braindecode 1.3.0.dev173691341__py3-none-any.whl → 1.3.0.dev174613006__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

@@ -22,7 +22,6 @@ from mne.datasets.utils import _get_path
22
22
  from mne.utils import warn
23
23
 
24
24
  from braindecode.datasets import BaseConcatDataset, BaseDataset
25
- from braindecode.preprocessing.preprocess import _preprocess
26
25
 
27
26
  PC18_DIR = op.join(op.dirname(__file__), "data", "pc18")
28
27
  PC18_RECORDS = op.join(PC18_DIR, "sleep_records.csv")
@@ -407,6 +406,8 @@ class SleepPhysionetChallenge2018(BaseConcatDataset):
407
406
  base_dataset = BaseDataset(raw_file, desc)
408
407
 
409
408
  if preproc is not None:
409
+ from braindecode.preprocessing.preprocess import _preprocess
410
+
410
411
  _preprocess(base_dataset, None, preproc)
411
412
 
412
413
  return base_dataset
@@ -17,7 +17,7 @@ class BIOT(EEGModuleMixin, nn.Module):
17
17
 
18
18
  BIOT: Cross-data Biosignal Learning in the Wild.
19
19
 
20
- BIOT is a large language model for biosignal classification. It is
20
+ BIOT is a large brain model for biosignal classification. It is
21
21
  a wrapper around the `BIOTEncoder` and `ClassificationHead` modules.
22
22
 
23
23
  It is designed for N-dimensional biosignal data such as EEG, ECG, etc.
@@ -2,7 +2,7 @@
2
2
  ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
3
  AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
4
  BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
6
6
  ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
7
  CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
8
  Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
16
16
  EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
17
  EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
18
  EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
20
20
  MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
21
  SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
26
26
  SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
27
  ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
28
  SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
@@ -112,6 +112,7 @@ def preprocess(
112
112
  n_jobs: int | None = None,
113
113
  offset: int = 0,
114
114
  copy_data: bool | None = None,
115
+ parallel_kwargs: dict | None = None,
115
116
  ):
116
117
  """Apply preprocessors to a concat dataset.
117
118
 
@@ -135,6 +136,10 @@ def preprocess(
135
136
  and saving very large datasets in chunks to preserve original positions.
136
137
  copy_data : bool | None
137
138
  Whether the data passed to parallel jobs should be copied or passed by reference.
139
+ parallel_kwargs : dict | None
140
+ Additional keyword arguments forwarded to ``joblib.Parallel``.
141
+ Defaults to None (equivalent to ``{}``).
142
+ See https://joblib.readthedocs.io/en/stable/generated/joblib.Parallel.html for details.
138
143
 
139
144
  Returns
140
145
  -------
@@ -153,8 +158,12 @@ def preprocess(
153
158
 
154
159
  parallel_processing = (n_jobs is not None) and (n_jobs != 1)
155
160
 
156
- job_prefer = "threads" if platform.system() == "Windows" else None
157
- list_of_ds = Parallel(n_jobs=n_jobs, prefer=job_prefer)(
161
+ parallel_params = {} if parallel_kwargs is None else dict(parallel_kwargs)
162
+ parallel_params.setdefault(
163
+ "prefer", "threads" if platform.system() == "Windows" else None
164
+ )
165
+
166
+ list_of_ds = Parallel(n_jobs=n_jobs, **parallel_params)(
158
167
  delayed(_preprocess)(
159
168
  ds,
160
169
  i + offset,
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.3.0.dev173691341"
1
+ __version__ = "1.3.0.dev174613006"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev173691341
3
+ Version: 1.3.0.dev174613006
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
3
3
  braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
4
4
  braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
5
5
  braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
6
- braindecode/version.py,sha256=id9eK3xCOOB3kwsGNe7fuD6sdV29Io0b3-fvyePKKhk,35
6
+ braindecode/version.py,sha256=B5COw-Jjdz6iqSJFUtYuO2PbfY9dW4unoqg32duC1-o,35
7
7
  braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
8
8
  braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
9
9
  braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
@@ -17,7 +17,7 @@ braindecode/datasets/experimental.py,sha256=Z_uzMNA875-l878LAv7bWiWYJX3QAefmb5qu
17
17
  braindecode/datasets/mne.py,sha256=Dg6RZAAwd8TVGrvLOPF5B_JrbyGUWg52vWmn6fLMOQM,6135
18
18
  braindecode/datasets/moabb.py,sha256=JmBcFV7QJT8GCgLNNKWgxJVnEVnO5wd9U_uiIqTIxDM,7091
19
19
  braindecode/datasets/nmt.py,sha256=E4T8OYBEwWRSjh7VFzmyxaZbf5ufFVEBYYmQEd1ghUU,10430
20
- braindecode/datasets/sleep_physio_challe_18.py,sha256=KTvUtuarOOYu6PHN6H1vcy4W9xilwtZE08n7JSrk8Cs,15414
20
+ braindecode/datasets/sleep_physio_challe_18.py,sha256=66A86_9VssszKrVXowb0oFyL3xbF1VRqQK5FtW33QlM,15427
21
21
  braindecode/datasets/sleep_physionet.py,sha256=jieRx6u-MQ4jn_5Zox_pVV8WjBwXKLv9uq4GXRAZ_58,4087
22
22
  braindecode/datasets/tuh.py,sha256=iG1hOtdevzKGEVpeuRFDBOnsW_rWa5zEmMFJfYR1hqg,22867
23
23
  braindecode/datasets/xy.py,sha256=xT-nS_5jpuVKJ0SGqc7Ia0FVpqj86UfuzcYQdEGZdp0,2986
@@ -32,7 +32,7 @@ braindecode/models/atcnet.py,sha256=8wq13mTrn0ZAjfbO5E_yfQZo8vT4jYs1f9xA1S6UhI8,
32
32
  braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
33
33
  braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
34
34
  braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
35
- braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
35
+ braindecode/models/biot.py,sha256=d2P1i_8k98SU3FkN_dKPXcCoFVmyQIIrBbI1-F3g-8E,17509
36
36
  braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
37
37
  braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
38
38
  braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
@@ -60,7 +60,7 @@ braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-
60
60
  braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
61
61
  braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
62
62
  braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
63
- braindecode/models/summary.csv,sha256=NfrmnjyfDmWVe2zyNqgczEQcLI910BOS4sICtcKS3gc,6765
63
+ braindecode/models/summary.csv,sha256=z5aXQbPyxS8-Is2dF0DSN_8g7LjCPbGZHvjxEtfQMUw,6747
64
64
  braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
65
65
  braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
66
66
  braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
@@ -81,7 +81,7 @@ braindecode/modules/util.py,sha256=tVXEhzeTsYrr_wZ5CiXaq3VYGtC5TmGEEW2hMYjTQAE,2
81
81
  braindecode/modules/wrapper.py,sha256=Z-aZ4wxA0psYefMOfj03r7D1XjD4az6GpZpaQoDPJv0,2421
82
82
  braindecode/preprocessing/__init__.py,sha256=V0iwdzb6DzpUaCabA7I6HmOqXK_XvTbpP5HaEduSJ4s,776
83
83
  braindecode/preprocessing/mne_preprocess.py,sha256=_Jczaitqbx16utsUOhnonEcoExf6jPsWNwVOVvoKFfU,2210
84
- braindecode/preprocessing/preprocess.py,sha256=gg52Uqo23yqXBckXrph_AFWCSEmrA7JdA54vcCwbrKE,17489
84
+ braindecode/preprocessing/preprocess.py,sha256=da_-Tn1NLPunsZC2-uzzgCYgdm_Xj-CIJjwf_CTMuFs,17899
85
85
  braindecode/preprocessing/windowers.py,sha256=6w6mOnroGWnV7tS23UagZZepswaxaL00S45Jr5AViRE,36551
86
86
  braindecode/samplers/__init__.py,sha256=TLuO6gXv2WioJdX671MI_CHVSsOfbjnly1Xv9K3_WdA,452
87
87
  braindecode/samplers/base.py,sha256=z_Txp9cEwUmIBL0J6FPJbx1cMSsU9l9mxymRCGqNss0,15111
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
93
93
  braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
94
94
  braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
95
95
  braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
96
- braindecode-1.3.0.dev173691341.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
- braindecode-1.3.0.dev173691341.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
- braindecode-1.3.0.dev173691341.dist-info/METADATA,sha256=HUX-udj-vDGSJ_ZSfDK4RTWTCq2OEvGz7bUIV_WCB8o,7129
99
- braindecode-1.3.0.dev173691341.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- braindecode-1.3.0.dev173691341.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
- braindecode-1.3.0.dev173691341.dist-info/RECORD,,
96
+ braindecode-1.3.0.dev174613006.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
+ braindecode-1.3.0.dev174613006.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
+ braindecode-1.3.0.dev174613006.dist-info/METADATA,sha256=FBSmWi13douk5GjH3mHUa9SwZ1RWv1rvDZ85I6T03zg,7129
99
+ braindecode-1.3.0.dev174613006.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
+ braindecode-1.3.0.dev174613006.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
+ braindecode-1.3.0.dev174613006.dist-info/RECORD,,