brainstate 0.0.2.post20240913__py2.py3-none-any.whl → 0.0.2.post20241010__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +4 -2
- brainstate/_module.py +102 -67
- brainstate/_state.py +2 -2
- brainstate/_visualization.py +47 -0
- brainstate/environ.py +116 -9
- brainstate/environ_test.py +56 -0
- brainstate/functional/_activations.py +134 -56
- brainstate/functional/_activations_test.py +331 -0
- brainstate/functional/_normalization.py +21 -10
- brainstate/init/_generic.py +4 -2
- brainstate/mixin.py +1 -1
- brainstate/nn/__init__.py +7 -2
- brainstate/nn/_base.py +2 -2
- brainstate/nn/_connections.py +4 -4
- brainstate/nn/_dynamics.py +5 -5
- brainstate/nn/_elementwise.py +9 -9
- brainstate/nn/_embedding.py +3 -3
- brainstate/nn/_normalizations.py +3 -3
- brainstate/nn/_others.py +2 -2
- brainstate/nn/_poolings.py +6 -6
- brainstate/nn/_rate_rnns.py +1 -1
- brainstate/nn/_readout.py +1 -1
- brainstate/nn/_synouts.py +1 -1
- brainstate/nn/event/__init__.py +25 -0
- brainstate/nn/event/_misc.py +34 -0
- brainstate/nn/event/csr.py +312 -0
- brainstate/nn/event/csr_test.py +118 -0
- brainstate/nn/event/fixed_probability.py +276 -0
- brainstate/nn/event/fixed_probability_test.py +127 -0
- brainstate/nn/event/linear.py +220 -0
- brainstate/nn/event/linear_test.py +111 -0
- brainstate/nn/metrics.py +390 -0
- brainstate/optim/__init__.py +5 -1
- brainstate/optim/_optax_optimizer.py +208 -0
- brainstate/optim/_optax_optimizer_test.py +14 -0
- brainstate/random/__init__.py +24 -0
- brainstate/{random.py → random/_rand_funs.py} +7 -1596
- brainstate/random/_rand_seed.py +169 -0
- brainstate/random/_rand_state.py +1498 -0
- brainstate/{_random_for_unit.py → random/_random_for_unit.py} +1 -1
- brainstate/{random_test.py → random/random_test.py} +208 -191
- brainstate/transform/_jit.py +1 -1
- brainstate/transform/_jit_test.py +19 -0
- brainstate/transform/_make_jaxpr.py +1 -1
- {brainstate-0.0.2.post20240913.dist-info → brainstate-0.0.2.post20241010.dist-info}/METADATA +1 -1
- brainstate-0.0.2.post20241010.dist-info/RECORD +87 -0
- brainstate-0.0.2.post20240913.dist-info/RECORD +0 -70
- {brainstate-0.0.2.post20240913.dist-info → brainstate-0.0.2.post20241010.dist-info}/LICENSE +0 -0
- {brainstate-0.0.2.post20240913.dist-info → brainstate-0.0.2.post20241010.dist-info}/WHEEL +0 -0
- {brainstate-0.0.2.post20240913.dist-info → brainstate-0.0.2.post20241010.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,208 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
|
17
|
+
from __future__ import annotations
|
18
|
+
|
19
|
+
import importlib.util
|
20
|
+
from typing import Any
|
21
|
+
|
22
|
+
import jax.numpy as jnp
|
23
|
+
|
24
|
+
from brainstate._module import Module
|
25
|
+
from brainstate._state import ShortTermState, ParamState
|
26
|
+
|
27
|
+
__all__ = [
|
28
|
+
'OptaxOptimizer',
|
29
|
+
]
|
30
|
+
|
31
|
+
optax_installed = importlib.util.find_spec('optax') is not None
|
32
|
+
|
33
|
+
|
34
|
+
class OptaxState(ShortTermState):
|
35
|
+
"""Wrapper class for Optimizer Variables."""
|
36
|
+
pass
|
37
|
+
|
38
|
+
|
39
|
+
class OptaxOptimizer(Module):
|
40
|
+
"""Simple train state for the common case with a single Optax optimizer.
|
41
|
+
|
42
|
+
Example usage::
|
43
|
+
|
44
|
+
>>> import jax, jax.numpy as jnp
|
45
|
+
>>> import brainstate as bst
|
46
|
+
>>> from brainstate import nn
|
47
|
+
>>> import optax
|
48
|
+
...
|
49
|
+
>>> class Model(bst.Module):
|
50
|
+
... def __init__(self):
|
51
|
+
... super().__init__()
|
52
|
+
... self.linear1 = nn.Linear(2, 3)
|
53
|
+
... self.linear2 = nn.Linear(3, 4)
|
54
|
+
... def __call__(self, x):
|
55
|
+
... return self.linear2(self.linear1(x))
|
56
|
+
...
|
57
|
+
>>> x = jax.random.normal(jax.random.key(0), (1, 2))
|
58
|
+
>>> y = jnp.ones((1, 4))
|
59
|
+
...
|
60
|
+
>>> model = Model()
|
61
|
+
>>> tx = optax.adam(1e-3)
|
62
|
+
>>> state = bst.optim.OptaxOptimizer(model, tx)
|
63
|
+
...
|
64
|
+
>>> loss_fn = lambda model: ((model(x) - y) ** 2).mean()
|
65
|
+
>>> loss_fn(model)
|
66
|
+
Array(1.7055722, dtype=float32)
|
67
|
+
>>> grads = bst.transform.grad(loss_fn)(state.model)
|
68
|
+
>>> state.update(grads)
|
69
|
+
>>> loss_fn(model)
|
70
|
+
Array(1.6925814, dtype=float32)
|
71
|
+
|
72
|
+
Note that you can easily extend this class by subclassing it for storing
|
73
|
+
additional data (e.g. adding metrics).
|
74
|
+
|
75
|
+
Example usage::
|
76
|
+
|
77
|
+
>>> class TrainState(nnx.Optimizer):
|
78
|
+
... def __init__(self, model, tx, metrics):
|
79
|
+
... self.metrics = metrics
|
80
|
+
... super().__init__(model, tx)
|
81
|
+
... def update(self, *, grads, **updates):
|
82
|
+
... self.metrics.update(**updates)
|
83
|
+
... super().update(grads)
|
84
|
+
...
|
85
|
+
>>> metrics = nnx.metrics.Average()
|
86
|
+
>>> state = TrainState(model, tx, metrics)
|
87
|
+
...
|
88
|
+
>>> grads = nnx.grad(loss_fn)(state.model)
|
89
|
+
>>> state.update(grads=grads, values=loss_fn(state.model))
|
90
|
+
>>> state.metrics.compute()
|
91
|
+
Array(1.6925814, dtype=float32)
|
92
|
+
>>> state.update(grads=grads, values=loss_fn(state.model))
|
93
|
+
>>> state.metrics.compute()
|
94
|
+
Array(1.68612, dtype=float32)
|
95
|
+
|
96
|
+
For more exotic usecases (e.g. multiple optimizers) it's probably best to
|
97
|
+
fork the class and modify it.
|
98
|
+
|
99
|
+
Attributes:
|
100
|
+
step: An ``OptaxState`` :class:`Variable` that tracks the step count.
|
101
|
+
model: The wrapped :class:`Module`.
|
102
|
+
tx: An Optax gradient transformation.
|
103
|
+
opt_state: The Optax optimizer state.
|
104
|
+
"""
|
105
|
+
|
106
|
+
def __init__(
|
107
|
+
self,
|
108
|
+
model: Module,
|
109
|
+
tx: 'optax.GradientTransformation',
|
110
|
+
wrt: Any = ParamState,
|
111
|
+
):
|
112
|
+
"""
|
113
|
+
Instantiate the class and wrap the :class:`Module` and Optax gradient
|
114
|
+
transformation. Instantiate the optimizer state to keep track of
|
115
|
+
:class:`Variable` types specified in ``wrt``. Set the step count to 0.
|
116
|
+
|
117
|
+
Args:
|
118
|
+
model: An NNX Module.
|
119
|
+
tx: An Optax gradient transformation.
|
120
|
+
wrt: optional argument to filter for which :class:`Variable`'s to keep
|
121
|
+
track of in the optimizer state. These should be the :class:`Variable`'s
|
122
|
+
that you plan on updating; i.e. this argument value should match the
|
123
|
+
``wrt`` argument passed to the ``nnx.grad`` call that will generate the
|
124
|
+
gradients that will be passed into the ``grads`` argument of the
|
125
|
+
:func:`update` method.
|
126
|
+
"""
|
127
|
+
|
128
|
+
# tx must be an instance of optax.GradientTransformation
|
129
|
+
import optax # type: ignore[import-not-found,import-untyped]
|
130
|
+
if not isinstance(tx, optax.GradientTransformation):
|
131
|
+
raise TypeError(f"tx must be an instance of optax.GradientTransformation, got {tx}")
|
132
|
+
self.tx = tx
|
133
|
+
|
134
|
+
# model
|
135
|
+
if not callable(model):
|
136
|
+
raise TypeError(f"model must be a callable, got {model}")
|
137
|
+
self.model = model
|
138
|
+
|
139
|
+
# wrt
|
140
|
+
self.opt_state = tx.init(nnx.state(model, wrt))
|
141
|
+
self.wrt = wrt
|
142
|
+
|
143
|
+
def update(self, grads):
|
144
|
+
"""Updates ``step``, ``params``, ``opt_state`` and ``**kwargs`` in return value.
|
145
|
+
The ``grads`` must be derived from ``nnx.grad(..., wrt=self.wrt)``, where the
|
146
|
+
gradients are with respect to the same :class:`Variable` types as defined in
|
147
|
+
``self.wrt`` during instantiation of this ``Optimizer``. For example::
|
148
|
+
|
149
|
+
>>> from flax import nnx
|
150
|
+
>>> import jax, jax.numpy as jnp
|
151
|
+
>>> import optax
|
152
|
+
|
153
|
+
>>> class CustomVariable(nnx.Variable):
|
154
|
+
... pass
|
155
|
+
|
156
|
+
>>> class Model(nnx.Module):
|
157
|
+
... def __init__(self, rngs):
|
158
|
+
... self.linear = nnx.Linear(2, 3, rngs=rngs)
|
159
|
+
... self.custom_variable = CustomVariable(jnp.ones((1, 3)))
|
160
|
+
... def __call__(self, x):
|
161
|
+
... return self.linear(x) + self.custom_variable
|
162
|
+
>>> model = Model(rngs=nnx.Rngs(0))
|
163
|
+
>>> jax.tree.map(jnp.shape, nnx.state(model))
|
164
|
+
State({
|
165
|
+
'custom_variable': VariableState(
|
166
|
+
type=CustomVariable,
|
167
|
+
value=(1, 3)
|
168
|
+
),
|
169
|
+
'linear': {
|
170
|
+
'bias': VariableState(
|
171
|
+
type=Param,
|
172
|
+
value=(3,)
|
173
|
+
),
|
174
|
+
'kernel': VariableState(
|
175
|
+
type=Param,
|
176
|
+
value=(2, 3)
|
177
|
+
)
|
178
|
+
}
|
179
|
+
})
|
180
|
+
|
181
|
+
>>> # update:
|
182
|
+
>>> # - only Linear layer parameters
|
183
|
+
>>> # - only CustomVariable parameters
|
184
|
+
>>> # - both Linear layer and CustomVariable parameters
|
185
|
+
>>> loss_fn = lambda model, x, y: ((model(x) - y) ** 2).mean()
|
186
|
+
>>> for variable in (nnx.Param, CustomVariable, (nnx.Param, CustomVariable)):
|
187
|
+
... # make sure `wrt` arguments match for `nnx.Optimizer` and `nnx.grad`
|
188
|
+
... state = nnx.Optimizer(model, optax.adam(1e-3), wrt=variable)
|
189
|
+
... grads = nnx.grad(loss_fn, argnums=nnx.DiffState(0, variable))(
|
190
|
+
... state.model, jnp.ones((1, 2)), jnp.ones((1, 3))
|
191
|
+
... )
|
192
|
+
... state.update(grads=grads)
|
193
|
+
|
194
|
+
Note that internally this function calls ``.tx.update()`` followed by a call
|
195
|
+
to ``optax.apply_updates()`` to update ``params`` and ``opt_state``.
|
196
|
+
|
197
|
+
Args:
|
198
|
+
grads: the gradients derived from ``nnx.grad``.
|
199
|
+
"""
|
200
|
+
import optax # type: ignore[import-not-found,import-untyped]
|
201
|
+
state = nnx.state(self.model, self.wrt)
|
202
|
+
|
203
|
+
updates, new_opt_state = self.tx.update(grads, self.opt_state, state)
|
204
|
+
new_params = optax.apply_updates(state, updates)
|
205
|
+
assert isinstance(new_params, nnx.State)
|
206
|
+
|
207
|
+
nnx.update(self.model, new_params)
|
208
|
+
self.opt_state = new_opt_state
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The Flax Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ._rand_funs import *
|
17
|
+
from ._rand_funs import __all__ as __all_random__
|
18
|
+
from ._rand_seed import *
|
19
|
+
from ._rand_seed import __all__ as __all_seed__
|
20
|
+
from ._rand_state import *
|
21
|
+
from ._rand_state import __all__ as __all_state__
|
22
|
+
|
23
|
+
__all__ = __all_random__ + __all_state__ + __all_seed__
|
24
|
+
del __all_random__, __all_state__, __all_seed__
|