
Synapse with short-term plasticity.
|
40
|
+
|
41
|
+
This class implements a synapse model with short-term plasticity (STP), which captures
|
42
|
+
activity-dependent changes in synaptic efficacy that occur over milliseconds to seconds.
|
43
|
+
The model simultaneously accounts for both short-term facilitation and depression
|
44
|
+
based on the formulation by Tsodyks & Markram (1998).
|
45
|
+
|
46
|
+
The model is characterized by the following equations:
|
47
|
+
|
48
|
+
$$
|
49
|
+
\frac{du}{dt} = -\frac{u}{\tau_f} + U \cdot (1 - u) \cdot \delta(t - t_{spike})
|
50
|
+
$$
|
51
|
+
|
52
|
+
$$
|
53
|
+
\frac{dx}{dt} = \frac{1 - x}{\tau_d} - u \cdot x \cdot \delta(t - t_{spike})
|
54
|
+
$$
|
55
|
+
|
56
|
+
$$
|
57
|
+
g_{syn} = u \cdot x
|
58
|
+
$$
|
59
|
+
|
60
|
+
where:
|
61
|
+
- $u$ represents the utilization of synaptic efficacy (facilitation variable)
|
62
|
+
- $x$ represents the available synaptic resources (depression variable)
|
63
|
+
- $\tau_f$ is the facilitation time constant
|
64
|
+
- $\tau_d$ is the depression time constant
|
65
|
+
- $U$ is the baseline utilization parameter
|
66
|
+
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
67
|
+
- $g_{syn}$ is the effective synaptic conductance
|
68
|
+
|
69
|
+
Parameters
|
70
|
+
----------
|
71
|
+
in_size : Size
|
72
|
+
Size of the input.
|
73
|
+
name : str, optional
|
74
|
+
Name of the synapse instance.
|
75
|
+
U : ArrayLike, default=0.15
|
76
|
+
Baseline utilization parameter (fraction of resources used per action potential).
|
77
|
+
tau_f : ArrayLike, default=1500.*u.ms
|
78
|
+
Time constant of short-term facilitation in milliseconds.
|
79
|
+
tau_d : ArrayLike, default=200.*u.ms
|
80
|
+
Time constant of short-term depression (recovery of synaptic resources) in milliseconds.
|
81
|
+
|
82
|
+
Attributes
|
83
|
+
----------
|
84
|
+
u : HiddenState
|
85
|
+
Utilization of synaptic efficacy (facilitation variable).
|
86
|
+
x : HiddenState
|
87
|
+
Available synaptic resources (depression variable).
|
88
|
+
|
89
|
+
Notes
|
90
|
+
-----
|
91
|
+
- Larger values of tau_f produce stronger facilitation effects.
|
92
|
+
- Larger values of tau_d lead to slower recovery from depression.
|
93
|
+
- The parameter U controls the initial release probability.
|
94
|
+
- The effective synaptic strength is the product of u and x.
|
95
|
+
|
96
|
+
References
|
97
|
+
----------
|
98
|
+
.. [1] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
99
|
+
pyramidal neurons depends on neurotransmitter release probability.
|
100
|
+
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
101
|
+
.. [2] Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
|
102
|
+
synapses. Neural computation, 10(4), 821-835.
|
103
|
+
"""
|
104
|
+
__module__ = 'brainstate.nn'
|
105
|
+
|
106
|
+
def __init__(
|
107
|
+
self,
|
108
|
+
in_size: Size,
|
109
|
+
name: Optional[str] = None,
|
110
|
+
U: ArrayLike = 0.15,
|
111
|
+
tau_f: ArrayLike = 1500. * u.ms,
|
112
|
+
tau_d: ArrayLike = 200. * u.ms,
|
113
|
+
):
|
114
|
+
super().__init__(name=name, in_size=in_size)
|
115
|
+
|
116
|
+
# parameters
|
117
|
+
self.tau_f = init.param(tau_f, self.varshape)
|
118
|
+
self.tau_d = init.param(tau_d, self.varshape)
|
119
|
+
self.U = init.param(U, self.varshape)
|
120
|
+
|
121
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
122
|
+
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
123
|
+
self.u = HiddenState(init.param(init.Constant(self.U), self.varshape, batch_size))
|
124
|
+
|
125
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
126
|
+
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
127
|
+
self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
|
128
|
+
|
129
|
+
def update(self, pre_spike):
|
130
|
+
u = exp_euler_step(lambda u: - u / self.tau_f, self.u.value)
|
131
|
+
x = exp_euler_step(lambda x: (1 - x) / self.tau_d, self.x.value)
|
132
|
+
|
133
|
+
# --- original code:
|
134
|
+
# if pre_spike.dtype == jax.numpy.bool_:
|
135
|
+
# u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
|
136
|
+
# x = bm.where(pre_spike, x - u * self.x, x)
|
137
|
+
# else:
|
138
|
+
# u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
|
139
|
+
# x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
|
140
|
+
|
141
|
+
# --- simplified code:
|
142
|
+
u = u + pre_spike * self.U * (1 - self.u.value)
|
143
|
+
x = x - pre_spike * u * self.x.value
|
144
|
+
|
145
|
+
self.u.value = u
|
146
|
+
self.x.value = x
|
147
|
+
return u * x * pre_spike
|
148
|
+
|
149
|
+
|
150
|
+
class STD(ShortTermPlasticity):
|
151
|
+
r"""
|
152
|
+
Synapse with short-term depression.
|
153
|
+
|
154
|
+
This class implements a synapse model with short-term depression (STD), which captures
|
155
|
+
activity-dependent reduction in synaptic efficacy, typically caused by depletion of
|
156
|
+
neurotransmitter vesicles following repeated stimulation.
|
157
|
+
|
158
|
+
The model is characterized by the following equation:
|
159
|
+
|
160
|
+
$$
|
161
|
+
\frac{dx}{dt} = \frac{1 - x}{\tau} - U \cdot x \cdot \delta(t - t_{spike})
|
162
|
+
$$
|
163
|
+
|
164
|
+
$$
|
165
|
+
g_{syn} = x
|
166
|
+
$$
|
167
|
+
|
168
|
+
where:
|
169
|
+
- $x$ represents the available synaptic resources (depression variable)
|
170
|
+
- $\tau$ is the depression recovery time constant
|
171
|
+
- $U$ is the utilization parameter (fraction of resources depleted per spike)
|
172
|
+
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
173
|
+
- $g_{syn}$ is the effective synaptic conductance
|
174
|
+
|
175
|
+
Parameters
|
176
|
+
----------
|
177
|
+
in_size : Size
|
178
|
+
Size of the input.
|
179
|
+
name : str, optional
|
180
|
+
Name of the synapse instance.
|
181
|
+
tau : ArrayLike, default=200.*u.ms
|
182
|
+
Time constant governing recovery of synaptic resources in milliseconds.
|
183
|
+
U : ArrayLike, default=0.07
|
184
|
+
Utilization parameter (fraction of resources used per action potential).
|
185
|
+
|
186
|
+
Attributes
|
187
|
+
----------
|
188
|
+
x : HiddenState
|
189
|
+
Available synaptic resources (depression variable).
|
190
|
+
|
191
|
+
Notes
|
192
|
+
-----
|
193
|
+
- Larger values of tau lead to slower recovery from depression.
|
194
|
+
- Larger values of U cause stronger depression with each spike.
|
195
|
+
- This model is a simplified version of the STP model that only includes depression.
|
196
|
+
|
197
|
+
References
|
198
|
+
----------
|
199
|
+
.. [1] Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic
|
200
|
+
depression and cortical gain control. Science, 275(5297), 220-224.
|
201
|
+
.. [2] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
202
|
+
pyramidal neurons depends on neurotransmitter release probability.
|
203
|
+
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
204
|
+
"""
|
205
|
+
__module__ = 'brainstate.nn'
|
206
|
+
|
207
|
+
def __init__(
|
208
|
+
self,
|
209
|
+
in_size: Size,
|
210
|
+
name: Optional[str] = None,
|
211
|
+
# synapse parameters
|
212
|
+
tau: ArrayLike = 200. * u.ms,
|
213
|
+
U: ArrayLike = 0.07,
|
214
|
+
):
|
215
|
+
super().__init__(name=name, in_size=in_size)
|
216
|
+
|
217
|
+
# parameters
|
218
|
+
self.tau = init.param(tau, self.varshape)
|
219
|
+
self.U = init.param(U, self.varshape)
|
220
|
+
|
221
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
222
|
+
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
223
|
+
|
224
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
225
|
+
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
226
|
+
|
227
|
+
def update(self, pre_spike):
|
228
|
+
x = exp_euler_step(lambda x: (1 - x) / self.tau, self.x.value)
|
229
|
+
|
230
|
+
# --- original code:
|
231
|
+
# self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
|
232
|
+
|
233
|
+
# --- simplified code:
|
234
|
+
self.x.value = x - pre_spike * self.U * self.x.value
|
235
|
+
|
236
|
+
return self.x.value * pre_spike
|
@@ -23,12 +23,12 @@ import brainunit as u
|
|
23
23
|
from brainstate import init, environ
|
24
24
|
from brainstate._state import ShortTermState, HiddenState
|
25
25
|
from brainstate.mixin import AlignPost
|
26
|
-
from brainstate.
|
27
|
-
from
|
28
|
-
from
|
26
|
+
from brainstate.typing import ArrayLike, Size, PyTree
|
27
|
+
from ._dynamics import Dynamics
|
28
|
+
from ._exp_euler import exp_euler_step
|
29
29
|
|
30
30
|
__all__ = [
|
31
|
-
'Synapse', 'Expon', 'DualExpon', 'Alpha', '
|
31
|
+
'Synapse', 'Expon', 'DualExpon', 'Alpha', 'AMPA', 'GABAa',
|
32
32
|
]
|
33
33
|
|
34
34
|
|
@@ -123,6 +123,9 @@ class Expon(Synapse, AlignPost):
|
|
123
123
|
g = exp_euler_step(lambda g: self.sum_current_inputs(-g) / self.tau, self.g.value)
|
124
124
|
self.g.value = self.sum_delta_inputs(g)
|
125
125
|
if x is not None: self.g.value += x
|
126
|
+
return self.update_return()
|
127
|
+
|
128
|
+
def update_return(self) -> PyTree:
|
126
129
|
return self.g.value
|
127
130
|
|
128
131
|
|
@@ -229,6 +232,9 @@ class DualExpon(Synapse, AlignPost):
|
|
229
232
|
if x is not None:
|
230
233
|
self.g_rise.value += x
|
231
234
|
self.g_decay.value += x
|
235
|
+
return self.update_return()
|
236
|
+
|
237
|
+
def update_return(self) -> PyTree:
|
232
238
|
return self.a * (self.g_decay.value - self.g_rise.value)
|
233
239
|
|
234
240
|
|
@@ -304,208 +310,6 @@ class Alpha(Synapse):
|
|
304
310
|
return self.g.value
|
305
311
|
|
306
312
|
|
307
|
-
class STP(Synapse):
|
308
|
-
r"""
|
309
|
-
Synapse with short-term plasticity.
|
310
|
-
|
311
|
-
This class implements a synapse model with short-term plasticity (STP), which captures
|
312
|
-
activity-dependent changes in synaptic efficacy that occur over milliseconds to seconds.
|
313
|
-
The model simultaneously accounts for both short-term facilitation and depression
|
314
|
-
based on the formulation by Tsodyks & Markram (1998).
|
315
|
-
|
316
|
-
The model is characterized by the following equations:
|
317
|
-
|
318
|
-
$$
|
319
|
-
\frac{du}{dt} = -\frac{u}{\tau_f} + U \cdot (1 - u) \cdot \delta(t - t_{spike})
|
320
|
-
$$
|
321
|
-
|
322
|
-
$$
|
323
|
-
\frac{dx}{dt} = \frac{1 - x}{\tau_d} - u \cdot x \cdot \delta(t - t_{spike})
|
324
|
-
$$
|
325
|
-
|
326
|
-
$$
|
327
|
-
g_{syn} = u \cdot x
|
328
|
-
$$
|
329
|
-
|
330
|
-
where:
|
331
|
-
- $u$ represents the utilization of synaptic efficacy (facilitation variable)
|
332
|
-
- $x$ represents the available synaptic resources (depression variable)
|
333
|
-
- $\tau_f$ is the facilitation time constant
|
334
|
-
- $\tau_d$ is the depression time constant
|
335
|
-
- $U$ is the baseline utilization parameter
|
336
|
-
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
337
|
-
- $g_{syn}$ is the effective synaptic conductance
|
338
|
-
|
339
|
-
Parameters
|
340
|
-
----------
|
341
|
-
in_size : Size
|
342
|
-
Size of the input.
|
343
|
-
name : str, optional
|
344
|
-
Name of the synapse instance.
|
345
|
-
U : ArrayLike, default=0.15
|
346
|
-
Baseline utilization parameter (fraction of resources used per action potential).
|
347
|
-
tau_f : ArrayLike, default=1500.*u.ms
|
348
|
-
Time constant of short-term facilitation in milliseconds.
|
349
|
-
tau_d : ArrayLike, default=200.*u.ms
|
350
|
-
Time constant of short-term depression (recovery of synaptic resources) in milliseconds.
|
351
|
-
|
352
|
-
Attributes
|
353
|
-
----------
|
354
|
-
u : HiddenState
|
355
|
-
Utilization of synaptic efficacy (facilitation variable).
|
356
|
-
x : HiddenState
|
357
|
-
Available synaptic resources (depression variable).
|
358
|
-
|
359
|
-
Notes
|
360
|
-
-----
|
361
|
-
- Larger values of tau_f produce stronger facilitation effects.
|
362
|
-
- Larger values of tau_d lead to slower recovery from depression.
|
363
|
-
- The parameter U controls the initial release probability.
|
364
|
-
- The effective synaptic strength is the product of u and x.
|
365
|
-
|
366
|
-
References
|
367
|
-
----------
|
368
|
-
.. [1] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
369
|
-
pyramidal neurons depends on neurotransmitter release probability.
|
370
|
-
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
371
|
-
.. [2] Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
|
372
|
-
synapses. Neural computation, 10(4), 821-835.
|
373
|
-
"""
|
374
|
-
__module__ = 'brainstate.nn'
|
375
|
-
|
376
|
-
def __init__(
|
377
|
-
self,
|
378
|
-
in_size: Size,
|
379
|
-
name: Optional[str] = None,
|
380
|
-
U: ArrayLike = 0.15,
|
381
|
-
tau_f: ArrayLike = 1500. * u.ms,
|
382
|
-
tau_d: ArrayLike = 200. * u.ms,
|
383
|
-
):
|
384
|
-
super().__init__(name=name, in_size=in_size)
|
385
|
-
|
386
|
-
# parameters
|
387
|
-
self.tau_f = init.param(tau_f, self.varshape)
|
388
|
-
self.tau_d = init.param(tau_d, self.varshape)
|
389
|
-
self.U = init.param(U, self.varshape)
|
390
|
-
|
391
|
-
def init_state(self, batch_size: int = None, **kwargs):
|
392
|
-
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
393
|
-
self.u = HiddenState(init.param(init.Constant(self.U), self.varshape, batch_size))
|
394
|
-
|
395
|
-
def reset_state(self, batch_size: int = None, **kwargs):
|
396
|
-
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
397
|
-
self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
|
398
|
-
|
399
|
-
def update(self, pre_spike):
|
400
|
-
u = exp_euler_step(lambda u: - u / self.tau_f, self.u.value)
|
401
|
-
x = exp_euler_step(lambda x: (1 - x) / self.tau_d, self.x.value)
|
402
|
-
|
403
|
-
# --- original code:
|
404
|
-
# if pre_spike.dtype == jax.numpy.bool_:
|
405
|
-
# u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
|
406
|
-
# x = bm.where(pre_spike, x - u * self.x, x)
|
407
|
-
# else:
|
408
|
-
# u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
|
409
|
-
# x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
|
410
|
-
|
411
|
-
# --- simplified code:
|
412
|
-
u = u + pre_spike * self.U * (1 - self.u.value)
|
413
|
-
x = x - pre_spike * u * self.x.value
|
414
|
-
|
415
|
-
self.u.value = u
|
416
|
-
self.x.value = x
|
417
|
-
return u * x * pre_spike
|
418
|
-
|
419
|
-
|
420
|
-
class STD(Synapse):
|
421
|
-
r"""
|
422
|
-
Synapse with short-term depression.
|
423
|
-
|
424
|
-
This class implements a synapse model with short-term depression (STD), which captures
|
425
|
-
activity-dependent reduction in synaptic efficacy, typically caused by depletion of
|
426
|
-
neurotransmitter vesicles following repeated stimulation.
|
427
|
-
|
428
|
-
The model is characterized by the following equation:
|
429
|
-
|
430
|
-
$$
|
431
|
-
\frac{dx}{dt} = \frac{1 - x}{\tau} - U \cdot x \cdot \delta(t - t_{spike})
|
432
|
-
$$
|
433
|
-
|
434
|
-
$$
|
435
|
-
g_{syn} = x
|
436
|
-
$$
|
437
|
-
|
438
|
-
where:
|
439
|
-
- $x$ represents the available synaptic resources (depression variable)
|
440
|
-
- $\tau$ is the depression recovery time constant
|
441
|
-
- $U$ is the utilization parameter (fraction of resources depleted per spike)
|
442
|
-
- $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
|
443
|
-
- $g_{syn}$ is the effective synaptic conductance
|
444
|
-
|
445
|
-
Parameters
|
446
|
-
----------
|
447
|
-
in_size : Size
|
448
|
-
Size of the input.
|
449
|
-
name : str, optional
|
450
|
-
Name of the synapse instance.
|
451
|
-
tau : ArrayLike, default=200.*u.ms
|
452
|
-
Time constant governing recovery of synaptic resources in milliseconds.
|
453
|
-
U : ArrayLike, default=0.07
|
454
|
-
Utilization parameter (fraction of resources used per action potential).
|
455
|
-
|
456
|
-
Attributes
|
457
|
-
----------
|
458
|
-
x : HiddenState
|
459
|
-
Available synaptic resources (depression variable).
|
460
|
-
|
461
|
-
Notes
|
462
|
-
-----
|
463
|
-
- Larger values of tau lead to slower recovery from depression.
|
464
|
-
- Larger values of U cause stronger depression with each spike.
|
465
|
-
- This model is a simplified version of the STP model that only includes depression.
|
466
|
-
|
467
|
-
References
|
468
|
-
----------
|
469
|
-
.. [1] Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic
|
470
|
-
depression and cortical gain control. Science, 275(5297), 220-224.
|
471
|
-
.. [2] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
|
472
|
-
pyramidal neurons depends on neurotransmitter release probability.
|
473
|
-
Proceedings of the National Academy of Sciences, 94(2), 719-723.
|
474
|
-
"""
|
475
|
-
__module__ = 'brainstate.nn'
|
476
|
-
|
477
|
-
def __init__(
|
478
|
-
self,
|
479
|
-
in_size: Size,
|
480
|
-
name: Optional[str] = None,
|
481
|
-
# synapse parameters
|
482
|
-
tau: ArrayLike = 200. * u.ms,
|
483
|
-
U: ArrayLike = 0.07,
|
484
|
-
):
|
485
|
-
super().__init__(name=name, in_size=in_size)
|
486
|
-
|
487
|
-
# parameters
|
488
|
-
self.tau = init.param(tau, self.varshape)
|
489
|
-
self.U = init.param(U, self.varshape)
|
490
|
-
|
491
|
-
def init_state(self, batch_size: int = None, **kwargs):
|
492
|
-
self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
|
493
|
-
|
494
|
-
def reset_state(self, batch_size: int = None, **kwargs):
|
495
|
-
self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
|
496
|
-
|
497
|
-
def update(self, pre_spike):
|
498
|
-
x = exp_euler_step(lambda x: (1 - x) / self.tau, self.x.value)
|
499
|
-
|
500
|
-
# --- original code:
|
501
|
-
# self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
|
502
|
-
|
503
|
-
# --- simplified code:
|
504
|
-
self.x.value = x - pre_spike * self.U * self.x.value
|
505
|
-
|
506
|
-
return self.x.value * pre_spike
|
507
|
-
|
508
|
-
|
509
313
|
class AMPA(Synapse):
|
510
314
|
r"""AMPA receptor synapse model.
|
511
315
|
|
@@ -587,7 +391,7 @@ class AMPA(Synapse):
|
|
587
391
|
beta: ArrayLike = 0.18 / u.ms,
|
588
392
|
T: ArrayLike = 0.5 * u.mM,
|
589
393
|
T_dur: ArrayLike = 0.5 * u.ms,
|
590
|
-
g_initializer: ArrayLike | Callable = init.ZeroInit(),
|
394
|
+
g_initializer: ArrayLike | Callable = init.ZeroInit(unit=u.mS),
|
591
395
|
):
|
592
396
|
super().__init__(name=name, in_size=in_size)
|
593
397
|
|
@@ -606,14 +410,16 @@ class AMPA(Synapse):
|
|
606
410
|
self.g.value = init.param(self.g_initializer, self.varshape, batch_or_mode)
|
607
411
|
self.spike_arrival_time.value = init.param(init.Constant(-1e7 * u.ms), self.varshape, batch_or_mode)
|
608
412
|
|
609
|
-
def dg(self, g, t, TT):
|
610
|
-
return self.alpha * TT * (1 - g) - self.beta * g
|
611
|
-
|
612
413
|
def update(self, pre_spike):
|
613
414
|
t = environ.get('t')
|
614
415
|
self.spike_arrival_time.value = u.math.where(pre_spike, t, self.spike_arrival_time.value)
|
615
416
|
TT = ((t - self.spike_arrival_time.value) < self.T_duration) * self.T
|
616
|
-
|
417
|
+
dg = lambda g: self.alpha * TT * (1 - g) - self.beta * g
|
418
|
+
self.g.value = exp_euler_step(dg, self.g.value)
|
419
|
+
return self.update_return()
|
420
|
+
|
421
|
+
def update_return(self) -> PyTree:
|
422
|
+
"""Return the synaptic conductance value."""
|
617
423
|
return self.g.value
|
618
424
|
|
619
425
|
|
@@ -696,7 +502,7 @@ class GABAa(AMPA):
|
|
696
502
|
beta: ArrayLike = 0.18 / u.ms,
|
697
503
|
T: ArrayLike = 1.0 * u.mM,
|
698
504
|
T_dur: ArrayLike = 1.0 * u.ms,
|
699
|
-
g_initializer: ArrayLike | Callable = init.ZeroInit(),
|
505
|
+
g_initializer: ArrayLike | Callable = init.ZeroInit(unit=u.mS),
|
700
506
|
):
|
701
507
|
super().__init__(
|
702
508
|
alpha=alpha,
|
@@ -707,3 +513,4 @@ class GABAa(AMPA):
|
|
707
513
|
in_size=in_size,
|
708
514
|
g_initializer=g_initializer
|
709
515
|
)
|
516
|
+
|