braindecode 1.3.0.dev181065563__py3-none-any.whl → 1.3.0.dev181594385__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/base.py +1 -1
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/__init__.py +10 -2
- braindecode/datasets/base.py +116 -152
- braindecode/datasets/bcicomp.py +4 -4
- braindecode/datasets/bids.py +3 -3
- braindecode/datasets/experimental.py +2 -2
- braindecode/datasets/mne.py +3 -5
- braindecode/datasets/moabb.py +2 -2
- braindecode/datasets/nmt.py +2 -2
- braindecode/datasets/sleep_physio_challe_18.py +4 -3
- braindecode/datasets/sleep_physionet.py +2 -2
- braindecode/datasets/tuh.py +2 -2
- braindecode/datasets/xy.py +2 -2
- braindecode/datautil/serialization.py +18 -13
- braindecode/eegneuralnet.py +2 -0
- braindecode/functional/functions.py +6 -2
- braindecode/functional/initialization.py +2 -3
- braindecode/models/__init__.py +6 -0
- braindecode/models/atcnet.py +33 -34
- braindecode/models/attentionbasenet.py +39 -32
- braindecode/models/attn_sleep.py +2 -0
- braindecode/models/base.py +280 -2
- braindecode/models/bendr.py +469 -0
- braindecode/models/biot.py +3 -1
- braindecode/models/contrawr.py +2 -0
- braindecode/models/ctnet.py +8 -3
- braindecode/models/deepsleepnet.py +28 -19
- braindecode/models/eegconformer.py +2 -2
- braindecode/models/eeginception_erp.py +31 -25
- braindecode/models/eegitnet.py +2 -0
- braindecode/models/eegminer.py +2 -0
- braindecode/models/eegnet.py +1 -1
- braindecode/models/eegtcnet.py +2 -0
- braindecode/models/fbcnet.py +2 -0
- braindecode/models/fblightconvnet.py +2 -0
- braindecode/models/fbmsnet.py +2 -0
- braindecode/models/ifnet.py +2 -0
- braindecode/models/labram.py +193 -87
- braindecode/models/msvtnet.py +2 -0
- braindecode/models/patchedtransformer.py +640 -0
- braindecode/models/signal_jepa.py +111 -27
- braindecode/models/sinc_shallow.py +12 -9
- braindecode/models/sstdpn.py +869 -0
- braindecode/models/summary.csv +9 -6
- braindecode/models/syncnet.py +2 -0
- braindecode/models/tcn.py +2 -0
- braindecode/models/usleep.py +26 -21
- braindecode/models/util.py +3 -0
- braindecode/modules/attention.py +10 -10
- braindecode/modules/blocks.py +3 -3
- braindecode/modules/filter.py +2 -3
- braindecode/modules/layers.py +18 -17
- braindecode/preprocessing/__init__.py +24 -0
- braindecode/preprocessing/eegprep_preprocess.py +1202 -0
- braindecode/preprocessing/preprocess.py +23 -14
- braindecode/preprocessing/util.py +166 -0
- braindecode/preprocessing/windowers.py +24 -19
- braindecode/samplers/base.py +8 -8
- braindecode/version.py +1 -1
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev181594385.dist-info}/METADATA +6 -2
- braindecode-1.3.0.dev181594385.dist-info/RECORD +106 -0
- braindecode-1.3.0.dev181065563.dist-info/RECORD +0 -101
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev181594385.dist-info}/WHEEL +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev181594385.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev181594385.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.3.0.dev181065563.dist-info → braindecode-1.3.0.dev181594385.dist-info}/top_level.txt +0 -0
|
@@ -5,7 +5,8 @@ from __future__ import annotations
|
|
|
5
5
|
|
|
6
6
|
import math
|
|
7
7
|
from copy import deepcopy
|
|
8
|
-
from
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from typing import Any, Optional, Sequence
|
|
9
10
|
|
|
10
11
|
import torch
|
|
11
12
|
from einops.layers.torch import Rearrange
|
|
@@ -145,6 +146,8 @@ class _BaseSignalJEPA(EEGModuleMixin, nn.Module):
|
|
|
145
146
|
class SignalJEPA(_BaseSignalJEPA):
|
|
146
147
|
"""Architecture introduced in signal-JEPA for self-supervised pre-training, Guetschel, P et al (2024) [1]_
|
|
147
148
|
|
|
149
|
+
:bdg-success:`Convolution` :bdg-dark-line:`Channel` :bdg-danger:`Large Brain Model`
|
|
150
|
+
|
|
148
151
|
This model is not meant for classification but for SSL pre-training.
|
|
149
152
|
Its output shape depends on the input shape.
|
|
150
153
|
For classification purposes, three variants of this model are available:
|
|
@@ -231,6 +234,8 @@ class SignalJEPA(_BaseSignalJEPA):
|
|
|
231
234
|
class SignalJEPA_Contextual(_BaseSignalJEPA):
|
|
232
235
|
"""Contextual downstream architecture introduced in signal-JEPA Guetschel, P et al (2024) [1]_.
|
|
233
236
|
|
|
237
|
+
:bdg-success:`Convolution` :bdg-dark-line:`Channel` :bdg-danger:`Large Brain Model`
|
|
238
|
+
|
|
234
239
|
This architecture is one of the variants of :class:`SignalJEPA`
|
|
235
240
|
that can be used for classification purposes.
|
|
236
241
|
|
|
@@ -319,25 +324,50 @@ class SignalJEPA_Contextual(_BaseSignalJEPA):
|
|
|
319
324
|
@classmethod
|
|
320
325
|
def from_pretrained(
|
|
321
326
|
cls,
|
|
322
|
-
model: SignalJEPA,
|
|
323
|
-
n_outputs: int,
|
|
327
|
+
model: Optional[SignalJEPA | str | Path] = None, # type: ignore
|
|
328
|
+
n_outputs: Optional[int] = None, # type: ignore
|
|
324
329
|
n_spat_filters: int = 4,
|
|
325
|
-
chs_info: list[dict[str, Any]]
|
|
330
|
+
chs_info: Optional[list[dict[str, Any]]] = None, # type: ignore
|
|
331
|
+
**kwargs,
|
|
326
332
|
):
|
|
327
|
-
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model.
|
|
333
|
+
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model or from Hub.
|
|
328
334
|
|
|
329
335
|
Parameters
|
|
330
336
|
----------
|
|
331
|
-
model: SignalJEPA
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
337
|
+
model: SignalJEPA, str, Path, or None
|
|
338
|
+
Either a pre-trained :class:`SignalJEPA` model, a string/Path to a local directory
|
|
339
|
+
(for Hub-style loading), or None (for Hub loading via kwargs).
|
|
340
|
+
n_outputs: int or None
|
|
341
|
+
Number of classes for the new model. Required when loading from a SignalJEPA model,
|
|
342
|
+
optional when loading from Hub (will be read from config).
|
|
335
343
|
n_spat_filters: int
|
|
336
344
|
Number of spatial filters.
|
|
337
345
|
chs_info: list of dict | None
|
|
338
346
|
Information about each individual EEG channel. This should be filled with
|
|
339
347
|
``info["chs"]``. Refer to :class:`mne.Info` for more details.
|
|
348
|
+
**kwargs
|
|
349
|
+
Additional keyword arguments passed to the parent class for Hub loading.
|
|
340
350
|
"""
|
|
351
|
+
# Check if this is a Hub-style load (from a directory path)
|
|
352
|
+
if isinstance(model, (str, Path)) or (model is None and kwargs):
|
|
353
|
+
# This is a Hub load, delegate to parent class
|
|
354
|
+
if isinstance(model, (str, Path)):
|
|
355
|
+
# model is actually the repo_id or directory path
|
|
356
|
+
return super().from_pretrained(model, **kwargs)
|
|
357
|
+
else:
|
|
358
|
+
# model is None, treat as hub-style load
|
|
359
|
+
return super().from_pretrained(**kwargs)
|
|
360
|
+
|
|
361
|
+
# This is the original SignalJEPA transfer learning case
|
|
362
|
+
if not isinstance(model, SignalJEPA):
|
|
363
|
+
raise TypeError(
|
|
364
|
+
f"model must be a SignalJEPA instance, a path string, or Path object, got {type(model)}"
|
|
365
|
+
)
|
|
366
|
+
if n_outputs is None:
|
|
367
|
+
raise ValueError(
|
|
368
|
+
"n_outputs must be provided when loading from a SignalJEPA model"
|
|
369
|
+
)
|
|
370
|
+
|
|
341
371
|
feature_encoder = model.feature_encoder
|
|
342
372
|
pos_encoder = model.pos_encoder
|
|
343
373
|
transformer = model.transformer
|
|
@@ -377,6 +407,8 @@ class SignalJEPA_Contextual(_BaseSignalJEPA):
|
|
|
377
407
|
class SignalJEPA_PostLocal(_BaseSignalJEPA):
|
|
378
408
|
"""Post-local downstream architecture introduced in signal-JEPA Guetschel, P et al (2024) [1]_.
|
|
379
409
|
|
|
410
|
+
:bdg-success:`Convolution` :bdg-dark-line:`Channel` :bdg-danger:`Large Brain Model`
|
|
411
|
+
|
|
380
412
|
This architecture is one of the variants of :class:`SignalJEPA`
|
|
381
413
|
that can be used for classification purposes.
|
|
382
414
|
|
|
@@ -463,22 +495,47 @@ class SignalJEPA_PostLocal(_BaseSignalJEPA):
|
|
|
463
495
|
|
|
464
496
|
@classmethod
|
|
465
497
|
def from_pretrained(
|
|
466
|
-
cls,
|
|
498
|
+
cls,
|
|
499
|
+
model: SignalJEPA | str | Path = None, # type: ignore
|
|
500
|
+
n_outputs: int = None, # type: ignore
|
|
501
|
+
n_spat_filters: int = 4,
|
|
502
|
+
**kwargs,
|
|
467
503
|
):
|
|
468
|
-
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model.
|
|
504
|
+
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model or from Hub.
|
|
469
505
|
|
|
470
506
|
Parameters
|
|
471
507
|
----------
|
|
472
|
-
model: SignalJEPA
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
508
|
+
model: SignalJEPA, str, Path, or None
|
|
509
|
+
Either a pre-trained :class:`SignalJEPA` model, a string/Path to a local directory
|
|
510
|
+
(for Hub-style loading), or None (for Hub loading via kwargs).
|
|
511
|
+
n_outputs: int or None
|
|
512
|
+
Number of classes for the new model. Required when loading from a SignalJEPA model,
|
|
513
|
+
optional when loading from Hub (will be read from config).
|
|
476
514
|
n_spat_filters: int
|
|
477
515
|
Number of spatial filters.
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
``info["chs"]``. Refer to :class:`mne.Info` for more details.
|
|
516
|
+
**kwargs
|
|
517
|
+
Additional keyword arguments passed to the parent class for Hub loading.
|
|
481
518
|
"""
|
|
519
|
+
# Check if this is a Hub-style load (from a directory path)
|
|
520
|
+
if isinstance(model, (str, Path)) or (model is None and kwargs):
|
|
521
|
+
# This is a Hub load, delegate to parent class
|
|
522
|
+
if isinstance(model, (str, Path)):
|
|
523
|
+
# model is actually the repo_id or directory path
|
|
524
|
+
return super().from_pretrained(model, **kwargs)
|
|
525
|
+
else:
|
|
526
|
+
# model is None, treat as hub-style load
|
|
527
|
+
return super().from_pretrained(**kwargs)
|
|
528
|
+
|
|
529
|
+
# This is the original SignalJEPA transfer learning case
|
|
530
|
+
if not isinstance(model, SignalJEPA):
|
|
531
|
+
raise TypeError(
|
|
532
|
+
f"model must be a SignalJEPA instance, a path string, or Path object, got {type(model)}"
|
|
533
|
+
)
|
|
534
|
+
if n_outputs is None:
|
|
535
|
+
raise ValueError(
|
|
536
|
+
"n_outputs must be provided when loading from a SignalJEPA model"
|
|
537
|
+
)
|
|
538
|
+
|
|
482
539
|
feature_encoder = model.feature_encoder
|
|
483
540
|
assert feature_encoder is not None
|
|
484
541
|
new_model = cls(
|
|
@@ -501,6 +558,8 @@ class SignalJEPA_PostLocal(_BaseSignalJEPA):
|
|
|
501
558
|
class SignalJEPA_PreLocal(_BaseSignalJEPA):
|
|
502
559
|
"""Pre-local downstream architecture introduced in signal-JEPA Guetschel, P et al (2024) [1]_.
|
|
503
560
|
|
|
561
|
+
:bdg-success:`Convolution` :bdg-dark-line:`Channel` :bdg-danger:`Large Brain Model`
|
|
562
|
+
|
|
504
563
|
This architecture is one of the variants of :class:`SignalJEPA`
|
|
505
564
|
that can be used for classification purposes.
|
|
506
565
|
|
|
@@ -597,22 +656,47 @@ class SignalJEPA_PreLocal(_BaseSignalJEPA):
|
|
|
597
656
|
|
|
598
657
|
@classmethod
|
|
599
658
|
def from_pretrained(
|
|
600
|
-
cls,
|
|
659
|
+
cls,
|
|
660
|
+
model: SignalJEPA | str | Path = None, # type: ignore
|
|
661
|
+
n_outputs: int = None, # type: ignore
|
|
662
|
+
n_spat_filters: int = 4,
|
|
663
|
+
**kwargs,
|
|
601
664
|
):
|
|
602
|
-
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model.
|
|
665
|
+
"""Instantiate a new model from a pre-trained :class:`SignalJEPA` model or from Hub.
|
|
603
666
|
|
|
604
667
|
Parameters
|
|
605
668
|
----------
|
|
606
|
-
model: SignalJEPA
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
669
|
+
model: SignalJEPA, str, Path, or None
|
|
670
|
+
Either a pre-trained :class:`SignalJEPA` model, a string/Path to a local directory
|
|
671
|
+
(for Hub-style loading), or None (for Hub loading via kwargs).
|
|
672
|
+
n_outputs: int or None
|
|
673
|
+
Number of classes for the new model. Required when loading from a SignalJEPA model,
|
|
674
|
+
optional when loading from Hub (will be read from config).
|
|
610
675
|
n_spat_filters: int
|
|
611
676
|
Number of spatial filters.
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
``info["chs"]``. Refer to :class:`mne.Info` for more details.
|
|
677
|
+
**kwargs
|
|
678
|
+
Additional keyword arguments passed to the parent class for Hub loading.
|
|
615
679
|
"""
|
|
680
|
+
# Check if this is a Hub-style load (from a directory path)
|
|
681
|
+
if isinstance(model, (str, Path)) or (model is None and kwargs):
|
|
682
|
+
# This is a Hub load, delegate to parent class
|
|
683
|
+
if isinstance(model, (str, Path)):
|
|
684
|
+
# model is actually the repo_id or directory path
|
|
685
|
+
return super().from_pretrained(model, **kwargs)
|
|
686
|
+
else:
|
|
687
|
+
# model is None, treat as hub-style load
|
|
688
|
+
return super().from_pretrained(**kwargs)
|
|
689
|
+
|
|
690
|
+
# This is the original SignalJEPA transfer learning case
|
|
691
|
+
if not isinstance(model, SignalJEPA):
|
|
692
|
+
raise TypeError(
|
|
693
|
+
f"model must be a SignalJEPA instance, a path string, or Path object, got {type(model)}"
|
|
694
|
+
)
|
|
695
|
+
if n_outputs is None:
|
|
696
|
+
raise ValueError(
|
|
697
|
+
"n_outputs must be provided when loading from a SignalJEPA model"
|
|
698
|
+
)
|
|
699
|
+
|
|
616
700
|
feature_encoder = model.feature_encoder
|
|
617
701
|
assert feature_encoder is not None
|
|
618
702
|
new_model = cls(
|
|
@@ -12,6 +12,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
12
12
|
class SincShallowNet(EEGModuleMixin, nn.Module):
|
|
13
13
|
"""Sinc-ShallowNet from Borra, D et al (2020) [borra2020]_.
|
|
14
14
|
|
|
15
|
+
:bdg-success:`Convolution` :bdg-warning:`Interpretability`
|
|
16
|
+
|
|
15
17
|
.. figure:: https://ars.els-cdn.com/content/image/1-s2.0-S0893608020302021-gr2_lrg.jpg
|
|
16
18
|
:align: center
|
|
17
19
|
:alt: SincShallowNet Architecture
|
|
@@ -19,23 +21,24 @@ class SincShallowNet(EEGModuleMixin, nn.Module):
|
|
|
19
21
|
The Sinc-ShallowNet architecture has these fundamental blocks:
|
|
20
22
|
|
|
21
23
|
1. **Block 1: Spectral and Spatial Feature Extraction**
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
- *Batch Normalization*
|
|
24
|
+
|
|
25
|
+
- *Temporal Sinc-Convolutional Layer*: Uses parametrized sinc functions to learn band-pass filters,
|
|
26
|
+
significantly reducing the number of trainable parameters by only
|
|
27
|
+
learning the lower and upper cutoff frequencies for each filter.
|
|
28
|
+
- *Spatial Depthwise Convolutional Layer*: Applies depthwise convolutions to learn spatial filters for
|
|
29
|
+
each temporal feature map independently, further reducing
|
|
30
|
+
parameters and enhancing interpretability.
|
|
31
|
+
- *Batch Normalization*
|
|
31
32
|
|
|
32
33
|
2. **Block 2: Temporal Aggregation**
|
|
34
|
+
|
|
33
35
|
- *Activation Function*: ELU
|
|
34
36
|
- *Average Pooling Layer*: Aggregation by averaging spatial dim
|
|
35
37
|
- *Dropout Layer*
|
|
36
38
|
- *Flatten Layer*
|
|
37
39
|
|
|
38
40
|
3. **Block 3: Classification**
|
|
41
|
+
|
|
39
42
|
- *Fully Connected Layer*: Maps the feature vector to n_outputs.
|
|
40
43
|
|
|
41
44
|
**Implementation Notes:**
|