braindecode 1.3.0.dev173691341__py3-none-any.whl → 1.3.0.dev173767962__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (52) hide show
  1. braindecode/augmentation/base.py +1 -1
  2. braindecode/augmentation/functional.py +154 -54
  3. braindecode/augmentation/transforms.py +2 -2
  4. braindecode/datasets/__init__.py +10 -2
  5. braindecode/datasets/base.py +116 -152
  6. braindecode/datasets/bcicomp.py +4 -4
  7. braindecode/datasets/bids.py +3 -3
  8. braindecode/datasets/experimental.py +2 -2
  9. braindecode/datasets/mne.py +3 -5
  10. braindecode/datasets/moabb.py +2 -2
  11. braindecode/datasets/nmt.py +2 -2
  12. braindecode/datasets/sleep_physio_challe_18.py +4 -3
  13. braindecode/datasets/sleep_physionet.py +2 -2
  14. braindecode/datasets/tuh.py +2 -2
  15. braindecode/datasets/xy.py +2 -2
  16. braindecode/datautil/serialization.py +18 -13
  17. braindecode/eegneuralnet.py +2 -0
  18. braindecode/functional/functions.py +6 -2
  19. braindecode/functional/initialization.py +2 -3
  20. braindecode/models/__init__.py +6 -0
  21. braindecode/models/atcnet.py +26 -27
  22. braindecode/models/attentionbasenet.py +39 -32
  23. braindecode/models/base.py +280 -2
  24. braindecode/models/bendr.py +469 -0
  25. braindecode/models/biot.py +3 -1
  26. braindecode/models/ctnet.py +6 -3
  27. braindecode/models/deepsleepnet.py +27 -18
  28. braindecode/models/eegconformer.py +2 -2
  29. braindecode/models/eeginception_erp.py +31 -25
  30. braindecode/models/eegnet.py +1 -1
  31. braindecode/models/labram.py +188 -84
  32. braindecode/models/patchedtransformer.py +640 -0
  33. braindecode/models/signal_jepa.py +109 -27
  34. braindecode/models/sinc_shallow.py +10 -9
  35. braindecode/models/sstdpn.py +869 -0
  36. braindecode/models/summary.csv +9 -6
  37. braindecode/models/usleep.py +26 -21
  38. braindecode/models/util.py +3 -0
  39. braindecode/modules/attention.py +10 -10
  40. braindecode/modules/blocks.py +3 -3
  41. braindecode/modules/filter.py +2 -3
  42. braindecode/modules/layers.py +18 -17
  43. braindecode/preprocessing/preprocess.py +23 -14
  44. braindecode/preprocessing/windowers.py +24 -19
  45. braindecode/samplers/base.py +8 -8
  46. braindecode/version.py +1 -1
  47. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/METADATA +4 -2
  48. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/RECORD +52 -49
  49. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/WHEEL +0 -0
  50. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/licenses/LICENSE.txt +0 -0
  51. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/licenses/NOTICE.txt +0 -0
  52. {braindecode-1.3.0.dev173691341.dist-info → braindecode-1.3.0.dev173767962.dist-info}/top_level.txt +0 -0
@@ -2,7 +2,7 @@
2
2
  ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
3
  AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
4
  BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
6
6
  ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
7
  CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
8
  Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
@@ -16,13 +16,13 @@ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEG
16
16
  EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
17
  EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
18
  EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
20
20
  MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
21
  SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
26
26
  SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
27
  ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
28
  SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
@@ -37,3 +37,6 @@ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",118
37
37
  FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
38
  FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
39
  IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
40
+ PBT,General,Classification,250,"n_chans, n_outputs, n_times",818948,"PBT(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Large Brain Model"
41
+ SSTDPN,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",19502,"SSTDPN(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
42
+ BENDR,General,"Classification,Embedding",250,"n_chans, n_times, n_outputs",157141049,"BENDR(n_chans=22, n_outputs=4, n_times=1000)","Large Brain Model,Convolution"
@@ -62,43 +62,48 @@ class USleep(EEGModuleMixin, nn.Module):
62
62
  - Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
63
63
 
64
64
  - *Operations.*
65
- - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
66
- - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
67
- - ELU, :class:`torch.nn.ELU`
68
- - Batch Norm, :class:`torch.nn.BatchNorm2d`
69
- - **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
70
- - **Convolution**, :class:`torch.nn.Conv2d`
71
- - ELU, :class:`torch.nn.ELU`
72
- - Batch Norm, :class:`torch.nn.BatchNorm2d`.
65
+
66
+ - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
67
+ - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
68
+ - ELU, :class:`torch.nn.ELU`
69
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`
70
+ - **Concatenate** with the encoder skip at the same temporal scale, ``torch.cat``
71
+ - **Convolution**, :class:`torch.nn.Conv2d`
72
+ - ELU, :class:`torch.nn.ELU`
73
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`.
73
74
 
74
75
  **Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
75
76
 
76
77
  - **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
77
78
 
78
79
  - *Operations.*
79
- - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
80
- - **1x1 conv**, :class:`torch.nn.Conv2d`
81
- - ELU, :class:`torch.nn.ELU`
82
- - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
80
+
81
+ - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
82
+ - **1x1 conv**, :class:`torch.nn.Conv2d`
83
+ - ELU, :class:`torch.nn.ELU`
84
+ - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
83
85
 
84
86
  **Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
85
87
 
86
88
  .. rubric:: Convolutional Details
87
89
 
88
90
  - **Temporal (where time-domain patterns are learned).**
89
- All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
90
- (reported sensitivity to ±6.75 min around each epoch; theoretical field 9.6 min at the deepest layer).
91
- The decoder restores sample-level resolution before epoch aggregation.
91
+
92
+ All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
93
+ (reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
94
+ The decoder restores sample-level resolution before epoch aggregation.
92
95
 
93
96
  - **Spatial (how channels are processed).**
94
- Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
95
- is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
96
- supporting robustness to channel placement and hardware differences.
97
+
98
+ Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
99
+ is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
100
+ supporting robustness to channel placement and hardware differences.
97
101
 
98
102
  - **Spectral (how frequency content is captured).**
99
- No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
100
- filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
101
- retains fine temporal detail for the segment classifier.
103
+
104
+ No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
105
+ filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
106
+ retains fine temporal detail for the segment classifier.
102
107
 
103
108
 
104
109
  .. rubric:: Attention / Sequential Modules
@@ -95,6 +95,9 @@ models_mandatory_parameters = [
95
95
  ("FBMSNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
96
96
  ("FBLightConvNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
97
97
  ("IFNet", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
98
+ ("PBT", ["n_chans", "n_outputs", "n_times"], None),
99
+ ("SSTDPN", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
100
+ ("BENDR", ["n_chans", "n_outputs", "n_times"], None),
98
101
  ]
99
102
 
100
103
  ################################################################
@@ -38,7 +38,7 @@ class SqueezeAndExcitation(nn.Module):
38
38
  References
39
39
  ----------
40
40
  .. [Hu2018] Hu, J., Albanie, S., Sun, G., Wu, E., 2018.
41
- Squeeze-and-Excitation Networks. CVPR 2018.
41
+ Squeeze-and-Excitation Networks. CVPR 2018.
42
42
  """
43
43
 
44
44
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = False):
@@ -93,7 +93,7 @@ class GSoP(nn.Module):
93
93
  References
94
94
  ----------
95
95
  .. [Gao2018] Gao, Z., Jiangtao, X., Wang, Q., Li, P., 2018.
96
- Global Second-order Pooling Convolutional Networks. CVPR 2018.
96
+ Global Second-order Pooling Convolutional Networks. CVPR 2018.
97
97
  """
98
98
 
99
99
  def __init__(self, in_channels: int, reduction_rate: int, bias: bool = True):
@@ -149,7 +149,7 @@ class FCA(nn.Module):
149
149
  References
150
150
  ----------
151
151
  .. [Qin2021] Qin, Z., Zhang, P., Wu, F., Li, X., 2021.
152
- FcaNet: Frequency Channel Attention Networks. ICCV 2021.
152
+ FcaNet: Frequency Channel Attention Networks. ICCV 2021.
153
153
  """
154
154
 
155
155
  def __init__(
@@ -233,7 +233,7 @@ class EncNet(nn.Module):
233
233
  References
234
234
  ----------
235
235
  .. [Zhang2018] Zhang, H. et al. 2018.
236
- Context Encoding for Semantic Segmentation. CVPR 2018.
236
+ Context Encoding for Semantic Segmentation. CVPR 2018.
237
237
  """
238
238
 
239
239
  def __init__(self, in_channels: int, n_codewords: int):
@@ -290,7 +290,7 @@ class ECA(nn.Module):
290
290
  References
291
291
  ----------
292
292
  .. [Wang2021] Wang, Q. et al., 2021. ECA-Net: Efficient Channel Attention
293
- for Deep Convolutional Neural Networks. CVPR 2021.
293
+ for Deep Convolutional Neural Networks. CVPR 2021.
294
294
  """
295
295
 
296
296
  def __init__(self, in_channels: int, kernel_size: int):
@@ -341,8 +341,8 @@ class GatherExcite(nn.Module):
341
341
  References
342
342
  ----------
343
343
  .. [Hu2018b] Hu, J., Albanie, S., Sun, G., Vedaldi, A., 2018.
344
- Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
- NeurIPS 2018.
344
+ Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks.
345
+ NeurIPS 2018.
346
346
  """
347
347
 
348
348
  def __init__(
@@ -410,7 +410,7 @@ class GCT(nn.Module):
410
410
  References
411
411
  ----------
412
412
  .. [Yang2020] Yang, Z. Linchao, Z., Wu, Y., Yang, Y., 2020.
413
- Gated Channel Transformation for Visual Recognition. CVPR 2020.
413
+ Gated Channel Transformation for Visual Recognition. CVPR 2020.
414
414
  """
415
415
 
416
416
  def __init__(self, in_channels: int):
@@ -455,7 +455,7 @@ class SRM(nn.Module):
455
455
  References
456
456
  ----------
457
457
  .. [Lee2019] Lee, H., Kim, H., Nam, H., 2019. SRM: A Style-based
458
- Recalibration Module for Convolutional Neural Networks. ICCV 2019.
458
+ Recalibration Module for Convolutional Neural Networks. ICCV 2019.
459
459
  """
460
460
 
461
461
  def __init__(
@@ -520,7 +520,7 @@ class CBAM(nn.Module):
520
520
  References
521
521
  ----------
522
522
  .. [Woo2018] Woo, S., Park, J., Lee, J., Kweon, I., 2018.
523
- CBAM: Convolutional Block Attention Module. ECCV 2018.
523
+ CBAM: Convolutional Block Attention Module. ECCV 2018.
524
524
  """
525
525
 
526
526
  def __init__(self, in_channels: int, reduction_rate: int, kernel_size: int):
@@ -37,8 +37,8 @@ class MLP(nn.Sequential):
37
37
  :math:`a_i` are called activation functions. The trainable parameters of an
38
38
  MLP are its weights and biases :math:`\\phi = \{W_i, b_i | i = 1, \dots, L\}`.
39
39
 
40
- Parameters:
41
- -----------
40
+ Parameters
41
+ ----------
42
42
  in_features: int
43
43
  Number of input features.
44
44
  hidden_features: Sequential[int] (default=None)
@@ -49,7 +49,7 @@ class MLP(nn.Sequential):
49
49
  out_features: int (default=None)
50
50
  Number of output features, if None, set to in_features.
51
51
  act_layer: nn.GELU (default)
52
- The activation function constructor. If :py:`None`, use
52
+ The activation function constructor. If ``None``, use
53
53
  :class:`torch.nn.GELU` instead.
54
54
  drop: float (default=0.0)
55
55
  Dropout rate.
@@ -17,9 +17,8 @@ class FilterBankLayer(nn.Module):
17
17
  It uses MNE's `create_filter` function to create the band-specific filters and
18
18
  applies them to multi-channel time-series data. Each filter in the bank corresponds to a
19
19
  specific frequency band and is applied to all channels of the input data. The filtering is
20
- performed using FFT-based convolution via the `fftconvolve` function from
21
- :func:`torchaudio.functional if the method is FIR, and `filtfilt` function from
22
- :func:`torchaudio.functional if the method is IIR.
20
+ performed using FFT-based convolution via the ``torchaudio.functional`` if the method is FIR,
21
+ and ``torchaudio.functional`` if the method is IIR.
23
22
 
24
23
  The default configuration creates 9 non-overlapping frequency bands with a 4 Hz bandwidth,
25
24
  spanning from 4 Hz to 40 Hz (i.e., 4-8 Hz, 8-12 Hz, ..., 36-40 Hz). This setup is based on the
@@ -70,26 +70,27 @@ class TimeDistributed(nn.Module):
70
70
  class DropPath(nn.Module):
71
71
  """Drop paths, also known as Stochastic Depth, per sample.
72
72
 
73
- When applied in main path of residual blocks.
73
+ When applied in main path of residual blocks.
74
74
 
75
- Parameters:
76
- -----------
77
- drop_prob: float (default=None)
78
- Drop path probability (should be in range 0-1).
75
+ Parameters
76
+ ----------
77
+ drop_prob: float (default=None)
78
+ Drop path probability (should be in range 0-1).
79
79
 
80
- Notes
81
- -----
82
- Code copied and modified from VISSL facebookresearch:
80
+ Notes
81
+ -----
82
+ Code copied and modified from VISSL facebookresearch:
83
83
  https://github.com/facebookresearch/vissl/blob/0b5d6a94437bc00baed112ca90c9d78c6ccfbafb/vissl/models/model_helpers.py#L676
84
- All rights reserved.
85
-
86
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
87
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
88
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
89
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
90
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
91
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
92
- SOFTWARE.
84
+
85
+ All rights reserved.
86
+
87
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
88
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
89
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
90
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
91
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
92
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
93
+ SOFTWARE.
93
94
  """
94
95
 
95
96
  def __init__(self, drop_prob=None):
@@ -30,8 +30,8 @@ from numpy.typing import NDArray
30
30
 
31
31
  from braindecode.datasets.base import (
32
32
  BaseConcatDataset,
33
- BaseDataset,
34
33
  EEGWindowsDataset,
34
+ RawDataset,
35
35
  WindowsDataset,
36
36
  )
37
37
  from braindecode.datautil.serialization import (
@@ -112,13 +112,14 @@ def preprocess(
112
112
  n_jobs: int | None = None,
113
113
  offset: int = 0,
114
114
  copy_data: bool | None = None,
115
+ parallel_kwargs: dict | None = None,
115
116
  ):
116
117
  """Apply preprocessors to a concat dataset.
117
118
 
118
119
  Parameters
119
120
  ----------
120
121
  concat_ds : BaseConcatDataset
121
- A concat of ``BaseDataset`` or ``WindowsDataset`` to be preprocessed.
122
+ A concat of ``RecordDataset`` to be preprocessed.
122
123
  preprocessors : list of Preprocessor
123
124
  Preprocessor objects to apply to each dataset.
124
125
  save_dir : str | None
@@ -135,6 +136,10 @@ def preprocess(
135
136
  and saving very large datasets in chunks to preserve original positions.
136
137
  copy_data : bool | None
137
138
  Whether the data passed to parallel jobs should be copied or passed by reference.
139
+ parallel_kwargs : dict | None
140
+ Additional keyword arguments forwarded to ``joblib.Parallel``.
141
+ Defaults to None (equivalent to ``{}``).
142
+ See https://joblib.readthedocs.io/en/stable/generated/joblib.Parallel.html for details.
138
143
 
139
144
  Returns
140
145
  -------
@@ -153,8 +158,12 @@ def preprocess(
153
158
 
154
159
  parallel_processing = (n_jobs is not None) and (n_jobs != 1)
155
160
 
156
- job_prefer = "threads" if platform.system() == "Windows" else None
157
- list_of_ds = Parallel(n_jobs=n_jobs, prefer=job_prefer)(
161
+ parallel_params = {} if parallel_kwargs is None else dict(parallel_kwargs)
162
+ parallel_params.setdefault(
163
+ "prefer", "threads" if platform.system() == "Windows" else None
164
+ )
165
+
166
+ list_of_ds = Parallel(n_jobs=n_jobs, **parallel_params)(
158
167
  delayed(_preprocess)(
159
168
  ds,
160
169
  i + offset,
@@ -220,15 +229,15 @@ def _preprocess(
220
229
 
221
230
  Parameters
222
231
  ----------
223
- ds: BaseDataset | WindowsDataset
232
+ ds: RecordDataset
224
233
  Dataset object to preprocess.
225
234
  ds_index : int
226
- Index of the BaseDataset in its BaseConcatDataset. Ignored if save_dir
235
+ Index of the ``RecordDataset`` in its ``BaseConcatDataset``. Ignored if save_dir
227
236
  is None.
228
237
  preprocessors: list(Preprocessor)
229
238
  List of preprocessors to apply to the dataset.
230
239
  save_dir : str | None
231
- If provided, save the preprocessed BaseDataset in the
240
+ If provided, save the preprocessed RecordDataset in the
232
241
  specified directory.
233
242
  overwrite : bool
234
243
  If True, overwrite existing file with the same name.
@@ -254,8 +263,8 @@ def _preprocess(
254
263
  _preprocess_raw_or_epochs(ds.windows, preprocessors)
255
264
  else:
256
265
  raise ValueError(
257
- "Can only preprocess concatenation of BaseDataset or "
258
- "WindowsDataset, with either a `raw` or `windows` attribute."
266
+ "Can only preprocess concatenation of RecordDataset, "
267
+ "with either a `raw` or `windows` attribute."
259
268
  )
260
269
 
261
270
  # Store preprocessing keyword arguments in the dataset
@@ -288,11 +297,11 @@ def _get_preproc_kwargs(preprocessors):
288
297
 
289
298
 
290
299
  def _set_preproc_kwargs(ds, preprocessors):
291
- """Record preprocessing keyword arguments in BaseDataset or WindowsDataset.
300
+ """Record preprocessing keyword arguments in RecordDataset.
292
301
 
293
302
  Parameters
294
303
  ----------
295
- ds : BaseDataset | WindowsDataset
304
+ ds : RecordDataset
296
305
  Dataset in which to record preprocessing keyword arguments.
297
306
  preprocessors : list
298
307
  List of preprocessors.
@@ -300,12 +309,12 @@ def _set_preproc_kwargs(ds, preprocessors):
300
309
  preproc_kwargs = _get_preproc_kwargs(preprocessors)
301
310
  if isinstance(ds, WindowsDataset):
302
311
  kind = "window"
303
- if isinstance(ds, EEGWindowsDataset):
312
+ elif isinstance(ds, EEGWindowsDataset):
304
313
  kind = "raw"
305
- elif isinstance(ds, BaseDataset):
314
+ elif isinstance(ds, RawDataset):
306
315
  kind = "raw"
307
316
  else:
308
- raise TypeError(f"ds must be a BaseDataset or a WindowsDataset, got {type(ds)}")
317
+ raise TypeError(f"ds must be a RecordDataset, got {type(ds)}")
309
318
  setattr(ds, kind + "_preproc_kwargs", preproc_kwargs)
310
319
 
311
320
 
@@ -25,7 +25,12 @@ import pandas as pd
25
25
  from joblib import Parallel, delayed
26
26
  from numpy.typing import ArrayLike
27
27
 
28
- from ..datasets.base import BaseConcatDataset, EEGWindowsDataset, WindowsDataset
28
+ from ..datasets.base import (
29
+ BaseConcatDataset,
30
+ EEGWindowsDataset,
31
+ RawDataset,
32
+ WindowsDataset,
33
+ )
29
34
 
30
35
 
31
36
  class _LazyDataFrame:
@@ -189,7 +194,7 @@ def _get_use_mne_epochs(use_mne_epochs, reject, picks, flat, drop_bad_windows):
189
194
 
190
195
  # XXX it's called concat_ds...
191
196
  def create_windows_from_events(
192
- concat_ds: BaseConcatDataset,
197
+ concat_ds: BaseConcatDataset[RawDataset],
193
198
  trial_start_offset_samples: int = 0,
194
199
  trial_stop_offset_samples: int = 0,
195
200
  window_size_samples: int | None = None,
@@ -206,7 +211,7 @@ def create_windows_from_events(
206
211
  use_mne_epochs: bool | None = None,
207
212
  n_jobs: int = 1,
208
213
  verbose: bool | str | int | None = "error",
209
- ):
214
+ ) -> BaseConcatDataset[WindowsDataset | EEGWindowsDataset]:
210
215
  """Create windows based on events in mne.Raw.
211
216
 
212
217
  This function extracts windows of size window_size_samples in the interval
@@ -228,7 +233,7 @@ def create_windows_from_events(
228
233
 
229
234
  Parameters
230
235
  ----------
231
- concat_ds: BaseConcatDataset
236
+ concat_ds: BaseConcatDataset[RawDataset]
232
237
  A concat of base datasets each holding raw and description.
233
238
  trial_start_offset_samples: int
234
239
  Start offset from original trial onsets, in samples. Defaults to zero.
@@ -268,7 +273,7 @@ def create_windows_from_events(
268
273
  rejection based on flatness is done. See mne.Epochs.
269
274
  on_missing: str
270
275
  What to do if one or several event ids are not found in the recording.
271
- Valid keys are ‘error | ‘warning | ‘ignore’. See mne.Epochs.
276
+ Valid keys are ‘error' | ‘warning' | ‘ignore'. See mne.Epochs.
272
277
  accepted_bads_ratio: float, optional
273
278
  Acceptable proportion of trials with inconsistent length in a raw. If
274
279
  the number of trials whose length is exceeded by the window size is
@@ -286,7 +291,7 @@ def create_windows_from_events(
286
291
 
287
292
  Returns
288
293
  -------
289
- windows_datasets: BaseConcatDataset
294
+ windows_datasets: BaseConcatDataset[WindowsDataset | EEGWindowsDataset]
290
295
  Concatenated datasets of WindowsDataset containing the extracted windows.
291
296
  """
292
297
  _check_windowing_arguments(
@@ -341,7 +346,7 @@ def create_windows_from_events(
341
346
 
342
347
 
343
348
  def create_fixed_length_windows(
344
- concat_ds: BaseConcatDataset,
349
+ concat_ds: BaseConcatDataset[RawDataset],
345
350
  start_offset_samples: int = 0,
346
351
  stop_offset_samples: int | None = None,
347
352
  window_size_samples: int | None = None,
@@ -358,12 +363,12 @@ def create_fixed_length_windows(
358
363
  on_missing: str = "error",
359
364
  n_jobs: int = 1,
360
365
  verbose: bool | str | int | None = "error",
361
- ):
366
+ ) -> BaseConcatDataset[EEGWindowsDataset]:
362
367
  """Windower that creates sliding windows.
363
368
 
364
369
  Parameters
365
370
  ----------
366
- concat_ds: ConcatDataset
371
+ concat_ds: ConcatDataset[RawDataset]
367
372
  A concat of base datasets each holding raw and description.
368
373
  start_offset_samples: int
369
374
  Start offset from beginning of recording in samples.
@@ -398,7 +403,7 @@ def create_fixed_length_windows(
398
403
  by using the _LazyDataFrame (experimental).
399
404
  on_missing: str
400
405
  What to do if one or several event ids are not found in the recording.
401
- Valid keys are ‘error | ‘warning | ‘ignore’. See mne.Epochs.
406
+ Valid keys are ‘error' | ‘warning' | ‘ignore'. See mne.Epochs.
402
407
  n_jobs: int
403
408
  Number of jobs to use to parallelize the windowing.
404
409
  verbose: bool | str | int | None
@@ -406,7 +411,7 @@ def create_fixed_length_windows(
406
411
 
407
412
  Returns
408
413
  -------
409
- windows_datasets: BaseConcatDataset
414
+ windows_datasets: BaseConcatDataset[EEGWindowsDataset]
410
415
  Concatenated datasets of WindowsDataset containing the extracted windows.
411
416
  """
412
417
  stop_offset_samples, drop_last_window = (
@@ -473,11 +478,11 @@ def _create_windows_from_events(
473
478
  verbose="error",
474
479
  use_mne_epochs=False,
475
480
  ):
476
- """Create WindowsDataset from BaseDataset based on events.
481
+ """Create WindowsDataset from RawDataset based on events.
477
482
 
478
483
  Parameters
479
484
  ----------
480
- ds : BaseDataset
485
+ ds : RawDataset
481
486
  Dataset containing continuous data and description.
482
487
  infer_mapping : bool
483
488
  If True, extract all events from all datasets and map them to
@@ -648,11 +653,11 @@ def _create_fixed_length_windows(
648
653
  on_missing="error",
649
654
  verbose="error",
650
655
  ):
651
- """Create WindowsDataset from BaseDataset with sliding windows.
656
+ """Create WindowsDataset from RawDataset with sliding windows.
652
657
 
653
658
  Parameters
654
659
  ----------
655
- ds : BaseDataset
660
+ ds : RawDataset
656
661
  Dataset containing continuous data and description.
657
662
 
658
663
  See `create_fixed_length_windows` for description of other parameters.
@@ -750,7 +755,7 @@ def _create_fixed_length_windows(
750
755
 
751
756
 
752
757
  def create_windows_from_target_channels(
753
- concat_ds,
758
+ concat_ds: BaseConcatDataset[RawDataset],
754
759
  window_size_samples=None,
755
760
  preload=False,
756
761
  picks=None,
@@ -759,7 +764,7 @@ def create_windows_from_target_channels(
759
764
  n_jobs=1,
760
765
  last_target_only=True,
761
766
  verbose="error",
762
- ):
767
+ ) -> BaseConcatDataset[EEGWindowsDataset]:
763
768
  list_of_windows_ds = Parallel(n_jobs=n_jobs)(
764
769
  delayed(_create_windows_from_target_channels)(
765
770
  ds,
@@ -788,11 +793,11 @@ def _create_windows_from_target_channels(
788
793
  on_missing="error",
789
794
  verbose="error",
790
795
  ):
791
- """Create WindowsDataset from BaseDataset using targets `misc` channels from mne.Raw.
796
+ """Create WindowsDataset from RawDataset using targets `misc` channels from mne.Raw.
792
797
 
793
798
  Parameters
794
799
  ----------
795
- ds : BaseDataset
800
+ ds : RawDataset
796
801
  Dataset containing continuous data and description.
797
802
 
798
803
  See `create_fixed_length_windows` for description of other parameters.
@@ -122,14 +122,14 @@ class DistributedRecordingSampler(DistributedSampler):
122
122
  DataFrame with at least one of {subject, session, run} columns for each
123
123
  window in the BaseConcatDataset to sample examples from. Normally
124
124
  obtained with `BaseConcatDataset.get_metadata()`. For instance,
125
- `metadata.head()` might look like this:
126
-
127
- i_window_in_trial i_start_in_trial i_stop_in_trial target subject session run
128
- 0 0 0 500 -1 4 session_T run_0
129
- 1 1 500 1000 -1 4 session_T run_0
130
- 2 2 1000 1500 -1 4 session_T run_0
131
- 3 3 1500 2000 -1 4 session_T run_0
132
- 4 4 2000 2500 -1 4 session_T run_0
125
+ `metadata.head()` might look like this::
126
+
127
+ i_window_in_trial i_start_in_trial i_stop_in_trial target subject session run
128
+ 0 0 0 500 -1 4 session_T run_0
129
+ 1 1 500 1000 -1 4 session_T run_0
130
+ 2 2 1000 1500 -1 4 session_T run_0
131
+ 3 3 1500 2000 -1 4 session_T run_0
132
+ 4 4 2000 2500 -1 4 session_T run_0
133
133
 
134
134
  random_state : np.RandomState | int | None
135
135
  Random state.
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.3.0.dev173691341"
1
+ __version__ = "1.3.0.dev173767962"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.3.0.dev173691341
3
+ Version: 1.3.0.dev173767962
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -40,6 +40,8 @@ Requires-Dist: linear_attention_transformer
40
40
  Requires-Dist: docstring_inheritance
41
41
  Provides-Extra: moabb
42
42
  Requires-Dist: moabb>=1.2.0; extra == "moabb"
43
+ Provides-Extra: hug
44
+ Requires-Dist: huggingface_hub[torch]>=0.20.0; extra == "hug"
43
45
  Provides-Extra: tests
44
46
  Requires-Dist: pytest; extra == "tests"
45
47
  Requires-Dist: pytest-cov; extra == "tests"
@@ -65,7 +67,7 @@ Requires-Dist: pre-commit; extra == "docs"
65
67
  Requires-Dist: openneuro-py; extra == "docs"
66
68
  Requires-Dist: plotly; extra == "docs"
67
69
  Provides-Extra: all
68
- Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
70
+ Requires-Dist: braindecode[docs,hug,moabb,tests]; extra == "all"
69
71
  Dynamic: license-file
70
72
 
71
73
  .. image:: https://badges.gitter.im/braindecodechat/community.svg