braindecode 1.3.0.dev176728557__py3-none-any.whl → 1.3.0.dev177576656__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

@@ -370,7 +370,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
370
370
  nn.Sequential(
371
371
  *[
372
372
  _TCNResidualBlock(
373
- in_channels=self.F2,
373
+ in_channels=self.F2 if i == 0 else self.tcn_n_filters,
374
374
  kernel_size=self.tcn_kernel_size,
375
375
  n_filters=self.tcn_n_filters,
376
376
  dropout=self.tcn_dropout,
@@ -388,7 +388,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
388
388
  self.final_layer = nn.ModuleList(
389
389
  [
390
390
  MaxNormLinear(
391
- in_features=self.F2 * self.n_windows,
391
+ in_features=self.tcn_n_filters * self.n_windows,
392
392
  out_features=self.n_outputs,
393
393
  max_norm_val=self.max_norm_const,
394
394
  )
@@ -398,7 +398,7 @@ class ATCNet(EEGModuleMixin, nn.Module):
398
398
  self.final_layer = nn.ModuleList(
399
399
  [
400
400
  MaxNormLinear(
401
- in_features=self.F2,
401
+ in_features=self.tcn_n_filters,
402
402
  out_features=self.n_outputs,
403
403
  max_norm_val=self.max_norm_const,
404
404
  )
@@ -695,8 +695,8 @@ class _TCNResidualBlock(nn.Module):
695
695
  # Reshape the input for the residual connection when necessary
696
696
  if in_channels != n_filters:
697
697
  self.reshaping_conv = nn.Conv1d(
698
- in_channels=in_channels,
699
- out_channels=n_filters,
698
+ in_channels=in_channels, # Specify input channels
699
+ out_channels=n_filters, # Specify output channels
700
700
  kernel_size=1,
701
701
  padding="same",
702
702
  )
@@ -716,7 +716,7 @@ class _TCNResidualBlock(nn.Module):
716
716
  out = self.activation(out)
717
717
  out = self.drop2(out)
718
718
 
719
- out = self.reshaping_conv(out)
719
+ X = self.reshaping_conv(X)
720
720
 
721
721
  # ----- Residual connection -----
722
722
  out = X + out
@@ -23,10 +23,11 @@ class EEGNet(EEGModuleMixin, nn.Sequential):
23
23
  """EEGNet model from Lawhern et al. (2018) [Lawhern2018]_.
24
24
 
25
25
  :bdg-success:`Convolution`
26
+
26
27
  .. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
27
- :align: center
28
- :alt: EEGNet Architecture
29
- :width: 600px
28
+ :align: center
29
+ :alt: EEGNet Architecture
30
+ :width: 600px
30
31
 
31
32
  .. rubric:: Architectural Overview
32
33
 
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.3.0.dev176728557"
1
+ __version__ = "1.3.0.dev177576656"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev176728557
3
+ Version: 1.3.0.dev177576656
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
3
3
  braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
4
4
  braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
5
5
  braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
6
- braindecode/version.py,sha256=VE8TY-87uYMqzkLZWXK_YyADJSoX-fDwhSwMmmON7q8,35
6
+ braindecode/version.py,sha256=olcndYnngOZ2DYrSrOQEHMZzec-KQjFXNNCLXfYb-B0,35
7
7
  braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
8
8
  braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
9
9
  braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
@@ -28,7 +28,7 @@ braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlIm
28
28
  braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
29
29
  braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
30
30
  braindecode/models/__init__.py,sha256=v2Pn0H-rM_9xr1EEoKIFygmhbS9r52qh8XwFzXuhK70,2455
31
- braindecode/models/atcnet.py,sha256=jA_18BOaasmiqGbLJOvfBY5q2xHtKdoRFKzN_aqpDoQ,32107
31
+ braindecode/models/atcnet.py,sha256=8wq13mTrn0ZAjfbO5E_yfQZo8vT4jYs1f9xA1S6UhI8,32212
32
32
  braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
33
33
  braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
34
34
  braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
@@ -42,7 +42,7 @@ braindecode/models/eeginception_erp.py,sha256=FYXoM-u4kOodMzGgvKDn7IwJwHl9Z0iiWx
42
42
  braindecode/models/eeginception_mi.py,sha256=VoWtsaWj1xQ4FlrvCbnPvo8eosufYUmTrL4uvFtqKcg,12456
43
43
  braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
44
44
  braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
45
- braindecode/models/eegnet.py,sha256=dIaHZoz7xMII1qKrS0___IWdy1xg2QrMMiqUgTJM9E8,13682
45
+ braindecode/models/eegnet.py,sha256=i5HzBKTd82fTlKDfB42uc14HpDYxN29SGPfCa4ON5gk,13686
46
46
  braindecode/models/eegnex.py,sha256=eahHolFl15LwNWeC5qjQqUGqURibQZIV425rI1p-dG8,13604
47
47
  braindecode/models/eegsimpleconv.py,sha256=6V5ZQNWijmd3-2wv7lJB_HGBS3wHWWVrKoNIeWTXu-w,7300
48
48
  braindecode/models/eegtcnet.py,sha256=Y53uJEX_hoB6eHCew9SIfzNxCYea8UhljDARJTk-Tq8,10837
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
93
93
  braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
94
94
  braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
95
95
  braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
96
- braindecode-1.3.0.dev176728557.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
- braindecode-1.3.0.dev176728557.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
- braindecode-1.3.0.dev176728557.dist-info/METADATA,sha256=SFpdHpYvRTRFC4ZmrHDvFRLEtnpIygDz0in33OmV8FU,7129
99
- braindecode-1.3.0.dev176728557.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- braindecode-1.3.0.dev176728557.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
- braindecode-1.3.0.dev176728557.dist-info/RECORD,,
96
+ braindecode-1.3.0.dev177576656.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
+ braindecode-1.3.0.dev177576656.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
+ braindecode-1.3.0.dev177576656.dist-info/METADATA,sha256=6nd73RqXQ8tiJhfmi-yzAUVoiI9EwFtDmBaL8IhTWm0,7129
99
+ braindecode-1.3.0.dev177576656.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
+ braindecode-1.3.0.dev177576656.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
+ braindecode-1.3.0.dev177576656.dist-info/RECORD,,