brainstate 0.1.1__py2.py3-none-any.whl → 0.1.3__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +1 -1
- brainstate/_compatible_import.py +12 -9
- brainstate/_state.py +1 -1
- brainstate/augment/_autograd_test.py +132 -133
- brainstate/augment/_eval_shape_test.py +7 -9
- brainstate/augment/_mapping_test.py +75 -76
- brainstate/compile/_ad_checkpoint_test.py +6 -8
- brainstate/compile/_conditions_test.py +35 -36
- brainstate/compile/_error_if_test.py +10 -13
- brainstate/compile/_loop_collect_return_test.py +7 -9
- brainstate/compile/_loop_no_collection_test.py +7 -8
- brainstate/compile/_make_jaxpr.py +29 -14
- brainstate/compile/_make_jaxpr_test.py +20 -20
- brainstate/functional/_activations_test.py +61 -61
- brainstate/graph/_graph_node_test.py +16 -18
- brainstate/graph/_graph_operation_test.py +154 -156
- brainstate/init/_random_inits_test.py +20 -21
- brainstate/init/_regular_inits_test.py +4 -5
- brainstate/mixin.py +1 -14
- brainstate/nn/__init__.py +81 -17
- brainstate/nn/_collective_ops_test.py +8 -8
- brainstate/nn/{_interaction/_conv.py → _conv.py} +1 -1
- brainstate/nn/{_interaction/_conv_test.py → _conv_test.py} +31 -33
- brainstate/nn/{_dynamics/_state_delay.py → _delay.py} +6 -2
- brainstate/nn/{_elementwise/_dropout.py → _dropout.py} +1 -1
- brainstate/nn/{_elementwise/_dropout_test.py → _dropout_test.py} +9 -9
- brainstate/nn/{_dynamics/_dynamics_base.py → _dynamics.py} +139 -18
- brainstate/nn/{_dynamics/_dynamics_base_test.py → _dynamics_test.py} +14 -15
- brainstate/nn/{_elementwise/_elementwise.py → _elementwise.py} +1 -1
- brainstate/nn/_elementwise_test.py +169 -0
- brainstate/nn/{_interaction/_embedding.py → _embedding.py} +1 -1
- brainstate/nn/_exp_euler_test.py +5 -6
- brainstate/nn/{_event/_fixedprob_mv.py → _fixedprob_mv.py} +1 -1
- brainstate/nn/{_event/_fixedprob_mv_test.py → _fixedprob_mv_test.py} +0 -1
- brainstate/nn/{_dyn_impl/_inputs.py → _inputs.py} +4 -5
- brainstate/nn/{_interaction/_linear.py → _linear.py} +2 -5
- brainstate/nn/{_event/_linear_mv.py → _linear_mv.py} +1 -1
- brainstate/nn/{_event/_linear_mv_test.py → _linear_mv_test.py} +0 -1
- brainstate/nn/{_interaction/_linear_test.py → _linear_test.py} +15 -17
- brainstate/nn/{_event/__init__.py → _ltp.py} +7 -5
- brainstate/nn/_module_test.py +34 -37
- brainstate/nn/{_dyn_impl/_dynamics_neuron.py → _neuron.py} +2 -2
- brainstate/nn/{_dyn_impl/_dynamics_neuron_test.py → _neuron_test.py} +18 -19
- brainstate/nn/{_interaction/_normalizations.py → _normalizations.py} +1 -1
- brainstate/nn/{_interaction/_normalizations_test.py → _normalizations_test.py} +10 -12
- brainstate/nn/{_interaction/_poolings.py → _poolings.py} +1 -1
- brainstate/nn/{_interaction/_poolings_test.py → _poolings_test.py} +20 -22
- brainstate/nn/{_dynamics/_projection_base.py → _projection.py} +35 -3
- brainstate/nn/{_dyn_impl/_rate_rnns.py → _rate_rnns.py} +2 -2
- brainstate/nn/{_dyn_impl/_rate_rnns_test.py → _rate_rnns_test.py} +6 -7
- brainstate/nn/{_dyn_impl/_readout.py → _readout.py} +3 -3
- brainstate/nn/{_dyn_impl/_readout_test.py → _readout_test.py} +9 -10
- brainstate/nn/_stp.py +236 -0
- brainstate/nn/{_dyn_impl/_dynamics_synapse.py → _synapse.py} +17 -206
- brainstate/nn/{_dyn_impl/_dynamics_synapse_test.py → _synapse_test.py} +9 -10
- brainstate/nn/_synaptic_projection.py +133 -0
- brainstate/nn/{_dynamics/_synouts.py → _synouts.py} +4 -1
- brainstate/nn/{_dynamics/_synouts_test.py → _synouts_test.py} +4 -5
- brainstate/optim/_lr_scheduler_test.py +3 -3
- brainstate/optim/_optax_optimizer_test.py +8 -9
- brainstate/random/_rand_funs_test.py +183 -184
- brainstate/random/_rand_seed_test.py +10 -12
- {brainstate-0.1.1.dist-info → brainstate-0.1.3.dist-info}/METADATA +1 -1
- brainstate-0.1.3.dist-info/RECORD +131 -0
- brainstate/nn/_dyn_impl/__init__.py +0 -42
- brainstate/nn/_dynamics/__init__.py +0 -37
- brainstate/nn/_elementwise/__init__.py +0 -22
- brainstate/nn/_elementwise/_elementwise_test.py +0 -171
- brainstate/nn/_interaction/__init__.py +0 -41
- brainstate-0.1.1.dist-info/RECORD +0 -133
- {brainstate-0.1.1.dist-info → brainstate-0.1.3.dist-info}/LICENSE +0 -0
- {brainstate-0.1.1.dist-info → brainstate-0.1.3.dist-info}/WHEEL +0 -0
- {brainstate-0.1.1.dist-info → brainstate-0.1.3.dist-info}/top_level.txt +0 -0
@@ -13,7 +13,6 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from __future__ import annotations
|
17
16
|
|
18
17
|
import unittest
|
19
18
|
|
@@ -21,7 +20,7 @@ import brainunit as u
|
|
21
20
|
import jax.numpy as jnp
|
22
21
|
import pytest
|
23
22
|
|
24
|
-
import brainstate
|
23
|
+
import brainstate
|
25
24
|
from brainstate.nn import Expon, STP, STD
|
26
25
|
|
27
26
|
|
@@ -32,7 +31,7 @@ class TestSynapse(unittest.TestCase):
|
|
32
31
|
self.time_steps = 100
|
33
32
|
|
34
33
|
def generate_input(self):
|
35
|
-
return
|
34
|
+
return brainstate.random.randn(self.time_steps, self.batch_size, self.in_size) * u.mS
|
36
35
|
|
37
36
|
def test_expon_synapse(self):
|
38
37
|
tau = 20.0 * u.ms
|
@@ -46,8 +45,8 @@ class TestSynapse(unittest.TestCase):
|
|
46
45
|
|
47
46
|
# Test forward pass
|
48
47
|
state = synapse.init_state(self.batch_size)
|
49
|
-
call =
|
50
|
-
with
|
48
|
+
call = brainstate.compile.jit(synapse)
|
49
|
+
with brainstate.environ.context(dt=0.1 * u.ms):
|
51
50
|
for t in range(self.time_steps):
|
52
51
|
out = call(inputs[t])
|
53
52
|
self.assertEqual(out.shape, (self.batch_size, self.in_size))
|
@@ -75,7 +74,7 @@ class TestSynapse(unittest.TestCase):
|
|
75
74
|
|
76
75
|
# Test forward pass
|
77
76
|
state = synapse.init_state(self.batch_size)
|
78
|
-
call =
|
77
|
+
call = brainstate.compile.jit(synapse)
|
79
78
|
for t in range(self.time_steps):
|
80
79
|
out = call(inputs[t])
|
81
80
|
self.assertEqual(out.shape, (self.batch_size, self.in_size))
|
@@ -118,15 +117,15 @@ class TestSynapse(unittest.TestCase):
|
|
118
117
|
self.assertEqual(synapse.in_size, in_size)
|
119
118
|
self.assertEqual(synapse.out_size, in_size)
|
120
119
|
|
121
|
-
inputs =
|
120
|
+
inputs = brainstate.random.randn(self.time_steps, self.batch_size, *in_size) * u.mS
|
122
121
|
state = synapse.init_state(self.batch_size)
|
123
|
-
call =
|
124
|
-
with
|
122
|
+
call = brainstate.compile.jit(synapse)
|
123
|
+
with brainstate.environ.context(dt=0.1 * u.ms):
|
125
124
|
for t in range(self.time_steps):
|
126
125
|
out = call(inputs[t])
|
127
126
|
self.assertEqual(out.shape, (self.batch_size, *in_size))
|
128
127
|
|
129
128
|
|
130
129
|
if __name__ == '__main__':
|
131
|
-
with
|
130
|
+
with brainstate.environ.context(dt=0.1):
|
132
131
|
unittest.main()
|
@@ -0,0 +1,133 @@
|
|
1
|
+
# Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# -*- coding: utf-8 -*-
|
16
|
+
|
17
|
+
|
18
|
+
from typing import Callable, Union
|
19
|
+
|
20
|
+
import brainunit as u
|
21
|
+
|
22
|
+
from brainstate._compatible_import import brainevent
|
23
|
+
from brainstate.mixin import ParamDescriber, AlignPost, UpdateReturn
|
24
|
+
from ._dynamics import Dynamics, Projection
|
25
|
+
from ._projection import AlignPostProj, RawProj
|
26
|
+
from ._stp import ShortTermPlasticity
|
27
|
+
from ._synapse import Synapse
|
28
|
+
from ._synouts import SynOut
|
29
|
+
|
30
|
+
__all__ = [
|
31
|
+
'align_pre_projection',
|
32
|
+
'align_post_projection',
|
33
|
+
]
|
34
|
+
|
35
|
+
|
36
|
+
class align_pre_projection(Projection):
|
37
|
+
"""
|
38
|
+
Represents a pre-synaptic alignment projection mechanism.
|
39
|
+
|
40
|
+
This class inherits from the `Projection` base class and is designed to
|
41
|
+
manage the pre-synaptic alignment process in neural network simulations.
|
42
|
+
It takes into account pre-synaptic dynamics, synaptic properties, delays,
|
43
|
+
communication functions, synaptic outputs, post-synaptic dynamics, and
|
44
|
+
short-term plasticity.
|
45
|
+
|
46
|
+
Attributes:
|
47
|
+
pre (Dynamics): The pre-synaptic dynamics object.
|
48
|
+
syn (Synapse): The synaptic object after pre-synaptic alignment.
|
49
|
+
delay (u.Quantity[u.second]): The output delay from the synapse.
|
50
|
+
projection (RawProj): The raw projection object handling communication,
|
51
|
+
output, and post-synaptic dynamics.
|
52
|
+
stp (ShortTermPlasticity, optional): The short-term plasticity object,
|
53
|
+
defaults to None.
|
54
|
+
"""
|
55
|
+
|
56
|
+
def __init__(
|
57
|
+
self,
|
58
|
+
pre: Dynamics,
|
59
|
+
syn: Union[Synapse, ParamDescriber[Synapse]],
|
60
|
+
delay: u.Quantity[u.second] | None,
|
61
|
+
comm: Callable,
|
62
|
+
out: SynOut,
|
63
|
+
post: Dynamics,
|
64
|
+
stp: ShortTermPlasticity = None,
|
65
|
+
):
|
66
|
+
super().__init__()
|
67
|
+
pre = pre
|
68
|
+
syn: Synapse = pre.align_pre(syn)
|
69
|
+
assert isinstance(syn, UpdateReturn), "Synapse must implement UpdateReturn interface"
|
70
|
+
# require "syn" implement the "update_return()" function
|
71
|
+
self.delay = syn.output_delay(delay)
|
72
|
+
self.projection = RawProj(comm=comm, out=out, post=post)
|
73
|
+
self.stp = stp
|
74
|
+
|
75
|
+
def update(self):
|
76
|
+
x = self.delay()
|
77
|
+
if self.stp is not None:
|
78
|
+
x = self.stp(x)
|
79
|
+
return self.projection(x)
|
80
|
+
|
81
|
+
|
82
|
+
class align_post_projection(Projection):
|
83
|
+
"""
|
84
|
+
Represents a post-synaptic alignment projection mechanism.
|
85
|
+
|
86
|
+
This class inherits from the `Projection` base class and is designed to
|
87
|
+
manage the post-synaptic alignment process in neural network simulations.
|
88
|
+
It takes into account spike generators, communication functions, synaptic
|
89
|
+
properties, synaptic outputs, post-synaptic dynamics, and short-term plasticity.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
*spike_generator: Callable(s) that generate spike events or transform input spikes.
|
93
|
+
comm (Callable): Communication function for the projection.
|
94
|
+
syn (Union[AlignPost, ParamDescriber[AlignPost]]): The post-synaptic alignment object or its parameter describer.
|
95
|
+
out (Union[SynOut, ParamDescriber[SynOut]]): The synaptic output object or its parameter describer.
|
96
|
+
post (Dynamics): The post-synaptic dynamics object.
|
97
|
+
stp (ShortTermPlasticity, optional): The short-term plasticity object, defaults to None.
|
98
|
+
|
99
|
+
"""
|
100
|
+
def __init__(
|
101
|
+
self,
|
102
|
+
*spike_generator,
|
103
|
+
comm: Callable,
|
104
|
+
syn: Union[AlignPost, ParamDescriber[AlignPost]],
|
105
|
+
out: Union[SynOut, ParamDescriber[SynOut]],
|
106
|
+
post: Dynamics,
|
107
|
+
stp: ShortTermPlasticity = None,
|
108
|
+
):
|
109
|
+
super().__init__()
|
110
|
+
self.spike_generator = spike_generator
|
111
|
+
self.projection = AlignPostProj(comm=comm, syn=syn, out=out, post=post)
|
112
|
+
self.stp = stp
|
113
|
+
|
114
|
+
def update(self, *x):
|
115
|
+
for fun in self.spike_generator:
|
116
|
+
x = fun(*x)
|
117
|
+
if isinstance(x, (tuple, list)):
|
118
|
+
x = tuple(x)
|
119
|
+
else:
|
120
|
+
x = (x,)
|
121
|
+
assert len(x) == 1, "Spike generator must return a single value or a tuple/list of values"
|
122
|
+
x = brainevent.BinaryArray(x[0]) # Ensure input is a BinaryFloat for spike generation
|
123
|
+
if self.stp is not None:
|
124
|
+
x = brainevent.MaskedFloat(self.stp(x)) # Ensure STP output is a MaskedFloat
|
125
|
+
return self.projection(x)
|
126
|
+
|
127
|
+
|
128
|
+
class align_pre_ltp(Projection):
|
129
|
+
pass
|
130
|
+
|
131
|
+
|
132
|
+
class align_post_ltp(Projection):
|
133
|
+
pass
|
@@ -19,8 +19,8 @@ import brainunit as u
|
|
19
19
|
import jax.numpy as jnp
|
20
20
|
|
21
21
|
from brainstate.mixin import BindCondData
|
22
|
-
from brainstate.nn._module import Module
|
23
22
|
from brainstate.typing import ArrayLike
|
23
|
+
from ._module import Module
|
24
24
|
|
25
25
|
__all__ = [
|
26
26
|
'SynOut', 'COBA', 'CUBA', 'MgBlock',
|
@@ -47,6 +47,9 @@ class SynOut(Module, BindCondData):
|
|
47
47
|
ret = self.update(self._conductance, *args, **kwargs)
|
48
48
|
return ret
|
49
49
|
|
50
|
+
def update(self, conductance, potential):
|
51
|
+
raise NotImplementedError
|
52
|
+
|
50
53
|
|
51
54
|
class COBA(SynOut):
|
52
55
|
r"""
|
@@ -13,7 +13,6 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from __future__ import annotations
|
17
16
|
|
18
17
|
import unittest
|
19
18
|
|
@@ -21,7 +20,7 @@ import brainunit as u
|
|
21
20
|
import jax.numpy as jnp
|
22
21
|
import numpy as np
|
23
22
|
|
24
|
-
import brainstate
|
23
|
+
import brainstate
|
25
24
|
|
26
25
|
|
27
26
|
class TestSynOutModels(unittest.TestCase):
|
@@ -35,19 +34,19 @@ class TestSynOutModels(unittest.TestCase):
|
|
35
34
|
self.V_offset = jnp.array([0.0])
|
36
35
|
|
37
36
|
def test_COBA(self):
|
38
|
-
model =
|
37
|
+
model = brainstate.nn.COBA(E=self.E)
|
39
38
|
output = model.update(self.conductance, self.potential)
|
40
39
|
expected_output = self.conductance * (self.E - self.potential)
|
41
40
|
np.testing.assert_array_almost_equal(output, expected_output)
|
42
41
|
|
43
42
|
def test_CUBA(self):
|
44
|
-
model =
|
43
|
+
model = brainstate.nn.CUBA()
|
45
44
|
output = model.update(self.conductance)
|
46
45
|
expected_output = self.conductance * model.scale
|
47
46
|
self.assertTrue(u.math.allclose(output, expected_output))
|
48
47
|
|
49
48
|
def test_MgBlock(self):
|
50
|
-
model =
|
49
|
+
model = brainstate.nn.MgBlock(E=self.E, cc_Mg=self.cc_Mg, alpha=self.alpha, beta=self.beta, V_offset=self.V_offset)
|
51
50
|
output = model.update(self.conductance, self.potential)
|
52
51
|
norm = (1 + self.cc_Mg / self.beta * jnp.exp(self.alpha * (self.V_offset - self.potential)))
|
53
52
|
expected_output = self.conductance * (self.E - self.potential) / norm
|
@@ -19,12 +19,12 @@ import unittest
|
|
19
19
|
|
20
20
|
import jax.numpy as jnp
|
21
21
|
|
22
|
-
import brainstate
|
22
|
+
import brainstate
|
23
23
|
|
24
24
|
|
25
25
|
class TestMultiStepLR(unittest.TestCase):
|
26
26
|
def test1(self):
|
27
|
-
lr =
|
27
|
+
lr = brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1)
|
28
28
|
for i in range(40):
|
29
29
|
r = lr(i)
|
30
30
|
if i < 10:
|
@@ -37,7 +37,7 @@ class TestMultiStepLR(unittest.TestCase):
|
|
37
37
|
self.assertTrue(jnp.allclose(r, 0.0001))
|
38
38
|
|
39
39
|
def test2(self):
|
40
|
-
lr =
|
40
|
+
lr = brainstate.compile.jit(brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1))
|
41
41
|
for i in range(40):
|
42
42
|
r = lr(i)
|
43
43
|
if i < 10:
|
@@ -13,39 +13,38 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from __future__ import annotations
|
17
16
|
|
18
17
|
import unittest
|
19
18
|
|
20
19
|
import jax
|
21
20
|
import optax
|
22
21
|
|
23
|
-
import brainstate
|
22
|
+
import brainstate
|
24
23
|
|
25
24
|
|
26
25
|
class TestOptaxOptimizer(unittest.TestCase):
|
27
26
|
def test1(self):
|
28
|
-
class Model(
|
27
|
+
class Model(brainstate.nn.Module):
|
29
28
|
def __init__(self):
|
30
29
|
super().__init__()
|
31
|
-
self.linear1 =
|
32
|
-
self.linear2 =
|
30
|
+
self.linear1 = brainstate.nn.Linear(2, 3)
|
31
|
+
self.linear2 = brainstate.nn.Linear(3, 4)
|
33
32
|
|
34
33
|
def __call__(self, x):
|
35
34
|
return self.linear2(self.linear1(x))
|
36
35
|
|
37
|
-
x =
|
36
|
+
x = brainstate.random.randn(1, 2)
|
38
37
|
y = jax.numpy.ones((1, 4))
|
39
38
|
|
40
39
|
model = Model()
|
41
40
|
tx = optax.adam(1e-3)
|
42
|
-
optimizer =
|
43
|
-
optimizer.register_trainable_weights(model.states(
|
41
|
+
optimizer = brainstate.optim.OptaxOptimizer(tx)
|
42
|
+
optimizer.register_trainable_weights(model.states(brainstate.ParamState))
|
44
43
|
|
45
44
|
loss_fn = lambda: ((model(x) - y) ** 2).mean()
|
46
45
|
prev_loss = loss_fn()
|
47
46
|
|
48
|
-
grads =
|
47
|
+
grads = brainstate.augment.grad(loss_fn, model.states(brainstate.ParamState))()
|
49
48
|
optimizer.update(grads)
|
50
49
|
|
51
50
|
new_loss = loss_fn()
|