brainstate 0.1.0.post20250212__py2.py3-none-any.whl → 0.1.0.post20250217__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/_state.py +853 -90
- brainstate/_state_test.py +1 -3
- brainstate/augment/__init__.py +2 -2
- brainstate/augment/_autograd.py +257 -115
- brainstate/augment/_autograd_test.py +2 -3
- brainstate/augment/_eval_shape.py +3 -4
- brainstate/augment/_mapping.py +582 -62
- brainstate/augment/_mapping_test.py +114 -30
- brainstate/augment/_random.py +61 -7
- brainstate/compile/_ad_checkpoint.py +2 -3
- brainstate/compile/_conditions.py +4 -5
- brainstate/compile/_conditions_test.py +1 -2
- brainstate/compile/_error_if.py +1 -2
- brainstate/compile/_error_if_test.py +1 -2
- brainstate/compile/_jit.py +23 -16
- brainstate/compile/_jit_test.py +1 -2
- brainstate/compile/_loop_collect_return.py +18 -10
- brainstate/compile/_loop_collect_return_test.py +1 -1
- brainstate/compile/_loop_no_collection.py +5 -5
- brainstate/compile/_make_jaxpr.py +23 -21
- brainstate/compile/_make_jaxpr_test.py +1 -2
- brainstate/compile/_progress_bar.py +1 -2
- brainstate/compile/_unvmap.py +1 -0
- brainstate/compile/_util.py +4 -2
- brainstate/environ.py +4 -4
- brainstate/environ_test.py +1 -2
- brainstate/functional/_activations.py +1 -2
- brainstate/functional/_activations_test.py +1 -1
- brainstate/functional/_normalization.py +1 -2
- brainstate/functional/_others.py +1 -2
- brainstate/functional/_spikes.py +136 -20
- brainstate/graph/_graph_node.py +2 -43
- brainstate/graph/_graph_operation.py +4 -20
- brainstate/graph/_graph_operation_test.py +3 -4
- brainstate/init/_base.py +1 -2
- brainstate/init/_generic.py +1 -2
- brainstate/nn/__init__.py +8 -0
- brainstate/nn/_collective_ops.py +351 -48
- brainstate/nn/_collective_ops_test.py +36 -0
- brainstate/nn/_common.py +193 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron.py +1 -2
- brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +1 -2
- brainstate/nn/_dyn_impl/_dynamics_synapse.py +1 -2
- brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +1 -2
- brainstate/nn/_dyn_impl/_inputs.py +1 -2
- brainstate/nn/_dyn_impl/_rate_rnns.py +1 -2
- brainstate/nn/_dyn_impl/_rate_rnns_test.py +1 -2
- brainstate/nn/_dyn_impl/_readout.py +2 -3
- brainstate/nn/_dyn_impl/_readout_test.py +1 -2
- brainstate/nn/_dynamics/_dynamics_base.py +6 -1
- brainstate/nn/_dynamics/_dynamics_base_test.py +1 -2
- brainstate/nn/_dynamics/_state_delay.py +3 -3
- brainstate/nn/_dynamics/_synouts_test.py +1 -2
- brainstate/nn/_elementwise/_dropout.py +6 -7
- brainstate/nn/_elementwise/_dropout_test.py +1 -2
- brainstate/nn/_elementwise/_elementwise.py +1 -2
- brainstate/nn/_exp_euler.py +1 -2
- brainstate/nn/_exp_euler_test.py +1 -2
- brainstate/nn/_interaction/_conv.py +1 -2
- brainstate/nn/_interaction/_conv_test.py +1 -0
- brainstate/nn/_interaction/_linear.py +1 -2
- brainstate/nn/_interaction/_linear_test.py +1 -2
- brainstate/nn/_interaction/_normalizations.py +1 -2
- brainstate/nn/_interaction/_poolings.py +3 -4
- brainstate/nn/_module.py +68 -19
- brainstate/nn/_module_test.py +1 -2
- brainstate/nn/_utils.py +89 -0
- brainstate/nn/metrics.py +3 -4
- brainstate/optim/_lr_scheduler.py +1 -2
- brainstate/optim/_lr_scheduler_test.py +2 -3
- brainstate/optim/_optax_optimizer_test.py +1 -2
- brainstate/optim/_sgd_optimizer.py +2 -3
- brainstate/random/_rand_funs.py +1 -2
- brainstate/random/_rand_funs_test.py +2 -3
- brainstate/random/_rand_seed.py +2 -3
- brainstate/random/_rand_seed_test.py +1 -2
- brainstate/random/_rand_state.py +3 -4
- brainstate/surrogate.py +5 -5
- brainstate/transform.py +0 -3
- brainstate/typing.py +28 -25
- brainstate/util/__init__.py +9 -7
- brainstate/util/_caller.py +1 -2
- brainstate/util/_error.py +27 -0
- brainstate/util/_others.py +60 -15
- brainstate/util/{_dict.py → _pretty_pytree.py} +2 -2
- brainstate/util/{_dict_test.py → _pretty_pytree_test.py} +1 -2
- brainstate/util/_pretty_repr.py +1 -2
- brainstate/util/_pretty_table.py +2900 -0
- brainstate/util/_struct.py +11 -11
- brainstate/util/filter.py +472 -0
- {brainstate-0.1.0.post20250212.dist-info → brainstate-0.1.0.post20250217.dist-info}/METADATA +2 -2
- brainstate-0.1.0.post20250217.dist-info/RECORD +128 -0
- brainstate/util/_filter.py +0 -178
- brainstate-0.1.0.post20250212.dist-info/RECORD +0 -124
- {brainstate-0.1.0.post20250212.dist-info → brainstate-0.1.0.post20250217.dist-info}/LICENSE +0 -0
- {brainstate-0.1.0.post20250212.dist-info → brainstate-0.1.0.post20250217.dist-info}/WHEEL +0 -0
- {brainstate-0.1.0.post20250212.dist-info → brainstate-0.1.0.post20250217.dist-info}/top_level.txt +0 -0
brainstate/nn/_collective_ops.py
CHANGED
@@ -16,14 +16,18 @@
|
|
16
16
|
from __future__ import annotations
|
17
17
|
|
18
18
|
from collections import namedtuple
|
19
|
-
from typing import Dict, Callable, TypeVar
|
20
19
|
|
21
20
|
import jax
|
21
|
+
from typing import (
|
22
|
+
Callable, TypeVar, Tuple, Any, Dict
|
23
|
+
)
|
22
24
|
|
23
25
|
from brainstate._state import catch_new_states
|
24
26
|
from brainstate._utils import set_module_as
|
27
|
+
from brainstate.augment import vmap, vmap_new_states
|
25
28
|
from brainstate.graph import nodes
|
26
|
-
from brainstate.
|
29
|
+
from brainstate.random import set_key, split_key
|
30
|
+
from brainstate.typing import Filter
|
27
31
|
from ._module import Module
|
28
32
|
|
29
33
|
# the maximum order
|
@@ -35,8 +39,16 @@ StateLoadResult = namedtuple('StateLoadResult', ['missing_keys', 'unexpected_key
|
|
35
39
|
T = TypeVar('T', bound=Module)
|
36
40
|
|
37
41
|
__all__ = [
|
38
|
-
'MAX_ORDER',
|
39
|
-
'
|
42
|
+
'MAX_ORDER',
|
43
|
+
'call_order',
|
44
|
+
'call_all_functions',
|
45
|
+
'vmap_call_all_functions',
|
46
|
+
'init_all_states',
|
47
|
+
'vmap_init_all_states',
|
48
|
+
'reset_all_states',
|
49
|
+
'load_all_states',
|
50
|
+
'save_all_states',
|
51
|
+
'assign_state_values',
|
40
52
|
]
|
41
53
|
|
42
54
|
|
@@ -76,77 +88,368 @@ def call_order(level: int = 0, check_order_boundary: bool = True):
|
|
76
88
|
|
77
89
|
|
78
90
|
@set_module_as('brainstate.nn')
|
79
|
-
def
|
91
|
+
def call_all_functions(
|
80
92
|
target: T,
|
81
|
-
|
82
|
-
|
83
|
-
|
93
|
+
fun_name: str,
|
94
|
+
args: Tuple[Any, ...] | Any = (),
|
95
|
+
kwargs: Dict[str, Any] | None = None,
|
96
|
+
node_to_exclude: Filter = None,
|
97
|
+
fun_if_not_exist: str = 'raise',
|
84
98
|
) -> T:
|
85
99
|
"""
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
100
|
+
Call a specified function on all nodes of a target module, respecting call order if defined.
|
101
|
+
|
102
|
+
This function iterates through all nodes of the target module, calling a specified function
|
103
|
+
on each node. It respects the call order of functions if defined, and provides options for
|
104
|
+
handling cases where the specified function does not exist on a node.
|
105
|
+
|
106
|
+
Parameters:
|
107
|
+
-----------
|
108
|
+
target : T
|
109
|
+
The target module on which to call functions.
|
110
|
+
fun_name : str
|
111
|
+
The name of the function to call on each node.
|
112
|
+
args : Tuple[Any, ...] | Any, optional
|
113
|
+
Positional arguments to pass to the called function. Default is an empty tuple.
|
114
|
+
kwargs : Dict[str, Any] | None, optional
|
115
|
+
Keyword arguments to pass to the called function. Default is None.
|
116
|
+
node_to_exclude : Filter, optional
|
117
|
+
A filter function to exclude certain nodes from the function call.
|
118
|
+
fun_if_not_exist : str, optional
|
119
|
+
Specifies behavior when the function doesn't exist on a node. Options are:
|
120
|
+
|
121
|
+
- 'raise': Raise an exception (default)
|
122
|
+
- 'pass' or 'none': Skip the node and continue
|
123
|
+
|
97
124
|
Returns:
|
98
|
-
|
125
|
+
--------
|
126
|
+
T
|
127
|
+
The target module after calling the specified function on all applicable nodes.
|
128
|
+
|
129
|
+
Raises:
|
130
|
+
-------
|
131
|
+
AssertionError
|
132
|
+
If fun_name is not a string or kwargs is not a dictionary.
|
133
|
+
ValueError
|
134
|
+
If fun_if_not_exist is not one of the allowed values.
|
135
|
+
AttributeError
|
136
|
+
If the specified function doesn't exist on a node and fun_if_not_exist is 'raise'.
|
99
137
|
"""
|
138
|
+
assert isinstance(fun_name, str), f'fun_name must be a string, but got {fun_name}.'
|
100
139
|
|
101
|
-
|
102
|
-
|
140
|
+
args = (args,) if not isinstance(args, tuple) else args
|
141
|
+
kwargs = kwargs or {}
|
142
|
+
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
103
143
|
|
104
|
-
|
105
|
-
if
|
106
|
-
|
144
|
+
all_nodes = nodes(target).filter(Module)
|
145
|
+
if node_to_exclude is not None:
|
146
|
+
all_nodes -= all_nodes.filter(node_to_exclude)
|
107
147
|
|
108
|
-
|
109
|
-
for node in
|
110
|
-
|
148
|
+
nodes_with_order = []
|
149
|
+
for node in all_nodes.values():
|
150
|
+
try:
|
151
|
+
fun = getattr(node, fun_name)
|
152
|
+
except AttributeError as e:
|
153
|
+
if fun_if_not_exist == 'raise':
|
154
|
+
raise
|
155
|
+
elif fun_if_not_exist in ('pass', 'none'):
|
156
|
+
continue
|
157
|
+
else:
|
158
|
+
raise ValueError(
|
159
|
+
f'fun_if_not_exist must be one of ["raise", "pass", "none"], but got {fun_if_not_exist}.')
|
160
|
+
|
161
|
+
assert callable(fun), f'{fun_name} must be a callable function, but got {fun}.'
|
162
|
+
if hasattr(fun, 'call_order'):
|
111
163
|
nodes_with_order.append(node)
|
112
164
|
else:
|
113
|
-
|
165
|
+
fun(*args, **kwargs)
|
166
|
+
|
167
|
+
for node in sorted(nodes_with_order, key=lambda x: getattr(x, fun_name).call_order):
|
168
|
+
getattr(node, fun_name)(*args, **kwargs)
|
169
|
+
|
170
|
+
return target
|
171
|
+
|
172
|
+
|
173
|
+
def vmap_call_all_functions(
|
174
|
+
target: T,
|
175
|
+
fun_name: str,
|
176
|
+
args: Tuple[Any, ...] | Any = (),
|
177
|
+
kwargs: Dict[str, Any] | None = None,
|
178
|
+
axis_size: int = None,
|
179
|
+
node_to_exclude: Filter = None,
|
180
|
+
tag: str | None = None,
|
181
|
+
fun_if_not_exist: str = 'raise',
|
182
|
+
) -> T:
|
183
|
+
"""
|
184
|
+
Apply vectorized mapping (vmap) to call a specified function on all nodes of a target module.
|
185
|
+
|
186
|
+
This function vectorizes the process of calling a specified function across multiple instances
|
187
|
+
of the target module, effectively batching the operation.
|
188
|
+
|
189
|
+
Parameters:
|
190
|
+
-----------
|
191
|
+
target : T
|
192
|
+
The target module on which to call functions.
|
193
|
+
fun_name : str
|
194
|
+
The name of the function to call on each node.
|
195
|
+
args : Tuple[Any, ...] | Any, optional
|
196
|
+
Positional arguments to pass to the called function. Default is an empty tuple.
|
197
|
+
kwargs : Dict[str, Any] | None, optional
|
198
|
+
Keyword arguments to pass to the called function. Default is None.
|
199
|
+
axis_size : int, optional
|
200
|
+
The size of the batch axis for vmap. Must be a positive integer.
|
201
|
+
node_to_exclude : Filter, optional
|
202
|
+
A filter function to exclude certain nodes from the function call.
|
203
|
+
tag : str | None, optional
|
204
|
+
A tag to be used for catching new states.
|
205
|
+
fun_if_not_exist : str, optional
|
206
|
+
Specifies behavior when the function doesn't exist on a node. Options are:
|
207
|
+
|
208
|
+
- 'raise': Raise an exception (default)
|
209
|
+
- 'pass' or 'none': Skip the node and continue
|
210
|
+
|
211
|
+
Returns:
|
212
|
+
--------
|
213
|
+
T
|
214
|
+
The target module after applying the vectorized function call on all applicable nodes.
|
114
215
|
|
115
|
-
|
116
|
-
|
117
|
-
|
216
|
+
Raises:
|
217
|
+
-------
|
218
|
+
AssertionError
|
219
|
+
If axis_size is not specified or is not a positive integer.
|
220
|
+
"""
|
221
|
+
assert axis_size is not None and axis_size > 0, f"axis_size must be a positive integer, got {axis_size}"
|
222
|
+
|
223
|
+
if not isinstance(args, tuple):
|
224
|
+
args = (args,)
|
225
|
+
kwargs = kwargs or {}
|
226
|
+
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
227
|
+
|
228
|
+
@vmap(out_axes=0, axis_size=axis_size)
|
229
|
+
def vmapped_fn(key):
|
230
|
+
set_key(key)
|
231
|
+
with catch_new_states(tag) as inner_catcher:
|
232
|
+
call_all_functions(
|
233
|
+
target,
|
234
|
+
fun_name=fun_name,
|
235
|
+
args=args,
|
236
|
+
kwargs=kwargs,
|
237
|
+
node_to_exclude=node_to_exclude,
|
238
|
+
fun_if_not_exist=fun_if_not_exist
|
239
|
+
)
|
240
|
+
values = inner_catcher.get_state_values()
|
241
|
+
return values
|
242
|
+
|
243
|
+
with catch_new_states(tag) as outer_catcher:
|
244
|
+
values = vmapped_fn(split_key(axis_size))
|
245
|
+
states = outer_catcher.get_states()
|
246
|
+
for state, value in zip(states, values):
|
247
|
+
state.value = value
|
118
248
|
|
119
249
|
return target
|
120
250
|
|
121
251
|
|
122
252
|
@set_module_as('brainstate.nn')
|
123
|
-
def
|
253
|
+
def init_all_states(
|
254
|
+
target: T,
|
255
|
+
init_args: Tuple[Any, ...] | Any = (),
|
256
|
+
init_kwargs: Dict[str, Any] | None = None,
|
257
|
+
node_to_exclude: Filter = None,
|
258
|
+
) -> T:
|
124
259
|
"""
|
125
|
-
|
260
|
+
Initialize all states for the given target module and its submodules.
|
126
261
|
|
127
|
-
|
128
|
-
|
262
|
+
This function initializes the states of the target module and all its submodules,
|
263
|
+
respecting any call order decorators that may be present on the init_state methods.
|
129
264
|
|
130
|
-
|
131
|
-
|
265
|
+
Parameters
|
266
|
+
----------
|
267
|
+
target : T
|
268
|
+
The target module whose states are to be initialized.
|
269
|
+
init_args : Tuple[Any, ...] | Any, optional
|
270
|
+
Positional arguments to be passed to each init_state method.
|
271
|
+
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
272
|
+
init_kwargs : Dict[str, Any] | None, optional
|
273
|
+
Keyword arguments to be passed to each init_state method.
|
274
|
+
If None, an empty dictionary will be used.
|
275
|
+
node_to_exclude : Filter, optional
|
276
|
+
A filter function or predicate to exclude certain nodes from initialization.
|
277
|
+
|
278
|
+
Returns
|
279
|
+
-------
|
280
|
+
T
|
281
|
+
The target module with all states initialized.
|
282
|
+
|
283
|
+
Raises
|
284
|
+
------
|
285
|
+
AssertionError
|
286
|
+
If init_kwargs is provided but is not a dictionary.
|
132
287
|
"""
|
288
|
+
return call_all_functions(target, 'init_state', init_args, init_kwargs, node_to_exclude)
|
133
289
|
|
134
|
-
nodes_with_order = []
|
135
290
|
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
291
|
+
@set_module_as('brainstate.nn')
|
292
|
+
def vmap_init_all_states(
|
293
|
+
target: T,
|
294
|
+
init_args: Tuple[Any, ...] | Any = (),
|
295
|
+
init_kwargs: Dict[str, Any] | None = None,
|
296
|
+
axis_size: int = None,
|
297
|
+
node_to_exclude: Filter = None,
|
298
|
+
state_to_exclude: Filter = None,
|
299
|
+
state_tag: str | None = None,
|
300
|
+
) -> T:
|
301
|
+
"""
|
302
|
+
Initialize all vmap states for the given target module.
|
303
|
+
|
304
|
+
This function applies vectorized mapping (vmap) to initialize states across multiple
|
305
|
+
instances of the target module, effectively batching the initialization process.
|
306
|
+
|
307
|
+
Parameters:
|
308
|
+
-----------
|
309
|
+
target : T
|
310
|
+
The target module whose states are to be initialized.
|
311
|
+
init_args : Tuple[Any, ...] | Any, optional
|
312
|
+
Positional arguments to be passed to the init_all_states function. Default is an empty tuple.
|
313
|
+
init_kwargs : Dict[str, Any] | None, optional
|
314
|
+
Keyword arguments to be passed to the init_all_states function. Default is None.
|
315
|
+
axis_size : int, optional
|
316
|
+
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
317
|
+
node_to_exclude : Filter, optional
|
318
|
+
A filter to exclude certain nodes from initialization.
|
319
|
+
state_tag : str | None, optional
|
320
|
+
A tag to be used for catching new states.
|
142
321
|
|
143
|
-
|
144
|
-
|
145
|
-
|
322
|
+
Returns:
|
323
|
+
--------
|
324
|
+
T
|
325
|
+
The target module with initialized states.
|
146
326
|
|
327
|
+
Raises:
|
328
|
+
-------
|
329
|
+
AssertionError
|
330
|
+
If axis_size is not specified or is not greater than 0.
|
331
|
+
If init_kwargs is not a dictionary.
|
332
|
+
"""
|
333
|
+
|
334
|
+
# return vmap_call_all_functions(
|
335
|
+
# target,
|
336
|
+
# 'init_state',
|
337
|
+
# args=init_args,
|
338
|
+
# kwargs=init_kwargs,
|
339
|
+
# axis_size=axis_size,
|
340
|
+
# node_to_exclude=node_to_exclude,
|
341
|
+
# tag=tag,
|
342
|
+
# )
|
343
|
+
|
344
|
+
def init_fn():
|
345
|
+
init_all_states(
|
346
|
+
target,
|
347
|
+
init_args=init_args,
|
348
|
+
init_kwargs=init_kwargs,
|
349
|
+
node_to_exclude=node_to_exclude,
|
350
|
+
)
|
351
|
+
return
|
352
|
+
|
353
|
+
vmap_new_states(init_fn, state_tag=state_tag, axis_size=axis_size, state_to_exclude=state_to_exclude)()
|
147
354
|
return target
|
148
355
|
|
149
356
|
|
357
|
+
@set_module_as('brainstate.nn')
|
358
|
+
def reset_all_states(
|
359
|
+
target: T,
|
360
|
+
reset_args: Tuple[Any, ...] | Any = (),
|
361
|
+
reset_kwargs: Dict[str, Any] | None = None,
|
362
|
+
node_to_exclude: Filter = None,
|
363
|
+
) -> T:
|
364
|
+
"""
|
365
|
+
Reset all states for the given target module and its submodules.
|
366
|
+
|
367
|
+
This function resets the states of the target module and all its submodules,
|
368
|
+
respecting any call order decorators that may be present on the reset_state methods.
|
369
|
+
|
370
|
+
Parameters
|
371
|
+
----------
|
372
|
+
target : T
|
373
|
+
The target module whose states are to be reset.
|
374
|
+
reset_args : Tuple[Any, ...] | Any, optional
|
375
|
+
Positional arguments to be passed to each reset_state method.
|
376
|
+
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
377
|
+
reset_kwargs : Dict[str, Any] | None, optional
|
378
|
+
Keyword arguments to be passed to each reset_state method.
|
379
|
+
If None, an empty dictionary will be used.
|
380
|
+
node_to_exclude : Filter, optional
|
381
|
+
A filter function or predicate to exclude certain nodes from reset.
|
382
|
+
|
383
|
+
Returns
|
384
|
+
-------
|
385
|
+
T
|
386
|
+
The target module with all states reset.
|
387
|
+
|
388
|
+
Raises
|
389
|
+
------
|
390
|
+
AssertionError
|
391
|
+
If init_kwargs is provided but is not a dictionary.
|
392
|
+
"""
|
393
|
+
return call_all_functions(
|
394
|
+
target,
|
395
|
+
fun_name='reset_state',
|
396
|
+
args=reset_args,
|
397
|
+
kwargs=reset_kwargs,
|
398
|
+
node_to_exclude=node_to_exclude
|
399
|
+
)
|
400
|
+
|
401
|
+
|
402
|
+
def vmap_reset_all_states(
|
403
|
+
target: T,
|
404
|
+
reset_args: Tuple[Any, ...] | Any = (),
|
405
|
+
reset_kwargs: Dict[str, Any] | None = None,
|
406
|
+
axis_size: int = None,
|
407
|
+
node_to_exclude: Filter = None,
|
408
|
+
tag: str | None = None,
|
409
|
+
) -> T:
|
410
|
+
"""
|
411
|
+
Reset all vmap states for the given target module.
|
412
|
+
|
413
|
+
This function applies vectorized mapping (vmap) to reset states across multiple
|
414
|
+
instances of the target module, effectively batching the reset process.
|
415
|
+
|
416
|
+
Parameters:
|
417
|
+
-----------
|
418
|
+
target : T
|
419
|
+
The target module whose states are to be reset.
|
420
|
+
reset_args : Tuple[Any, ...] | Any, optional
|
421
|
+
Positional arguments to be passed to the reset_all_states function. Default is an empty tuple.
|
422
|
+
reset_kwargs : Dict[str, Any] | None, optional
|
423
|
+
Keyword arguments to be passed to the reset_all_states function. Default is None.
|
424
|
+
axis_size : int, optional
|
425
|
+
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
426
|
+
node_to_exclude : Filter, optional
|
427
|
+
A filter to exclude certain nodes from reset.
|
428
|
+
tag : str | None, optional
|
429
|
+
A tag to be used for catching new states.
|
430
|
+
|
431
|
+
Returns:
|
432
|
+
--------
|
433
|
+
T
|
434
|
+
The target module with reset states.
|
435
|
+
|
436
|
+
Raises:
|
437
|
+
-------
|
438
|
+
AssertionError
|
439
|
+
If axis_size is not specified or is not greater than 0.
|
440
|
+
If reset_kwargs is not a dictionary.
|
441
|
+
"""
|
442
|
+
return vmap_call_all_functions(
|
443
|
+
target,
|
444
|
+
fun_name='reset_state',
|
445
|
+
args=reset_args,
|
446
|
+
kwargs=reset_kwargs,
|
447
|
+
axis_size=axis_size,
|
448
|
+
node_to_exclude=node_to_exclude,
|
449
|
+
tag=tag,
|
450
|
+
)
|
451
|
+
|
452
|
+
|
150
453
|
@set_module_as('brainstate.nn')
|
151
454
|
def load_all_states(target: Module, state_dict: Dict, **kwargs):
|
152
455
|
"""
|
@@ -0,0 +1,36 @@
|
|
1
|
+
# Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
|
19
|
+
import brainstate as bst
|
20
|
+
|
21
|
+
|
22
|
+
class Test_vmap_init_all_states:
|
23
|
+
|
24
|
+
def test_vmap_init_all_states(self):
|
25
|
+
gru = bst.nn.GRUCell(1, 2)
|
26
|
+
bst.nn.vmap_init_all_states(gru, axis_size=10)
|
27
|
+
print(gru)
|
28
|
+
|
29
|
+
def test_vmap_init_all_states_v2(self):
|
30
|
+
@bst.compile.jit
|
31
|
+
def init():
|
32
|
+
gru = bst.nn.GRUCell(1, 2)
|
33
|
+
bst.nn.vmap_init_all_states(gru, axis_size=10)
|
34
|
+
print(gru)
|
35
|
+
|
36
|
+
init()
|
brainstate/nn/_common.py
ADDED
@@ -0,0 +1,193 @@
|
|
1
|
+
# Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
from __future__ import annotations
|
19
|
+
|
20
|
+
from collections import defaultdict
|
21
|
+
|
22
|
+
from typing import Any, Sequence, Hashable, Dict
|
23
|
+
|
24
|
+
from brainstate import environ
|
25
|
+
from brainstate.augment._mapping import vmap
|
26
|
+
from brainstate.typing import Filter
|
27
|
+
from ._module import Module
|
28
|
+
|
29
|
+
AxisName = Hashable
|
30
|
+
|
31
|
+
__all__ = [
|
32
|
+
'EnvironContext',
|
33
|
+
'Vmap',
|
34
|
+
]
|
35
|
+
|
36
|
+
|
37
|
+
class EnvironContext(Module):
|
38
|
+
"""
|
39
|
+
A wrapper class that provides an environment context for a given layer.
|
40
|
+
|
41
|
+
This class allows execution of a layer within a specific environment context,
|
42
|
+
which can be useful for controlling the execution environment of neural network layers.
|
43
|
+
|
44
|
+
This class is equivalent to the following code snippet:
|
45
|
+
|
46
|
+
```python
|
47
|
+
|
48
|
+
import brainstate
|
49
|
+
|
50
|
+
with brainstate.environ.context(**context):
|
51
|
+
result = layer(*args, **kwargs)
|
52
|
+
|
53
|
+
```
|
54
|
+
|
55
|
+
Attributes:
|
56
|
+
layer (Module): The layer to be executed within the environment context.
|
57
|
+
context (dict): The environment context parameters.
|
58
|
+
"""
|
59
|
+
|
60
|
+
def __init__(self, layer: Module, **context):
|
61
|
+
"""
|
62
|
+
Initialize the EnvironContext.
|
63
|
+
|
64
|
+
Args:
|
65
|
+
layer (Module): The layer to be wrapped with the environment context.
|
66
|
+
**context: Arbitrary keyword arguments representing the environment context parameters.
|
67
|
+
"""
|
68
|
+
super().__init__()
|
69
|
+
|
70
|
+
assert isinstance(layer, Module), 'The layer must be an instance of Module.'
|
71
|
+
self.layer = layer
|
72
|
+
self.context = context
|
73
|
+
|
74
|
+
def update(self, *args, **kwargs):
|
75
|
+
"""
|
76
|
+
Execute the wrapped layer within the specified environment context.
|
77
|
+
|
78
|
+
Args:
|
79
|
+
*args: Variable length argument list to be passed to the wrapped layer.
|
80
|
+
**kwargs: Arbitrary keyword arguments to be passed to the wrapped layer.
|
81
|
+
|
82
|
+
Returns:
|
83
|
+
The result of executing the wrapped layer within the environment context.
|
84
|
+
"""
|
85
|
+
with environ.context(**self.context):
|
86
|
+
return self.layer(*args, **kwargs)
|
87
|
+
|
88
|
+
def add_context(self, **context):
|
89
|
+
"""
|
90
|
+
Add additional environment context parameters to the existing context.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
**context: Arbitrary keyword arguments representing the additional environment context parameters.
|
94
|
+
"""
|
95
|
+
self.context.update(context)
|
96
|
+
|
97
|
+
|
98
|
+
def _filter_states(
|
99
|
+
module: Module,
|
100
|
+
filters: Filter | Dict[Filter, int],
|
101
|
+
) -> Dict:
|
102
|
+
if filters is None:
|
103
|
+
filtered_states = None
|
104
|
+
elif isinstance(filters, dict):
|
105
|
+
in_states_filter = defaultdict(list)
|
106
|
+
for filter_, axis in filters:
|
107
|
+
assert isinstance(axis, int), 'The value of in_states must be the map axis, which should be an integer.'
|
108
|
+
in_states_filter[axis].append(filter_)
|
109
|
+
filtered_states = module.states(*in_states_filter.values())
|
110
|
+
in_states_axis = tuple(in_states_filter.keys())
|
111
|
+
filtered_states = {axis: states for axis, states in zip(in_states_axis, filtered_states)}
|
112
|
+
else:
|
113
|
+
filtered_states = module.states(filters)
|
114
|
+
return filtered_states
|
115
|
+
|
116
|
+
|
117
|
+
class Vmap(Module):
|
118
|
+
"""
|
119
|
+
A class that applies vectorized mapping (vmap) to a given module.
|
120
|
+
|
121
|
+
This class wraps a module and applies vectorized mapping to its execution,
|
122
|
+
allowing for efficient parallel processing across specified axes.
|
123
|
+
|
124
|
+
Attributes:
|
125
|
+
module (Module): The module to be vmapped.
|
126
|
+
in_axes (int | None | Sequence[Any]): Specifies how to map over inputs.
|
127
|
+
out_axes (Any): Specifies how to map over outputs.
|
128
|
+
vmap_states (Filter | Dict[Filter, int]): Specifies which states to vmap and on which axes.
|
129
|
+
vmap_out_states (Filter | Dict[Filter, int]): Specifies which output states to vmap and on which axes.
|
130
|
+
axis_name (AxisName | None): Name of the axis being mapped over.
|
131
|
+
axis_size (int | None): Size of the axis being mapped over.
|
132
|
+
"""
|
133
|
+
|
134
|
+
def __init__(
|
135
|
+
self,
|
136
|
+
module: Module,
|
137
|
+
in_axes: int | None | Sequence[Any] = 0,
|
138
|
+
out_axes: Any = 0,
|
139
|
+
vmap_states: Filter | Dict[Filter, int] = None,
|
140
|
+
vmap_out_states: Filter | Dict[Filter, int] = None,
|
141
|
+
axis_name: AxisName | None = None,
|
142
|
+
axis_size: int | None = None,
|
143
|
+
):
|
144
|
+
"""
|
145
|
+
Initialize the Vmap instance.
|
146
|
+
|
147
|
+
Args:
|
148
|
+
module (Module): The module to be vmapped.
|
149
|
+
in_axes (int | None | Sequence[Any], optional): Specifies how to map over inputs. Defaults to 0.
|
150
|
+
out_axes (Any, optional): Specifies how to map over outputs. Defaults to 0.
|
151
|
+
vmap_states (Filter | Dict[Filter, int], optional): Specifies which states to vmap and on which axes. Defaults to None.
|
152
|
+
vmap_out_states (Filter | Dict[Filter, int], optional): Specifies which output states to vmap and on which axes. Defaults to None.
|
153
|
+
axis_name (AxisName | None, optional): Name of the axis being mapped over. Defaults to None.
|
154
|
+
axis_size (int | None, optional): Size of the axis being mapped over. Defaults to None.
|
155
|
+
"""
|
156
|
+
super().__init__()
|
157
|
+
|
158
|
+
# parameters
|
159
|
+
self.in_axes = in_axes
|
160
|
+
self.out_axes = out_axes
|
161
|
+
self.axis_name = axis_name
|
162
|
+
self.axis_size = axis_size
|
163
|
+
assert isinstance(module, Module), 'The module must be an instance of Module.'
|
164
|
+
self.module = module
|
165
|
+
vmap_states = _filter_states(module, vmap_states)
|
166
|
+
vmap_out_states = _filter_states(module, vmap_out_states)
|
167
|
+
|
168
|
+
@vmap(
|
169
|
+
in_axes=in_axes,
|
170
|
+
out_axes=out_axes,
|
171
|
+
in_states=vmap_states,
|
172
|
+
out_states=vmap_out_states,
|
173
|
+
axis_name=axis_name,
|
174
|
+
axis_size=axis_size,
|
175
|
+
)
|
176
|
+
def vmap_run(*args, **kwargs):
|
177
|
+
return module(*args, **kwargs)
|
178
|
+
|
179
|
+
# vmapped module
|
180
|
+
self.vmapped_fn = vmap_run
|
181
|
+
|
182
|
+
def update(self, *args, **kwargs):
|
183
|
+
"""
|
184
|
+
Execute the vmapped module with the given arguments.
|
185
|
+
|
186
|
+
Args:
|
187
|
+
*args: Variable length argument list to be passed to the vmapped module.
|
188
|
+
**kwargs: Arbitrary keyword arguments to be passed to the vmapped module.
|
189
|
+
|
190
|
+
Returns:
|
191
|
+
The result of executing the vmapped module.
|
192
|
+
"""
|
193
|
+
return self.vmapped_fn(*args, **kwargs)
|
@@ -17,10 +17,9 @@
|
|
17
17
|
|
18
18
|
from __future__ import annotations
|
19
19
|
|
20
|
-
from typing import Callable, Optional
|
21
|
-
|
22
20
|
import brainunit as u
|
23
21
|
import jax
|
22
|
+
from typing import Callable, Optional
|
24
23
|
|
25
24
|
from brainstate import init, surrogate, environ
|
26
25
|
from brainstate._state import HiddenState, ShortTermState
|