braindecode 1.3.0.dev176728557__py3-none-any.whl → 1.3.0.dev179592623__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/models/atcnet.py +6 -6
- braindecode/models/biot.py +1 -1
- braindecode/models/eegnet.py +4 -3
- braindecode/models/summary.csv +6 -6
- braindecode/version.py +1 -1
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/METADATA +1 -1
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/RECORD +11 -11
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/WHEEL +0 -0
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/top_level.txt +0 -0
braindecode/models/atcnet.py
CHANGED
|
@@ -370,7 +370,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
370
370
|
nn.Sequential(
|
|
371
371
|
*[
|
|
372
372
|
_TCNResidualBlock(
|
|
373
|
-
in_channels=self.F2,
|
|
373
|
+
in_channels=self.F2 if i == 0 else self.tcn_n_filters,
|
|
374
374
|
kernel_size=self.tcn_kernel_size,
|
|
375
375
|
n_filters=self.tcn_n_filters,
|
|
376
376
|
dropout=self.tcn_dropout,
|
|
@@ -388,7 +388,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
388
388
|
self.final_layer = nn.ModuleList(
|
|
389
389
|
[
|
|
390
390
|
MaxNormLinear(
|
|
391
|
-
in_features=self.
|
|
391
|
+
in_features=self.tcn_n_filters * self.n_windows,
|
|
392
392
|
out_features=self.n_outputs,
|
|
393
393
|
max_norm_val=self.max_norm_const,
|
|
394
394
|
)
|
|
@@ -398,7 +398,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
398
398
|
self.final_layer = nn.ModuleList(
|
|
399
399
|
[
|
|
400
400
|
MaxNormLinear(
|
|
401
|
-
in_features=self.
|
|
401
|
+
in_features=self.tcn_n_filters,
|
|
402
402
|
out_features=self.n_outputs,
|
|
403
403
|
max_norm_val=self.max_norm_const,
|
|
404
404
|
)
|
|
@@ -695,8 +695,8 @@ class _TCNResidualBlock(nn.Module):
|
|
|
695
695
|
# Reshape the input for the residual connection when necessary
|
|
696
696
|
if in_channels != n_filters:
|
|
697
697
|
self.reshaping_conv = nn.Conv1d(
|
|
698
|
-
in_channels=in_channels,
|
|
699
|
-
out_channels=n_filters,
|
|
698
|
+
in_channels=in_channels, # Specify input channels
|
|
699
|
+
out_channels=n_filters, # Specify output channels
|
|
700
700
|
kernel_size=1,
|
|
701
701
|
padding="same",
|
|
702
702
|
)
|
|
@@ -716,7 +716,7 @@ class _TCNResidualBlock(nn.Module):
|
|
|
716
716
|
out = self.activation(out)
|
|
717
717
|
out = self.drop2(out)
|
|
718
718
|
|
|
719
|
-
|
|
719
|
+
X = self.reshaping_conv(X)
|
|
720
720
|
|
|
721
721
|
# ----- Residual connection -----
|
|
722
722
|
out = X + out
|
braindecode/models/biot.py
CHANGED
|
@@ -17,7 +17,7 @@ class BIOT(EEGModuleMixin, nn.Module):
|
|
|
17
17
|
|
|
18
18
|
BIOT: Cross-data Biosignal Learning in the Wild.
|
|
19
19
|
|
|
20
|
-
BIOT is a large
|
|
20
|
+
BIOT is a large brain model for biosignal classification. It is
|
|
21
21
|
a wrapper around the `BIOTEncoder` and `ClassificationHead` modules.
|
|
22
22
|
|
|
23
23
|
It is designed for N-dimensional biosignal data such as EEG, ECG, etc.
|
braindecode/models/eegnet.py
CHANGED
|
@@ -23,10 +23,11 @@ class EEGNet(EEGModuleMixin, nn.Sequential):
|
|
|
23
23
|
"""EEGNet model from Lawhern et al. (2018) [Lawhern2018]_.
|
|
24
24
|
|
|
25
25
|
:bdg-success:`Convolution`
|
|
26
|
+
|
|
26
27
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
28
|
+
:align: center
|
|
29
|
+
:alt: EEGNet Architecture
|
|
30
|
+
:width: 600px
|
|
30
31
|
|
|
31
32
|
.. rubric:: Architectural Overview
|
|
32
33
|
|
braindecode/models/summary.csv
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
3
|
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
4
|
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
|
|
6
6
|
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
7
|
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
8
|
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
|
|
|
16
16
|
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
17
|
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
18
|
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
-
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
|
|
20
20
|
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
21
|
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
-
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large
|
|
23
|
-
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large
|
|
24
|
-
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large
|
|
25
|
-
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
26
26
|
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
27
|
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
28
|
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.3.0.
|
|
1
|
+
__version__ = "1.3.0.dev179592623"
|
{braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.3.0.
|
|
3
|
+
Version: 1.3.0.dev179592623
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
{braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/RECORD
RENAMED
|
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
|
|
|
3
3
|
braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=fxFXZ2KmLyScWaX8l6a4W1vpr3C17Mf66bqF_xgEUHU,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
9
|
braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
|
|
@@ -28,11 +28,11 @@ braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlIm
|
|
|
28
28
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
29
29
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
30
30
|
braindecode/models/__init__.py,sha256=v2Pn0H-rM_9xr1EEoKIFygmhbS9r52qh8XwFzXuhK70,2455
|
|
31
|
-
braindecode/models/atcnet.py,sha256=
|
|
31
|
+
braindecode/models/atcnet.py,sha256=8wq13mTrn0ZAjfbO5E_yfQZo8vT4jYs1f9xA1S6UhI8,32212
|
|
32
32
|
braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
|
|
33
33
|
braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
|
|
34
34
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
35
|
-
braindecode/models/biot.py,sha256=
|
|
35
|
+
braindecode/models/biot.py,sha256=d2P1i_8k98SU3FkN_dKPXcCoFVmyQIIrBbI1-F3g-8E,17509
|
|
36
36
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
37
37
|
braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
|
|
38
38
|
braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
|
|
@@ -42,7 +42,7 @@ braindecode/models/eeginception_erp.py,sha256=FYXoM-u4kOodMzGgvKDn7IwJwHl9Z0iiWx
|
|
|
42
42
|
braindecode/models/eeginception_mi.py,sha256=VoWtsaWj1xQ4FlrvCbnPvo8eosufYUmTrL4uvFtqKcg,12456
|
|
43
43
|
braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
|
|
44
44
|
braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
|
|
45
|
-
braindecode/models/eegnet.py,sha256=
|
|
45
|
+
braindecode/models/eegnet.py,sha256=i5HzBKTd82fTlKDfB42uc14HpDYxN29SGPfCa4ON5gk,13686
|
|
46
46
|
braindecode/models/eegnex.py,sha256=eahHolFl15LwNWeC5qjQqUGqURibQZIV425rI1p-dG8,13604
|
|
47
47
|
braindecode/models/eegsimpleconv.py,sha256=6V5ZQNWijmd3-2wv7lJB_HGBS3wHWWVrKoNIeWTXu-w,7300
|
|
48
48
|
braindecode/models/eegtcnet.py,sha256=Y53uJEX_hoB6eHCew9SIfzNxCYea8UhljDARJTk-Tq8,10837
|
|
@@ -60,7 +60,7 @@ braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-
|
|
|
60
60
|
braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
|
|
61
61
|
braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
|
|
62
62
|
braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
|
|
63
|
-
braindecode/models/summary.csv,sha256=
|
|
63
|
+
braindecode/models/summary.csv,sha256=z5aXQbPyxS8-Is2dF0DSN_8g7LjCPbGZHvjxEtfQMUw,6747
|
|
64
64
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
65
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
66
|
braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
|
|
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
|
|
|
93
93
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
94
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
95
|
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
-
braindecode-1.3.0.
|
|
97
|
-
braindecode-1.3.0.
|
|
98
|
-
braindecode-1.3.0.
|
|
99
|
-
braindecode-1.3.0.
|
|
100
|
-
braindecode-1.3.0.
|
|
101
|
-
braindecode-1.3.0.
|
|
96
|
+
braindecode-1.3.0.dev179592623.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
97
|
+
braindecode-1.3.0.dev179592623.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
98
|
+
braindecode-1.3.0.dev179592623.dist-info/METADATA,sha256=qA1o9Hy1H7o4AODinN4bRbBB_0XbrJnZrOFrRCu8GzQ,7129
|
|
99
|
+
braindecode-1.3.0.dev179592623.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
100
|
+
braindecode-1.3.0.dev179592623.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
101
|
+
braindecode-1.3.0.dev179592623.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{braindecode-1.3.0.dev176728557.dist-info → braindecode-1.3.0.dev179592623.dist-info}/top_level.txt
RENAMED
|
File without changes
|