braindecode 1.3.0.dev181065563__py3-none-any.whl → 1.3.0.dev183934738__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/base.py +1 -1
- braindecode/datasets/sleep_physio_challe_18.py +2 -1
- braindecode/datautil/serialization.py +11 -6
- braindecode/eegneuralnet.py +2 -0
- braindecode/models/__init__.py +4 -0
- braindecode/models/atcnet.py +7 -7
- braindecode/models/attentionbasenet.py +2 -0
- braindecode/models/biot.py +1 -1
- braindecode/models/labram.py +168 -69
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +8 -6
- braindecode/models/util.py +2 -0
- braindecode/preprocessing/preprocess.py +11 -2
- braindecode/version.py +1 -1
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/METADATA +1 -1
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/RECORD +23 -21
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/WHEEL +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/top_level.txt +0 -0
braindecode/models/summary.csv
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
3
|
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
4
|
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
|
|
6
6
|
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
7
|
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
8
|
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
|
|
|
16
16
|
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
17
|
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
18
|
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
-
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
|
|
20
20
|
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
21
|
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
-
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large
|
|
23
|
-
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large
|
|
24
|
-
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large
|
|
25
|
-
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
26
26
|
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
27
|
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
28
|
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
@@ -37,3 +37,5 @@ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",118
|
|
|
37
37
|
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
38
|
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
39
|
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
40
|
+
PBT,General,Classification,250,"n_chans, n_outputs, n_times",818948,"PBT(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Large Brain Model"
|
|
41
|
+
SSTDPN,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",19502,"SSTDPN(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
braindecode/models/util.py
CHANGED
|
@@ -95,6 +95,8 @@ models_mandatory_parameters = [
|
|
|
95
95
|
("FBMSNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
96
96
|
("FBLightConvNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
97
97
|
("IFNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
98
|
+
("PBT", ["n_chans", "n_outputs", "n_times"], None),
|
|
99
|
+
("SSTDPN", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
98
100
|
]
|
|
99
101
|
|
|
100
102
|
################################################################
|
|
@@ -112,6 +112,7 @@ def preprocess(
|
|
|
112
112
|
n_jobs: int | None = None,
|
|
113
113
|
offset: int = 0,
|
|
114
114
|
copy_data: bool | None = None,
|
|
115
|
+
parallel_kwargs: dict | None = None,
|
|
115
116
|
):
|
|
116
117
|
"""Apply preprocessors to a concat dataset.
|
|
117
118
|
|
|
@@ -135,6 +136,10 @@ def preprocess(
|
|
|
135
136
|
and saving very large datasets in chunks to preserve original positions.
|
|
136
137
|
copy_data : bool | None
|
|
137
138
|
Whether the data passed to parallel jobs should be copied or passed by reference.
|
|
139
|
+
parallel_kwargs : dict | None
|
|
140
|
+
Additional keyword arguments forwarded to ``joblib.Parallel``.
|
|
141
|
+
Defaults to None (equivalent to ``{}``).
|
|
142
|
+
See https://joblib.readthedocs.io/en/stable/generated/joblib.Parallel.html for details.
|
|
138
143
|
|
|
139
144
|
Returns
|
|
140
145
|
-------
|
|
@@ -153,8 +158,12 @@ def preprocess(
|
|
|
153
158
|
|
|
154
159
|
parallel_processing = (n_jobs is not None) and (n_jobs != 1)
|
|
155
160
|
|
|
156
|
-
|
|
157
|
-
|
|
161
|
+
parallel_params = {} if parallel_kwargs is None else dict(parallel_kwargs)
|
|
162
|
+
parallel_params.setdefault(
|
|
163
|
+
"prefer", "threads" if platform.system() == "Windows" else None
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
list_of_ds = Parallel(n_jobs=n_jobs, **parallel_params)(
|
|
158
167
|
delayed(_preprocess)(
|
|
159
168
|
ds,
|
|
160
169
|
i + offset,
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.3.0.
|
|
1
|
+
__version__ = "1.3.0.dev183934738"
|
{braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.3.0.
|
|
3
|
+
Version: 1.3.0.dev183934738
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
{braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/RECORD
RENAMED
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
braindecode/__init__.py,sha256=Ac3LEEyIHWFY_fFh3eAY1GZUqXcUxVSJwOSUCwGEDvQ,182
|
|
2
2
|
braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,9807
|
|
3
|
-
braindecode/eegneuralnet.py,sha256=
|
|
3
|
+
braindecode/eegneuralnet.py,sha256=U6kRdT2u8A2Ca0axMTR8IAESBsvgjLMusAbYappKAOk,15368
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=rd9ITfQsrw03V6jxIPF0WKYZHuhed2RdByopoU6kp7s,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
|
-
braindecode/augmentation/functional.py,sha256=
|
|
10
|
-
braindecode/augmentation/transforms.py,sha256=
|
|
9
|
+
braindecode/augmentation/functional.py,sha256=lPhGpZcVtgfQ3oV6p6IQLBCWM_Psa60TwxH3Wj1WyOQ,41133
|
|
10
|
+
braindecode/augmentation/transforms.py,sha256=Ur05yLdROm5pfKTsS2opCWI--X6JwWjP7YMa2KTTZTw,44243
|
|
11
11
|
braindecode/datasets/__init__.py,sha256=CTl8ucbG948ZJqntEBELb-Pn8GsZLfFZLgVcB-fhw4k,891
|
|
12
|
-
braindecode/datasets/base.py,sha256=
|
|
12
|
+
braindecode/datasets/base.py,sha256=_qUuMripcBrc04R7j5wOqW41myo5Y_Ku3OqKa4uRqx4,32176
|
|
13
13
|
braindecode/datasets/bbci.py,sha256=BC9o1thEyYBREAo930O7zZz3xZB-l4Odt5j8E_1huXI,19277
|
|
14
14
|
braindecode/datasets/bcicomp.py,sha256=ER_XmqxhpoO2FWELMesQXQ40OTe7BXoy7nYDSiZG9kE,7556
|
|
15
15
|
braindecode/datasets/bids.py,sha256=4asq1HyQHgJjwW7w-GMlvTVQhi-hR2HWLJ8Z__UrUS4,8846
|
|
@@ -17,22 +17,22 @@ braindecode/datasets/experimental.py,sha256=Z_uzMNA875-l878LAv7bWiWYJX3QAefmb5qu
|
|
|
17
17
|
braindecode/datasets/mne.py,sha256=Dg6RZAAwd8TVGrvLOPF5B_JrbyGUWg52vWmn6fLMOQM,6135
|
|
18
18
|
braindecode/datasets/moabb.py,sha256=JmBcFV7QJT8GCgLNNKWgxJVnEVnO5wd9U_uiIqTIxDM,7091
|
|
19
19
|
braindecode/datasets/nmt.py,sha256=E4T8OYBEwWRSjh7VFzmyxaZbf5ufFVEBYYmQEd1ghUU,10430
|
|
20
|
-
braindecode/datasets/sleep_physio_challe_18.py,sha256=
|
|
20
|
+
braindecode/datasets/sleep_physio_challe_18.py,sha256=66A86_9VssszKrVXowb0oFyL3xbF1VRqQK5FtW33QlM,15427
|
|
21
21
|
braindecode/datasets/sleep_physionet.py,sha256=jieRx6u-MQ4jn_5Zox_pVV8WjBwXKLv9uq4GXRAZ_58,4087
|
|
22
22
|
braindecode/datasets/tuh.py,sha256=iG1hOtdevzKGEVpeuRFDBOnsW_rWa5zEmMFJfYR1hqg,22867
|
|
23
23
|
braindecode/datasets/xy.py,sha256=xT-nS_5jpuVKJ0SGqc7Ia0FVpqj86UfuzcYQdEGZdp0,2986
|
|
24
24
|
braindecode/datautil/__init__.py,sha256=GB9xOudUhJGDyG08PBrnotw6HnWoWIXAHfRNFO-pxSk,1797
|
|
25
|
-
braindecode/datautil/serialization.py,sha256=
|
|
25
|
+
braindecode/datautil/serialization.py,sha256=g_EVg3oTieqFRattw9OdwMaYjfjANVG-uCS3xVkuHjg,13293
|
|
26
26
|
braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,674
|
|
27
27
|
braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
|
|
28
28
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
29
29
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
30
|
-
braindecode/models/__init__.py,sha256=
|
|
31
|
-
braindecode/models/atcnet.py,sha256=
|
|
32
|
-
braindecode/models/attentionbasenet.py,sha256=
|
|
30
|
+
braindecode/models/__init__.py,sha256=vB0ZFhucH1cRQPoAAAcc3S-hVTnAy674Eu0FjjjKJp0,2543
|
|
31
|
+
braindecode/models/atcnet.py,sha256=H2IWMscm3IM4PH8DA_iLkUaeMXgA120DmVld4jBFOCM,32242
|
|
32
|
+
braindecode/models/attentionbasenet.py,sha256=_bml0Ofy7yB12X19a026EYkcLuzZIab0v3sQTqZ5HGQ,30485
|
|
33
33
|
braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
|
|
34
34
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
35
|
-
braindecode/models/biot.py,sha256=
|
|
35
|
+
braindecode/models/biot.py,sha256=d2P1i_8k98SU3FkN_dKPXcCoFVmyQIIrBbI1-F3g-8E,17509
|
|
36
36
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
37
37
|
braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
|
|
38
38
|
braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
|
|
@@ -51,8 +51,9 @@ braindecode/models/fblightconvnet.py,sha256=d5MwhawhkjilAMo0ckaYMxJhdGMEuorWgHX-
|
|
|
51
51
|
braindecode/models/fbmsnet.py,sha256=9bZn2_n1dTrI1Qh3Sz9zMZnH_a-Yq-13UHYSmF6r_UE,11659
|
|
52
52
|
braindecode/models/hybrid.py,sha256=hA8jwD3_3LL71BxUjRM1dkhqlHU9E9hjuDokh-jBq-4,4024
|
|
53
53
|
braindecode/models/ifnet.py,sha256=Y2bwfko3SDjD74AzgUEzgMhKJFGCCw_Q_Noh5VONEjQ,15137
|
|
54
|
-
braindecode/models/labram.py,sha256=
|
|
54
|
+
braindecode/models/labram.py,sha256=dnZpHbuB60pKZWZHNQaM01eNajGG0tkZB2iutT882PM,46563
|
|
55
55
|
braindecode/models/msvtnet.py,sha256=hxeCLkHS6w2w89YlLfEPCyQ4XQQpt45bEYPiQJ9SFzY,12642
|
|
56
|
+
braindecode/models/patchedtransformer.py,sha256=9TY9l2X4EoCuE9IoOObjubKFRdmsN5lbrVQLnmr66VY,23444
|
|
56
57
|
braindecode/models/sccnet.py,sha256=C7vdwIR5cI6wJCl5f8TnGQG6qinq21y4HG6l-D5AwbY,11971
|
|
57
58
|
braindecode/models/shallow_fbcsp.py,sha256=7U07DJBrm2JHV8v5ja-xuE5-IH5tfmryhJtrfO1n4jk,7531
|
|
58
59
|
braindecode/models/signal_jepa.py,sha256=UeSkeAM3Qmx8bbAqHCj5nP-PtZM00_5SGA8ibo9mptc,37079
|
|
@@ -60,13 +61,14 @@ braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-
|
|
|
60
61
|
braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
|
|
61
62
|
braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
|
|
62
63
|
braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
|
|
63
|
-
braindecode/models/
|
|
64
|
+
braindecode/models/sstdpn.py,sha256=O0OuWy0fAI3JcVoIhvU2rAStBfzlu6QMqa20z-UOjXY,35099
|
|
65
|
+
braindecode/models/summary.csv,sha256=Me09WjXOWsdRdgGHzr_4VaFXg7fUjsYB1f7HMz2FAfo,7045
|
|
64
66
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
67
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
68
|
braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
|
|
67
69
|
braindecode/models/tsinception.py,sha256=nnQxzpqRy9FPuN5xgh9fNQ386VbreQ_nZBSFNkSfal0,10356
|
|
68
70
|
braindecode/models/usleep.py,sha256=5uztUHX70T_LurqRob_XmVnKkZDwt74x2Iz181M7s54,17233
|
|
69
|
-
braindecode/models/util.py,sha256=
|
|
71
|
+
braindecode/models/util.py,sha256=8c-Hj1m0nU3ZNi9ivadziqlpaaVRePLZBRbNiBSiQEE,5356
|
|
70
72
|
braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
|
|
71
73
|
braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
|
|
72
74
|
braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
|
|
@@ -81,7 +83,7 @@ braindecode/modules/util.py,sha256=tVXEhzeTsYrr_wZ5CiXaq3VYGtC5TmGEEW2hMYjTQAE,2
|
|
|
81
83
|
braindecode/modules/wrapper.py,sha256=Z-aZ4wxA0psYefMOfj03r7D1XjD4az6GpZpaQoDPJv0,2421
|
|
82
84
|
braindecode/preprocessing/__init__.py,sha256=V0iwdzb6DzpUaCabA7I6HmOqXK_XvTbpP5HaEduSJ4s,776
|
|
83
85
|
braindecode/preprocessing/mne_preprocess.py,sha256=_Jczaitqbx16utsUOhnonEcoExf6jPsWNwVOVvoKFfU,2210
|
|
84
|
-
braindecode/preprocessing/preprocess.py,sha256=
|
|
86
|
+
braindecode/preprocessing/preprocess.py,sha256=da_-Tn1NLPunsZC2-uzzgCYgdm_Xj-CIJjwf_CTMuFs,17899
|
|
85
87
|
braindecode/preprocessing/windowers.py,sha256=6w6mOnroGWnV7tS23UagZZepswaxaL00S45Jr5AViRE,36551
|
|
86
88
|
braindecode/samplers/__init__.py,sha256=TLuO6gXv2WioJdX671MI_CHVSsOfbjnly1Xv9K3_WdA,452
|
|
87
89
|
braindecode/samplers/base.py,sha256=z_Txp9cEwUmIBL0J6FPJbx1cMSsU9l9mxymRCGqNss0,15111
|
|
@@ -93,9 +95,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
|
|
|
93
95
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
96
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
97
|
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
-
braindecode-1.3.0.
|
|
97
|
-
braindecode-1.3.0.
|
|
98
|
-
braindecode-1.3.0.
|
|
99
|
-
braindecode-1.3.0.
|
|
100
|
-
braindecode-1.3.0.
|
|
101
|
-
braindecode-1.3.0.
|
|
98
|
+
braindecode-1.3.0.dev183934738.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
99
|
+
braindecode-1.3.0.dev183934738.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
100
|
+
braindecode-1.3.0.dev183934738.dist-info/METADATA,sha256=7kNfM6cPR3AaaIwbaxoVLlt8OshwSRj8pXcRZtvwkLA,7129
|
|
101
|
+
braindecode-1.3.0.dev183934738.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
102
|
+
braindecode-1.3.0.dev183934738.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
103
|
+
braindecode-1.3.0.dev183934738.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev183934738.dist-info}/top_level.txt
RENAMED
|
File without changes
|