braindecode 1.3.0.dev175955015__py3-none-any.whl → 1.3.0.dev177509039__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (35) hide show
  1. braindecode/datasets/base.py +17 -16
  2. braindecode/datasets/bcicomp.py +1 -1
  3. braindecode/functional/functions.py +6 -2
  4. braindecode/functional/initialization.py +2 -3
  5. braindecode/models/__init__.py +2 -0
  6. braindecode/models/atcnet.py +25 -26
  7. braindecode/models/attentionbasenet.py +37 -32
  8. braindecode/models/base.py +2 -2
  9. braindecode/models/bendr.py +469 -0
  10. braindecode/models/biot.py +2 -0
  11. braindecode/models/ctnet.py +6 -3
  12. braindecode/models/deepsleepnet.py +27 -18
  13. braindecode/models/eegconformer.py +2 -2
  14. braindecode/models/eeginception_erp.py +31 -25
  15. braindecode/models/eegnet.py +1 -1
  16. braindecode/models/labram.py +28 -23
  17. braindecode/models/signal_jepa.py +6 -0
  18. braindecode/models/sinc_shallow.py +10 -9
  19. braindecode/models/sstdpn.py +11 -11
  20. braindecode/models/summary.csv +1 -0
  21. braindecode/models/usleep.py +26 -21
  22. braindecode/models/util.py +1 -0
  23. braindecode/modules/attention.py +10 -10
  24. braindecode/modules/blocks.py +3 -3
  25. braindecode/modules/filter.py +2 -3
  26. braindecode/modules/layers.py +18 -17
  27. braindecode/preprocessing/windowers.py +2 -2
  28. braindecode/samplers/base.py +8 -8
  29. braindecode/version.py +1 -1
  30. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/METADATA +1 -1
  31. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/RECORD +35 -34
  32. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/WHEEL +0 -0
  33. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/licenses/LICENSE.txt +0 -0
  34. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/licenses/NOTICE.txt +0 -0
  35. {braindecode-1.3.0.dev175955015.dist-info → braindecode-1.3.0.dev177509039.dist-info}/top_level.txt +0 -0
@@ -35,51 +35,57 @@ class EEGInceptionERP(EEGModuleMixin, nn.Sequential):
35
35
  - :class:`_InceptionModule1` **(multi-scale temporal + spatial mixing)**
36
36
 
37
37
  - *Operations.*
38
- - `EEGInceptionERP.c1`: :class:`torch.nn.Conv2d` ``k=(64,1)``, stride ``(1,1)``, *same* pad on input reshaped to ``(B,1,128,8)`` → BN → activation → dropout.
39
- - `EEGInceptionERP.d1`: :class:`torch.nn.Conv2d` (depthwise) ``k=(1,8)``, *valid* pad over channels → BN → activation → dropout.
40
- - `EEGInceptionERP.c2`: :class:`torch.nn.Conv2d` ``k=(32,1)`` → BN → activation → dropout; then `EEGInceptionERP.d2` depthwise ``k=(1,8)`` → BN → activation → dropout.
41
- - `EEGInceptionERP.c3`: :class:`torch.nn.Conv2d` ``k=(16,1)`` → BN → activation → dropout; then `EEGInceptionERP.d3` depthwise ``k=(1,8)`` → BN → activation → dropout.
42
- - `EEGInceptionERP.n1`: :class:`torch.nn.Concat` over branch features.
43
- - `EEGInceptionERP.a1`: :class:`torch.nn.AvgPool2d` ``pool=(4,1)``, stride ``(4,1)`` for temporal downsampling.
38
+
39
+ - `EEGInceptionERP.c1`: :class:`torch.nn.Conv2d` ``k=(64,1)``, stride ``(1,1)``, *same* pad on input reshaped to ``(B,1,128,8)`` → BN → activation → dropout.
40
+ - `EEGInceptionERP.d1`: :class:`torch.nn.Conv2d` (depthwise) ``k=(1,8)``, *valid* pad over channels → BN → activation → dropout.
41
+ - `EEGInceptionERP.c2`: :class:`torch.nn.Conv2d` ``k=(32,1)`` → BN → activation → dropout; then `EEGInceptionERP.d2` depthwise ``k=(1,8)`` → BN → activation → dropout.
42
+ - `EEGInceptionERP.c3`: :class:`torch.nn.Conv2d` ``k=(16,1)`` BN → activation → dropout; then `EEGInceptionERP.d3` depthwise ``k=(1,8)`` → BN → activation → dropout.
43
+ - `EEGInceptionERP.n1`: :class:`torch.nn.Concat` over branch features.
44
+ - `EEGInceptionERP.a1`: :class:`torch.nn.AvgPool2d` ``pool=(4,1)``, stride ``(4,1)`` for temporal downsampling.
44
45
 
45
46
  *Interpretability/robustness.* Depthwise `1 x n_chans` layers act as learnable montage-wide spatial filters per temporal scale; pooling stabilizes against jitter.
46
47
 
47
48
  - :class:`_InceptionModule2` **(refinement at coarser timebase)**
48
49
 
49
50
  - *Operations.*
50
- - `EEGInceptionERP.c4`: :class:`torch.nn.Conv2d` ``k=(16,1)`` → BN → activation → dropout.
51
- - `EEGInceptionERP.c5`: :class:`torch.nn.Conv2d` ``k=(8,1)`` → BN → activation → dropout.
52
- - `EEGInceptionERP.c6`: :class:`torch.nn.Conv2d` ``k=(4,1)`` → BN → activation → dropout.
53
- - `EEGInceptionERP.n2`: :class:`torch.nn.Concat` (merge C4-C6 outputs).
54
- - `EEGInceptionERP.a2`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``, stride ``(2,1)``.
55
- - `EEGInceptionERP.c7`: :class:`torch.nn.Conv2d` ``k=(8,1)`` BN → activation → dropout; then `EEGInceptionERP.a3`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``.
56
- - `EEGInceptionERP.c8`: :class:`torch.nn.Conv2d` ``k=(4,1)`` → BN → activation → dropout; then `EEGInceptionERP.a4`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``.
51
+
52
+ - `EEGInceptionERP.c4`: :class:`torch.nn.Conv2d` ``k=(16,1)`` → BN → activation → dropout.
53
+ - `EEGInceptionERP.c5`: :class:`torch.nn.Conv2d` ``k=(8,1)`` → BN → activation → dropout.
54
+ - `EEGInceptionERP.c6`: :class:`torch.nn.Conv2d` ``k=(4,1)`` BN → activation → dropout.
55
+ - `EEGInceptionERP.n2`: :class:`torch.nn.Concat` (merge C4-C6 outputs).
56
+ - `EEGInceptionERP.a2`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``, stride ``(2,1)``.
57
+ - `EEGInceptionERP.c7`: :class:`torch.nn.Conv2d` ``k=(8,1)`` → BN → activation → dropout; then `EEGInceptionERP.a3`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``.
58
+ - `EEGInceptionERP.c8`: :class:`torch.nn.Conv2d` ``k=(4,1)`` → BN → activation → dropout; then `EEGInceptionERP.a4`: :class:`torch.nn.AvgPool2d` ``pool=(2,1)``.
57
59
 
58
60
  *Role.* Adds higher-level, shorter-window evidence while progressively compressing temporal dimension.
59
61
 
60
62
  - :class:`_OutputModule` **(aggregation + readout)**
61
63
 
62
64
  - *Operations.*
63
- - :class:`torch.nn.Flatten`
64
- - :class:`torch.nn.Linear` ``(features → 2)``
65
+
66
+ - :class:`torch.nn.Flatten`
67
+ - :class:`torch.nn.Linear` ``(features → 2)``
65
68
 
66
69
  .. rubric:: Convolutional Details
67
70
 
68
71
  - **Temporal (where time-domain patterns are learned).**
69
- First module uses 1D temporal kernels along the 128-sample axis: ``64``, ``32``, ``16``
70
- (≈500, 250, 125 ms at 128 Hz). After ``pool=(4,1)``, the second module applies ``16``,
71
- ``8``, ``4`` (≈125, 62.5, 31.25 ms at the pooled rate). All strides are ``1`` in convs;
72
- temporal resolution changes only via average pooling.
72
+
73
+ First module uses 1D temporal kernels along the 128-sample axis: ``64``, ``32``, ``16``
74
+ (≈500, 250, 125 ms at 128 Hz). After ``pool=(4,1)``, the second module applies ``16``,
75
+ ``8``, ``4`` (≈125, 62.5, 31.25 ms at the pooled rate). All strides are ``1`` in convs;
76
+ temporal resolution changes only via average pooling.
73
77
 
74
78
  - **Spatial (how electrodes are processed).**
75
- Depthwise convs with ``k=(1,8)`` span all channels and are applied **per temporal branch**,
76
- yielding scale-specific channel projections (no cross-branch mixing until concatenation).
77
- There is no full 2D mixing kernel; spatial mixing is factorized and lightweight.
79
+
80
+ Depthwise convs with ``k=(1,8)`` span all channels and are applied **per temporal branch**,
81
+ yielding scale-specific channel projections (no cross-branch mixing until concatenation).
82
+ There is no full 2D mixing kernel; spatial mixing is factorized and lightweight.
78
83
 
79
84
  - **Spectral (how frequency information is captured).**
80
- No explicit transform; multiple temporal kernels form a *learned filter bank* over
81
- ERP-relevant bands. Successive pooling acts as low-pass integration to emphasize sustained
82
- post-stimulus components.
85
+
86
+ No explicit transform; multiple temporal kernels form a *learned filter bank* over
87
+ ERP-relevant bands. Successive pooling acts as low-pass integration to emphasize sustained
88
+ post-stimulus components.
83
89
 
84
90
  .. rubric:: Additional Mechanisms
85
91
 
@@ -57,7 +57,7 @@ class EEGNet(EEGModuleMixin, nn.Sequential):
57
57
 
58
58
  - **Temporal.** The initial temporal convs serve as a *learned filter bank*:
59
59
  long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
60
- Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each features spectrum [Lawhern2018]_.
60
+ Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature's spectrum [Lawhern2018]_.
61
61
 
62
62
  - **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
63
63
  With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
@@ -22,6 +22,8 @@ from braindecode.modules import MLP, DropPath
22
22
  class Labram(EEGModuleMixin, nn.Module):
23
23
  """Labram from Jiang, W B et al (2024) [Jiang2024]_.
24
24
 
25
+ :bdg-danger:`Large Brain Model`
26
+
25
27
  .. figure:: https://arxiv.org/html/2405.18765v1/x1.png
26
28
  :align: center
27
29
  :alt: Labram Architecture.
@@ -43,33 +45,36 @@ class Labram(EEGModuleMixin, nn.Module):
43
45
  equals True. The original implementation uses (batch, n_chans, n_patches,
44
46
  patch_size) as input with static segmentation of the input data.
45
47
 
46
- The models have the following sequence of steps:
47
- if neural tokenizer:
48
- - SegmentPatch: Segment the input data in patches;
49
- - TemporalConv: Apply a temporal convolution to the segmented data;
50
- - Residual adding cls, temporal and position embeddings (optional);
51
- - WindowsAttentionBlock: Apply a windows attention block to the data;
52
- - LayerNorm: Apply layer normalization to the data;
53
- - Linear: An head linear layer to transformer the data into classes.
54
-
55
- else:
56
- - PatchEmbed: Apply a patch embedding to the input data;
57
- - Residual adding cls, temporal and position embeddings (optional);
58
- - WindowsAttentionBlock: Apply a windows attention block to the data;
59
- - LayerNorm: Apply layer normalization to the data;
60
- - Linear: An head linear layer to transformer the data into classes.
48
+ The models have the following sequence of steps::
49
+
50
+ if neural tokenizer:
51
+ - SegmentPatch: Segment the input data in patches;
52
+ - TemporalConv: Apply a temporal convolution to the segmented data;
53
+ - Residual adding cls, temporal and position embeddings (optional);
54
+ - WindowsAttentionBlock: Apply a windows attention block to the data;
55
+ - LayerNorm: Apply layer normalization to the data;
56
+ - Linear: An head linear layer to transformer the data into classes.
57
+
58
+ else:
59
+ - PatchEmbed: Apply a patch embedding to the input data;
60
+ - Residual adding cls, temporal and position embeddings (optional);
61
+ - WindowsAttentionBlock: Apply a windows attention block to the data;
62
+ - LayerNorm: Apply layer normalization to the data;
63
+ - Linear: An head linear layer to transformer the data into classes.
61
64
 
62
65
  .. versionadded:: 0.9
63
66
 
64
67
 
65
- Examples on how to load pre-trained weights:
66
- --------------------------------------------
67
- >>> import torch
68
- >>> from braindecode.models import Labram
69
- >>> model = Labram(n_times=1600, n_chans=64, n_outputs=4)
70
- >>> url = 'https://huggingface.co/braindecode/Labram-Braindecode/blob/main/braindecode_labram_base.pt'
71
- >>> state = torch.hub.load_state_dict_from_url(url, progress=True)
72
- >>> model.load_state_dict(state)
68
+ Examples
69
+ --------
70
+ Load pre-trained weights::
71
+
72
+ >>> import torch
73
+ >>> from braindecode.models import Labram
74
+ >>> model = Labram(n_times=1600, n_chans=64, n_outputs=4)
75
+ >>> url = "https://huggingface.co/braindecode/Labram-Braindecode/blob/main/braindecode_labram_base.pt"
76
+ >>> state = torch.hub.load_state_dict_from_url(url, progress=True)
77
+ >>> model.load_state_dict(state)
73
78
 
74
79
 
75
80
  Parameters
@@ -146,6 +146,8 @@ class _BaseSignalJEPA(EEGModuleMixin, nn.Module):
146
146
  class SignalJEPA(_BaseSignalJEPA):
147
147
  """Architecture introduced in signal-JEPA for self-supervised pre-training, Guetschel, P et al (2024) [1]_
148
148
 
149
+ :bdg-danger:`Large Brain Model`
150
+
149
151
  This model is not meant for classification but for SSL pre-training.
150
152
  Its output shape depends on the input shape.
151
153
  For classification purposes, three variants of this model are available:
@@ -232,6 +234,8 @@ class SignalJEPA(_BaseSignalJEPA):
232
234
  class SignalJEPA_Contextual(_BaseSignalJEPA):
233
235
  """Contextual downstream architecture introduced in signal-JEPA Guetschel, P et al (2024) [1]_.
234
236
 
237
+ :bdg-danger:`Large Brain Model`
238
+
235
239
  This architecture is one of the variants of :class:`SignalJEPA`
236
240
  that can be used for classification purposes.
237
241
 
@@ -403,6 +407,8 @@ class SignalJEPA_Contextual(_BaseSignalJEPA):
403
407
  class SignalJEPA_PostLocal(_BaseSignalJEPA):
404
408
  """Post-local downstream architecture introduced in signal-JEPA Guetschel, P et al (2024) [1]_.
405
409
 
410
+ :bdg-danger:`Large Brain Model`
411
+
406
412
  This architecture is one of the variants of :class:`SignalJEPA`
407
413
  that can be used for classification purposes.
408
414
 
@@ -19,23 +19,24 @@ class SincShallowNet(EEGModuleMixin, nn.Module):
19
19
  The Sinc-ShallowNet architecture has these fundamental blocks:
20
20
 
21
21
  1. **Block 1: Spectral and Spatial Feature Extraction**
22
- - *Temporal Sinc-Convolutional Layer*:
23
- Uses parametrized sinc functions to learn band-pass filters,
24
- significantly reducing the number of trainable parameters by only
25
- learning the lower and upper cutoff frequencies for each filter.
26
- - *Spatial Depthwise Convolutional Layer*:
27
- Applies depthwise convolutions to learn spatial filters for
28
- each temporal feature map independently, further reducing
29
- parameters and enhancing interpretability.
30
- - *Batch Normalization*
22
+
23
+ - *Temporal Sinc-Convolutional Layer*: Uses parametrized sinc functions to learn band-pass filters,
24
+ significantly reducing the number of trainable parameters by only
25
+ learning the lower and upper cutoff frequencies for each filter.
26
+ - *Spatial Depthwise Convolutional Layer*: Applies depthwise convolutions to learn spatial filters for
27
+ each temporal feature map independently, further reducing
28
+ parameters and enhancing interpretability.
29
+ - *Batch Normalization*
31
30
 
32
31
  2. **Block 2: Temporal Aggregation**
32
+
33
33
  - *Activation Function*: ELU
34
34
  - *Average Pooling Layer*: Aggregation by averaging spatial dim
35
35
  - *Dropout Layer*
36
36
  - *Flatten Layer*
37
37
 
38
38
  3. **Block 3: Classification**
39
+
39
40
  - *Fully Connected Layer*: Maps the feature vector to n_outputs.
40
41
 
41
42
  **Implementation Notes:**
@@ -24,7 +24,7 @@ class SSTDPN(EEGModuleMixin, nn.Module):
24
24
  :alt: SSTDPN Architecture
25
25
  :width: 1000px
26
26
 
27
- The **SpatialSpectral** and **Temporal - Dual Prototype Network** (SST-DPN)
27
+ The **Spatial-Spectral** and **Temporal - Dual Prototype Network** (SST-DPN)
28
28
  is an end-to-end 1D convolutional architecture designed for motor imagery (MI) EEG decoding,
29
29
  aiming to address challenges related to discriminative feature extraction and
30
30
  small-sample sizes [Han2025]_.
@@ -37,9 +37,9 @@ class SSTDPN(EEGModuleMixin, nn.Module):
37
37
  SST-DPN consists of a feature extractor (_SSTEncoder, comprising Adaptive Spatial-Spectral
38
38
  Fusion and Multi-scale Variance Pooling) followed by Dual Prototype Learning classification [Han2025]_.
39
39
 
40
- 1. **Adaptive SpatialSpectral Fusion (ASSF)**: Uses :class:`_DepthwiseTemporalConv1d` to generate a
41
- multi-channel spatialspectral representation, followed by :class:`_SpatSpectralAttn`
42
- (Spatial-Spectral Attention) to model relationships and highlight key spatialspectral
40
+ 1. **Adaptive Spatial-Spectral Fusion (ASSF)**: Uses :class:`_DepthwiseTemporalConv1d` to generate a
41
+ multi-channel spatial-spectral representation, followed by :class:`_SpatSpectralAttn`
42
+ (Spatial-Spectral Attention) to model relationships and highlight key spatial-spectral
43
43
  channels [Han2025]_.
44
44
 
45
45
  2. **Multi-scale Variance Pooling (MVP)**: Applies :class:`_MultiScaleVarPooler` with variance pooling
@@ -57,7 +57,7 @@ class SSTDPN(EEGModuleMixin, nn.Module):
57
57
 
58
58
  - `SSTDPN.encoder` **(Feature Extractor)**
59
59
 
60
- - *Operations.* Combines Adaptive SpatialSpectral Fusion and Multi-scale Variance Pooling
60
+ - *Operations.* Combines Adaptive Spatial-Spectral Fusion and Multi-scale Variance Pooling
61
61
  via an internal :class:`_SSTEncoder`.
62
62
  - *Role.* Maps the raw MI-EEG trial :math:`X_i \in \mathbb{R}^{C \times T}` to the
63
63
  feature space :math:`z_i \in \mathbb{R}^d`.
@@ -69,11 +69,11 @@ class SSTDPN(EEGModuleMixin, nn.Module):
69
69
  depth multiplier `n_spectral_filters_temporal` (equivalent to :math:`F_1` in the paper).
70
70
  - *Role.* Extracts multiple distinct spectral bands from each EEG channel independently.
71
71
 
72
- - `_SSTEncoder.spt_attn` **(SpatialSpectral Attention for Channel Gating)**
72
+ - `_SSTEncoder.spt_attn` **(Spatial-Spectral Attention for Channel Gating)**
73
73
 
74
74
  - *Operations.* Internal :class:`_SpatSpectralAttn` module using Global Context Embedding
75
75
  via variance-based pooling, followed by adaptive channel normalization and gating.
76
- - *Role.* Reweights channels in the spatialspectral dimension to extract efficient and
76
+ - *Role.* Reweights channels in the spatial-spectral dimension to extract efficient and
77
77
  discriminative features by emphasizing task-relevant regions and frequency bands.
78
78
 
79
79
  - `_SSTEncoder.chan_conv` **(Pointwise Fusion across Channels)**
@@ -81,7 +81,7 @@ class SSTDPN(EEGModuleMixin, nn.Module):
81
81
  - *Operations.* A 1D pointwise convolution with `n_fused_filters` output channels
82
82
  (equivalent to :math:`F_2` in the paper), followed by BatchNorm and the specified
83
83
  `activation` function (default: ELU).
84
- - *Role.* Fuses the weighted spatialspectral features across all electrodes to produce
84
+ - *Role.* Fuses the weighted spatial-spectral features across all electrodes to produce
85
85
  a fused representation :math:`X_{fused} \in \mathbb{R}^{F_2 \times T}`.
86
86
 
87
87
  - `_SSTEncoder.mvp` **(Multi-scale Variance Pooling for Temporal Extraction)**
@@ -109,11 +109,11 @@ class SSTDPN(EEGModuleMixin, nn.Module):
109
109
  * **Spatial.**
110
110
  The initial convolution at the classes :class:`_DepthwiseTemporalConv1d` groups parameter :math:`h=1`,
111
111
  meaning :math:`F_1` temporal filters are shared across channels. The Spatial-Spectral Attention
112
- mechanism explicitly models the relationships among these channels in the spatialspectral
112
+ mechanism explicitly models the relationships among these channels in the spatial-spectral
113
113
  dimension, allowing for finer-grained spatial feature modeling compared to conventional
114
114
  GCNs according to the authors [Han2025]_.
115
115
  In other words, all electrode channels share :math:`F_1` temporal filters
116
- independently to produce the spatialspectral representation.
116
+ independently to produce the spatial-spectral representation.
117
117
 
118
118
  * **Spectral.**
119
119
  Spectral information is implicitly extracted via the :math:`F_1` filters in :class:`_DepthwiseTemporalConv1d`.
@@ -123,7 +123,7 @@ class SSTDPN(EEGModuleMixin, nn.Module):
123
123
 
124
124
  .. rubric:: Additional Mechanisms
125
125
 
126
- - **Attention.** A lightweight Spatial-Spectral Attention mechanism models spatialspectral relationships
126
+ - **Attention.** A lightweight Spatial-Spectral Attention mechanism models spatial-spectral relationships
127
127
  at the channel level, distinct from applying attention to deep feature dimensions,
128
128
  which is common in comparison methods like :class:`ATCNet`.
129
129
  - **Regularization.** Dual Prototype Learning acts as a regularization technique
@@ -39,3 +39,4 @@ FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sf
39
39
  IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
40
40
  PBT,General,Classification,250,"n_chans, n_outputs, n_times",818948,"PBT(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Large Brain Model"
41
41
  SSTDPN,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",19502,"SSTDPN(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
42
+ BENDR,General,"Classification,Embedding",250,"n_chans, n_times, n_outputs",157141049,"BENDR(n_chans=22, n_outputs=4, n_times=1000)","Large Brain Model,Convolution"
@@ -62,43 +62,48 @@ class USleep(EEGModuleMixin, nn.Module):
62
62
  - Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
63
63
 
64
64
  - *Operations.*
65
- - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
66
- - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
67
- - ELU, :class:`torch.nn.ELU`
68
- - Batch Norm, :class:`torch.nn.BatchNorm2d`
69
- - **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
70
- - **Convolution**, :class:`torch.nn.Conv2d`
71
- - ELU, :class:`torch.nn.ELU`
72
- - Batch Norm, :class:`torch.nn.BatchNorm2d`.
65
+
66
+ - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
67
+ - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
68
+ - ELU, :class:`torch.nn.ELU`
69
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`
70
+ - **Concatenate** with the encoder skip at the same temporal scale, ``torch.cat``
71
+ - **Convolution**, :class:`torch.nn.Conv2d`
72
+ - ELU, :class:`torch.nn.ELU`
73
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`.
73
74
 
74
75
  **Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
75
76
 
76
77
  - **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
77
78
 
78
79
  - *Operations.*
79
- - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
80
- - **1x1 conv**, :class:`torch.nn.Conv2d`
81
- - ELU, :class:`torch.nn.ELU`
82
- - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
80
+
81
+ - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
82
+ - **1x1 conv**, :class:`torch.nn.Conv2d`
83
+ - ELU, :class:`torch.nn.ELU`
84
+ - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
83
85
 
84
86
  **Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
85
87
 
86
88
  .. rubric:: Convolutional Details
87
89
 
88
90
  - **Temporal (where time-domain patterns are learned).**
89
- All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
90
- (reported sensitivity to ±6.75 min around each epoch; theoretical field 9.6 min at the deepest layer).
91
- The decoder restores sample-level resolution before epoch aggregation.
91
+
92
+ All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
93
+ (reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
94
+ The decoder restores sample-level resolution before epoch aggregation.
92
95
 
93
96
  - **Spatial (how channels are processed).**
94
- Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
95
- is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
96
- supporting robustness to channel placement and hardware differences.
97
+
98
+ Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
99
+ is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
100
+ supporting robustness to channel placement and hardware differences.
97
101
 
98
102
  - **Spectral (how frequency content is captured).**
99
- No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
100
- filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
101
- retains fine temporal detail for the segment classifier.
103
+
104
+ No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
105
+ filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
106
+ retains fine temporal detail for the segment classifier.
102
107
 
103
108
 
104
109
  .. rubric:: Attention / Sequential Modules
@@ -97,6 +97,7 @@ models_mandatory_parameters = [
97
97
  ("IFNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
98
98
  ("PBT", ["n_chans", "n_outputs", "n_times"], None),
99
99
  ("SSTDPN", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
100
+ ("BENDR", ["n_chans", "n_outputs", "n_times"], None),
100
101
  ]
101
102
 
102
103
  ################################################################
@@ -38,7 +38,7 @@ class SqueezeAndExcitation(nn.Module):
38
38
  References
39
39
  ----------
40
40
  .. [Hu2018] Hu, J., Albanie, S., Sun, G., Wu, E., 2018.
41
- Squeeze-and-Excitation Networks. CVPR 2018.
41
+ Squeeze-and-Excitation Networks. CVPR 2018.
42
42
  """
43
43
 
44
44
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = False):
@@ -93,7 +93,7 @@ class GSoP(nn.Module):
93
93
  References
94
94
  ----------
95
95
  .. [Gao2018] Gao, Z., Jiangtao, X., Wang, Q., Li, P., 2018.
96
- Global Second-order Pooling Convolutional Networks. CVPR 2018.
96
+ Global Second-order Pooling Convolutional Networks. CVPR 2018.
97
97
  """
98
98
 
99
99
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = True):
@@ -149,7 +149,7 @@ class FCA(nn.Module):
149
149
  References
150
150
  ----------
151
151
  .. [Qin2021] Qin, Z., Zhang, P., Wu, F., Li, X., 2021.
152
- FcaNet: Frequency Channel Attention Networks. ICCV 2021.
152
+ FcaNet: Frequency Channel Attention Networks. ICCV 2021.
153
153
  """
154
154
 
155
155
  def __init__(
@@ -233,7 +233,7 @@ class EncNet(nn.Module):
233
233
  References
234
234
  ----------
235
235
  .. [Zhang2018] Zhang, H. et al. 2018.
236
- Context Encoding for Semantic Segmentation. CVPR 2018.
236
+ Context Encoding for Semantic Segmentation. CVPR 2018.
237
237
  """
238
238
 
239
239
  def __init__(self, in_channels: int, n_codewords: int):
@@ -290,7 +290,7 @@ class ECA(nn.Module):
290
290
  References
291
291
  ----------
292
292
  .. [Wang2021] Wang, Q. et al., 2021. ECA-Net: Efficient Channel Attention
293
- for Deep Convolutional Neural Networks. CVPR 2021.
293
+ for Deep Convolutional Neural Networks. CVPR 2021.
294
294
  """
295
295
 
296
296
  def __init__(self, in_channels: int, kernel_size: int):
@@ -341,8 +341,8 @@ class GatherExcite(nn.Module):
341
341
  References
342
342
  ----------
343
343
  .. [Hu2018b] Hu, J., Albanie, S., Sun, G., Vedaldi, A., 2018.
344
- Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
- NeurIPS 2018.
344
+ Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
+ NeurIPS 2018.
346
346
  """
347
347
 
348
348
  def __init__(
@@ -410,7 +410,7 @@ class GCT(nn.Module):
410
410
  References
411
411
  ----------
412
412
  .. [Yang2020] Yang, Z. Linchao, Z., Wu, Y., Yang, Y., 2020.
413
- Gated Channel Transformation for Visual Recognition. CVPR 2020.
413
+ Gated Channel Transformation for Visual Recognition. CVPR 2020.
414
414
  """
415
415
 
416
416
  def __init__(self, in_channels: int):
@@ -455,7 +455,7 @@ class SRM(nn.Module):
455
455
  References
456
456
  ----------
457
457
  .. [Lee2019] Lee, H., Kim, H., Nam, H., 2019. SRM: A Style-based
458
- Recalibration Module for Convolutional Neural Networks. ICCV 2019.
458
+ Recalibration Module for Convolutional Neural Networks. ICCV 2019.
459
459
  """
460
460
 
461
461
  def __init__(
@@ -520,7 +520,7 @@ class CBAM(nn.Module):
520
520
  References
521
521
  ----------
522
522
  .. [Woo2018] Woo, S., Park, J., Lee, J., Kweon, I., 2018.
523
- CBAM: Convolutional Block Attention Module. ECCV 2018.
523
+ CBAM: Convolutional Block Attention Module. ECCV 2018.
524
524
  """
525
525
 
526
526
  def __init__(self, in_channels: int, reduction_rate: int, kernel_size: int):
@@ -37,8 +37,8 @@ class MLP(nn.Sequential):
37
37
  :math:`a_i` are called activation functions. The trainable parameters of an
38
38
  MLP are its weights and biases :math:`\\phi = \{W_i, b_i | i = 1, \dots, L\}`.
39
39
 
40
- Parameters:
41
- -----------
40
+ Parameters
41
+ ----------
42
42
  in_features: int
43
43
  Number of input features.
44
44
  hidden_features: Sequential[int] (default=None)
@@ -49,7 +49,7 @@ class MLP(nn.Sequential):
49
49
  out_features: int (default=None)
50
50
  Number of output features, if None, set to in_features.
51
51
  act_layer: nn.GELU (default)
52
- The activation function constructor. If :py:`None`, use
52
+ The activation function constructor. If ``None``, use
53
53
  :class:`torch.nn.GELU` instead.
54
54
  drop: float (default=0.0)
55
55
  Dropout rate.
@@ -17,9 +17,8 @@ class FilterBankLayer(nn.Module):
17
17
  It uses MNE's `create_filter` function to create the band-specific filters and
18
18
  applies them to multi-channel time-series data. Each filter in the bank corresponds to a
19
19
  specific frequency band and is applied to all channels of the input data. The filtering is
20
- performed using FFT-based convolution via the `fftconvolve` function from
21
- :func:`torchaudio.functional if the method is FIR, and `filtfilt` function from
22
- :func:`torchaudio.functional if the method is IIR.
20
+ performed using FFT-based convolution via the ``torchaudio.functional`` if the method is FIR,
21
+ and ``torchaudio.functional`` if the method is IIR.
23
22
 
24
23
  The default configuration creates 9 non-overlapping frequency bands with a 4 Hz bandwidth,
25
24
  spanning from 4 Hz to 40 Hz (i.e., 4-8 Hz, 8-12 Hz, ..., 36-40 Hz). This setup is based on the
@@ -70,26 +70,27 @@ class TimeDistributed(nn.Module):
70
70
  class DropPath(nn.Module):
71
71
  """Drop paths, also known as Stochastic Depth, per sample.
72
72
 
73
- When applied in main path of residual blocks.
73
+ When applied in main path of residual blocks.
74
74
 
75
- Parameters:
76
- -----------
77
- drop_prob: float (default=None)
78
- Drop path probability (should be in range 0-1).
75
+ Parameters
76
+ ----------
77
+ drop_prob: float (default=None)
78
+ Drop path probability (should be in range 0-1).
79
79
 
80
- Notes
81
- -----
82
- Code copied and modified from VISSL facebookresearch:
80
+ Notes
81
+ -----
82
+ Code copied and modified from VISSL facebookresearch:
83
83
  https://github.com/facebookresearch/vissl/blob/0b5d6a94437bc00baed112ca90c9d78c6ccfbafb/vissl/models/model_helpers.py#L676
84
- All rights reserved.
85
-
86
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
87
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
88
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
89
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
90
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
91
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
92
- SOFTWARE.
84
+
85
+ All rights reserved.
86
+
87
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
88
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
89
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
90
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
91
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
92
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
93
+ SOFTWARE.
93
94
  """
94
95
 
95
96
  def __init__(self, drop_prob=None):
@@ -268,7 +268,7 @@ def create_windows_from_events(
268
268
  rejection based on flatness is done. See mne.Epochs.
269
269
  on_missing: str
270
270
  What to do if one or several event ids are not found in the recording.
271
- Valid keys are ‘error | ‘warning | ‘ignore’. See mne.Epochs.
271
+ Valid keys are ‘error' | ‘warning' | ‘ignore'. See mne.Epochs.
272
272
  accepted_bads_ratio: float, optional
273
273
  Acceptable proportion of trials with inconsistent length in a raw. If
274
274
  the number of trials whose length is exceeded by the window size is
@@ -398,7 +398,7 @@ def create_fixed_length_windows(
398
398
  by using the _LazyDataFrame (experimental).
399
399
  on_missing: str
400
400
  What to do if one or several event ids are not found in the recording.
401
- Valid keys are ‘error | ‘warning | ‘ignore’. See mne.Epochs.
401
+ Valid keys are ‘error' | ‘warning' | ‘ignore'. See mne.Epochs.
402
402
  n_jobs: int
403
403
  Number of jobs to use to parallelize the windowing.
404
404
  verbose: bool | str | int | None
@@ -122,14 +122,14 @@ class DistributedRecordingSampler(DistributedSampler):
122
122
  DataFrame with at least one of {subject, session, run} columns for each
123
123
  window in the BaseConcatDataset to sample examples from. Normally
124
124
  obtained with `BaseConcatDataset.get_metadata()`. For instance,
125
- `metadata.head()` might look like this:
126
-
127
- i_window_in_trial i_start_in_trial i_stop_in_trial target subject session run
128
- 0 0 0 500 -1 4 session_T run_0
129
- 1 1 500 1000 -1 4 session_T run_0
130
- 2 2 1000 1500 -1 4 session_T run_0
131
- 3 3 1500 2000 -1 4 session_T run_0
132
- 4 4 2000 2500 -1 4 session_T run_0
125
+ `metadata.head()` might look like this::
126
+
127
+ i_window_in_trial i_start_in_trial i_stop_in_trial target subject session run
128
+ 0 0 0 500 -1 4 session_T run_0
129
+ 1 1 500 1000 -1 4 session_T run_0
130
+ 2 2 1000 1500 -1 4 session_T run_0
131
+ 3 3 1500 2000 -1 4 session_T run_0
132
+ 4 4 2000 2500 -1 4 session_T run_0
133
133
 
134
134
  random_state : np.RandomState | int | None
135
135
  Random state.
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.3.0.dev175955015"
1
+ __version__ = "1.3.0.dev177509039"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev175955015
3
+ Version: 1.3.0.dev177509039
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>