braindecode 1.2.0.dev182094932__py3-none-any.whl → 1.3.0.dev168011974__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/augmentation/functional.py +154 -54
- braindecode/augmentation/transforms.py +2 -2
- braindecode/datasets/experimental.py +218 -0
- braindecode/datasets/sleep_physio_challe_18.py +2 -1
- braindecode/datautil/serialization.py +11 -6
- braindecode/models/__init__.py +6 -8
- braindecode/models/atcnet.py +156 -16
- braindecode/models/attentionbasenet.py +151 -26
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
- braindecode/models/biot.py +1 -1
- braindecode/models/ctnet.py +1 -1
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +118 -5
- braindecode/models/eegconformer.py +114 -15
- braindecode/models/eeginception_erp.py +76 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegnet.py +27 -190
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +1 -1
- braindecode/models/sccnet.py +81 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/summary.csv +39 -41
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +103 -9
- braindecode/models/util.py +5 -5
- braindecode/preprocessing/preprocess.py +31 -28
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/METADATA +7 -2
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/RECORD +38 -38
- braindecode/models/eegresnet.py +0 -362
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/top_level.txt +0 -0
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,39 @@
|
|
|
1
|
-
Model,
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
41
|
-
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
1
|
+
Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Brain Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Brain Model"
|
|
20
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Brain Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Brain Model"
|
|
26
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
|
+
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
29
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
30
|
+
AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
31
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
32
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
33
|
+
TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
34
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
35
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
36
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
37
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
braindecode/models/tidnet.py
CHANGED
|
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
|
|
|
13
13
|
class TIDNet(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
|
|
17
19
|
:align: center
|
|
18
20
|
:alt: TIDNet Architecture
|
|
@@ -7,19 +7,21 @@ from __future__ import annotations
|
|
|
7
7
|
import torch
|
|
8
8
|
import torch.nn as nn
|
|
9
9
|
from einops.layers.torch import Rearrange
|
|
10
|
-
from mne.utils import warn
|
|
10
|
+
from mne.utils import deprecated, warn
|
|
11
11
|
|
|
12
12
|
from braindecode.models.base import EEGModuleMixin
|
|
13
13
|
|
|
14
14
|
|
|
15
|
-
class
|
|
15
|
+
class TSception(EEGModuleMixin, nn.Module):
|
|
16
16
|
"""TSception model from Ding et al. (2020) from [ding2020]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
TSception: A deep learning framework for emotion detection using EEG.
|
|
19
21
|
|
|
20
22
|
.. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
|
|
21
23
|
:align: center
|
|
22
|
-
:alt:
|
|
24
|
+
:alt: TSception Architecture
|
|
23
25
|
|
|
24
26
|
The model consists of temporal and spatial convolutional layers
|
|
25
27
|
(Tception and Sception) designed to learn temporal and spatial features
|
|
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
|
|
|
281
283
|
activation(),
|
|
282
284
|
nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
|
|
283
285
|
)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
@deprecated(
|
|
289
|
+
"`TSceptionV1` was renamed to `TSception` in v1.12; "
|
|
290
|
+
"this alias will be removed in v1.14."
|
|
291
|
+
)
|
|
292
|
+
class TSceptionV1(TSception):
|
|
293
|
+
"""Deprecated alias for TSception."""
|
|
294
|
+
|
|
295
|
+
pass
|
braindecode/models/usleep.py
CHANGED
|
@@ -15,22 +15,116 @@ class USleep(EEGModuleMixin, nn.Module):
|
|
|
15
15
|
"""
|
|
16
16
|
Sleep staging architecture from Perslev et al. (2021) [1]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
.. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
|
|
19
21
|
:align: center
|
|
20
22
|
:alt: USleep Architecture
|
|
21
23
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
+
Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
|
|
25
|
+
the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
|
|
26
|
+
classifier (right) which generates sleep stages at a chosen temporal resolution.
|
|
27
|
+
|
|
28
|
+
.. rubric:: Architectural Overview
|
|
29
|
+
|
|
30
|
+
U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
|
|
31
|
+
time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
|
|
32
|
+
per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
|
|
33
|
+
processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
|
|
34
|
+
hypnograms in seconds.
|
|
35
|
+
|
|
36
|
+
- (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
|
|
37
|
+
- (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
|
|
38
|
+
- (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
|
|
39
|
+
per-epoch probabilities. Integrates into the USleep class.
|
|
40
|
+
|
|
41
|
+
.. rubric:: Macro Components
|
|
42
|
+
|
|
43
|
+
- Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
|
|
44
|
+
|
|
45
|
+
- *Operations.*
|
|
46
|
+
- **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
|
|
47
|
+
- **ELU** (:class:`torch.nn.ELU`)
|
|
48
|
+
- **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
|
|
49
|
+
- **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
|
|
50
|
+
|
|
51
|
+
Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
|
|
52
|
+
(pre-pooling activation) to the matching decoder block.
|
|
53
|
+
*Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
|
|
54
|
+
context over minutes—foundational for robust cross-cohort staging.
|
|
55
|
+
|
|
56
|
+
The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
|
|
57
|
+
to the matching decoder block.
|
|
58
|
+
|
|
59
|
+
**Rationale.**
|
|
60
|
+
- Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
|
|
61
|
+
|
|
62
|
+
- Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
|
|
63
|
+
|
|
64
|
+
- *Operations.*
|
|
65
|
+
- **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
|
|
66
|
+
- **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
|
|
67
|
+
- ELU, :class:`torch.nn.ELU`
|
|
68
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`
|
|
69
|
+
- **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
|
|
70
|
+
- **Convolution**, :class:`torch.nn.Conv2d`
|
|
71
|
+
- ELU, :class:`torch.nn.ELU`
|
|
72
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`.
|
|
73
|
+
|
|
74
|
+
**Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
|
|
75
|
+
|
|
76
|
+
- **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
|
|
77
|
+
|
|
78
|
+
- *Operations.*
|
|
79
|
+
- **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
|
|
80
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d`
|
|
81
|
+
- ELU, :class:`torch.nn.ELU`
|
|
82
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
|
|
83
|
+
|
|
84
|
+
**Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
|
|
85
|
+
|
|
86
|
+
.. rubric:: Convolutional Details
|
|
87
|
+
|
|
88
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
89
|
+
All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
|
|
90
|
+
(reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
|
|
91
|
+
The decoder restores sample-level resolution before epoch aggregation.
|
|
92
|
+
|
|
93
|
+
- **Spatial (how channels are processed).**
|
|
94
|
+
Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
|
|
95
|
+
is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
|
|
96
|
+
supporting robustness to channel placement and hardware differences.
|
|
97
|
+
|
|
98
|
+
- **Spectral (how frequency content is captured).**
|
|
99
|
+
No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
|
|
100
|
+
filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
|
|
101
|
+
retains fine temporal detail for the segment classifier.
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
.. rubric:: Attention / Sequential Modules
|
|
105
|
+
|
|
106
|
+
U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
|
|
107
|
+
segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
.. rubric:: Additional Mechanisms
|
|
111
|
+
|
|
112
|
+
- **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
|
|
113
|
+
switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
|
|
114
|
+
**two-layer** pointwise head—improving capacity and resilience across datasets.
|
|
115
|
+
- **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
|
|
116
|
+
staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
|
|
117
|
+
limiting long-range context.
|
|
118
|
+
- **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
|
|
119
|
+
and memory (as described in the paper's topology table).
|
|
120
|
+
|
|
24
121
|
|
|
25
|
-
|
|
26
|
-
- the temporal dimension shrinks (via maxpooling in the time-domain)
|
|
27
|
-
- the spatial dimension expands (via more conv1d filters in the time-domain)
|
|
122
|
+
.. rubric:: Usage and Configuration
|
|
28
123
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
124
|
+
- **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
|
|
125
|
+
length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
|
|
126
|
+
≥ 17.5 min chunks).
|
|
32
127
|
|
|
33
|
-
Both do so at exponential rates.
|
|
34
128
|
|
|
35
129
|
Parameters
|
|
36
130
|
----------
|
braindecode/models/util.py
CHANGED
|
@@ -22,6 +22,8 @@ def _init_models_dict():
|
|
|
22
22
|
issubclass(m[1], models.base.EEGModuleMixin)
|
|
23
23
|
and m[1] != models.base.EEGModuleMixin
|
|
24
24
|
):
|
|
25
|
+
if m[1].__name__ == "EEGNetv4":
|
|
26
|
+
continue
|
|
25
27
|
models_dict[m[0]] = m[1]
|
|
26
28
|
|
|
27
29
|
|
|
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
|
|
|
55
57
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
58
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
59
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("
|
|
59
|
-
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
-
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
+
("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
61
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
62
62
|
(
|
|
63
63
|
"SleepStagerBlanco2020",
|
|
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
|
|
|
66
66
|
),
|
|
67
67
|
("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
68
68
|
(
|
|
69
|
-
"
|
|
69
|
+
"AttnSleep",
|
|
70
70
|
["n_outputs", "n_times", "sfreq"],
|
|
71
71
|
dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
|
|
72
72
|
), # 1 channel
|
|
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
|
|
|
79
79
|
("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
80
80
|
("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
|
|
81
81
|
("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
|
|
82
|
-
("
|
|
82
|
+
("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
83
83
|
("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
84
84
|
("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
85
85
|
("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
@@ -55,15 +55,15 @@ class Preprocessor(object):
|
|
|
55
55
|
|
|
56
56
|
Parameters
|
|
57
57
|
----------
|
|
58
|
-
fn: str or callable
|
|
58
|
+
fn : str or callable
|
|
59
59
|
If str, the Raw/Epochs object must have a method with that name.
|
|
60
60
|
If callable, directly apply the callable to the object.
|
|
61
61
|
apply_on_array : bool
|
|
62
|
-
Ignored if
|
|
63
|
-
and Epochs
|
|
64
|
-
|
|
65
|
-
kwargs:
|
|
66
|
-
Keyword arguments
|
|
62
|
+
Ignored if ``fn`` is not a callable. If True, the ``apply_function`` of Raw
|
|
63
|
+
and Epochs will be used to run ``fn`` on the underlying arrays directly.
|
|
64
|
+
If False, ``fn`` must directly modify the Raw or Epochs object.
|
|
65
|
+
**kwargs : dict
|
|
66
|
+
Keyword arguments forwarded to the MNE function or callable.
|
|
67
67
|
"""
|
|
68
68
|
|
|
69
69
|
def __init__(self, fn: Callable | str, *, apply_on_array: bool = True, **kwargs):
|
|
@@ -112,39 +112,38 @@ def preprocess(
|
|
|
112
112
|
n_jobs: int | None = None,
|
|
113
113
|
offset: int = 0,
|
|
114
114
|
copy_data: bool | None = None,
|
|
115
|
+
parallel_kwargs: dict | None = None,
|
|
115
116
|
):
|
|
116
117
|
"""Apply preprocessors to a concat dataset.
|
|
117
118
|
|
|
118
119
|
Parameters
|
|
119
120
|
----------
|
|
120
|
-
concat_ds: BaseConcatDataset
|
|
121
|
-
A concat of BaseDataset or WindowsDataset
|
|
122
|
-
preprocessors: list
|
|
123
|
-
|
|
121
|
+
concat_ds : BaseConcatDataset
|
|
122
|
+
A concat of ``BaseDataset`` or ``WindowsDataset`` to be preprocessed.
|
|
123
|
+
preprocessors : list of Preprocessor
|
|
124
|
+
Preprocessor objects to apply to each dataset.
|
|
124
125
|
save_dir : str | None
|
|
125
|
-
If
|
|
126
|
-
|
|
127
|
-
`preload=False`.
|
|
126
|
+
If provided, save preprocessed data under this directory and reload
|
|
127
|
+
datasets in ``concat_ds`` with ``preload=False``.
|
|
128
128
|
overwrite : bool
|
|
129
|
-
When
|
|
130
|
-
subdirectories that will be written to under
|
|
131
|
-
the corresponding subdirectories already exist, a ``FileExistsError``
|
|
132
|
-
will be raised.
|
|
129
|
+
When ``save_dir`` is provided, controls whether to delete the old
|
|
130
|
+
subdirectories that will be written to under ``save_dir``. If False and
|
|
131
|
+
the corresponding subdirectories already exist, a ``FileExistsError`` is raised.
|
|
133
132
|
n_jobs : int | None
|
|
134
|
-
Number of jobs for parallel execution. See
|
|
135
|
-
a more detailed explanation.
|
|
133
|
+
Number of jobs for parallel execution. See ``joblib.Parallel`` for details.
|
|
136
134
|
offset : int
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
one dataset has to be processed and saved at a time to account for
|
|
140
|
-
its original position.
|
|
135
|
+
Integer added to the dataset id in the concat. Useful when processing
|
|
136
|
+
and saving very large datasets in chunks to preserve original positions.
|
|
141
137
|
copy_data : bool | None
|
|
142
|
-
Whether the data passed to
|
|
143
|
-
|
|
138
|
+
Whether the data passed to parallel jobs should be copied or passed by reference.
|
|
139
|
+
parallel_kwargs : dict | None
|
|
140
|
+
Additional keyword arguments forwarded to ``joblib.Parallel``.
|
|
141
|
+
Defaults to None (equivalent to ``{}``).
|
|
142
|
+
See https://joblib.readthedocs.io/en/stable/generated/joblib.Parallel.html for details.
|
|
144
143
|
|
|
145
144
|
Returns
|
|
146
145
|
-------
|
|
147
|
-
BaseConcatDataset
|
|
146
|
+
BaseConcatDataset
|
|
148
147
|
Preprocessed dataset.
|
|
149
148
|
"""
|
|
150
149
|
# In case of serialization, make sure directory is available before
|
|
@@ -159,8 +158,12 @@ def preprocess(
|
|
|
159
158
|
|
|
160
159
|
parallel_processing = (n_jobs is not None) and (n_jobs != 1)
|
|
161
160
|
|
|
162
|
-
|
|
163
|
-
|
|
161
|
+
parallel_params = {} if parallel_kwargs is None else dict(parallel_kwargs)
|
|
162
|
+
parallel_params.setdefault(
|
|
163
|
+
"prefer", "threads" if platform.system() == "Windows" else None
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
list_of_ds = Parallel(n_jobs=n_jobs, **parallel_params)(
|
|
164
167
|
delayed(_preprocess)(
|
|
165
168
|
ds,
|
|
166
169
|
i + offset,
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.
|
|
1
|
+
__version__ = "1.3.0.dev168011974"
|
{braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.3.0.dev168011974
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
@@ -17,7 +17,7 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
|
17
17
|
Classifier: Programming Language :: Python :: 3.10
|
|
18
18
|
Classifier: Programming Language :: Python :: 3.11
|
|
19
19
|
Classifier: Programming Language :: Python :: 3.12
|
|
20
|
-
Requires-Python:
|
|
20
|
+
Requires-Python: >=3.10
|
|
21
21
|
Description-Content-Type: text/x-rst
|
|
22
22
|
License-File: LICENSE.txt
|
|
23
23
|
License-File: NOTICE.txt
|
|
@@ -49,6 +49,10 @@ Requires-Dist: mypy; extra == "tests"
|
|
|
49
49
|
Provides-Extra: docs
|
|
50
50
|
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
51
51
|
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
52
|
+
Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
|
|
53
|
+
Requires-Dist: sphinx-autobuild; extra == "docs"
|
|
54
|
+
Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
|
|
55
|
+
Requires-Dist: sphinx_sitemap; extra == "docs"
|
|
52
56
|
Requires-Dist: pydata_sphinx_theme; extra == "docs"
|
|
53
57
|
Requires-Dist: numpydoc; extra == "docs"
|
|
54
58
|
Requires-Dist: memory_profiler; extra == "docs"
|
|
@@ -59,6 +63,7 @@ Requires-Dist: lightning; extra == "docs"
|
|
|
59
63
|
Requires-Dist: seaborn; extra == "docs"
|
|
60
64
|
Requires-Dist: pre-commit; extra == "docs"
|
|
61
65
|
Requires-Dist: openneuro-py; extra == "docs"
|
|
66
|
+
Requires-Dist: plotly; extra == "docs"
|
|
62
67
|
Provides-Extra: all
|
|
63
68
|
Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
|
|
64
69
|
Dynamic: license-file
|
{braindecode-1.2.0.dev182094932.dist-info → braindecode-1.3.0.dev168011974.dist-info}/RECORD
RENAMED
|
@@ -3,48 +3,49 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
|
|
|
3
3
|
braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=MKCFQxRUumHjlOBI7Lo7-rKPN9_uYwz4MQJg6eW3IMU,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
|
-
braindecode/augmentation/functional.py,sha256=
|
|
10
|
-
braindecode/augmentation/transforms.py,sha256=
|
|
9
|
+
braindecode/augmentation/functional.py,sha256=lPhGpZcVtgfQ3oV6p6IQLBCWM_Psa60TwxH3Wj1WyOQ,41133
|
|
10
|
+
braindecode/augmentation/transforms.py,sha256=Ur05yLdROm5pfKTsS2opCWI--X6JwWjP7YMa2KTTZTw,44243
|
|
11
11
|
braindecode/datasets/__init__.py,sha256=CTl8ucbG948ZJqntEBELb-Pn8GsZLfFZLgVcB-fhw4k,891
|
|
12
12
|
braindecode/datasets/base.py,sha256=ED8RQWusMyWf0T7b_HXwouR2Ax47qppEc506AlSzBt0,32155
|
|
13
13
|
braindecode/datasets/bbci.py,sha256=BC9o1thEyYBREAo930O7zZz3xZB-l4Odt5j8E_1huXI,19277
|
|
14
14
|
braindecode/datasets/bcicomp.py,sha256=ER_XmqxhpoO2FWELMesQXQ40OTe7BXoy7nYDSiZG9kE,7556
|
|
15
15
|
braindecode/datasets/bids.py,sha256=4asq1HyQHgJjwW7w-GMlvTVQhi-hR2HWLJ8Z__UrUS4,8846
|
|
16
|
+
braindecode/datasets/experimental.py,sha256=Z_uzMNA875-l878LAv7bWiWYJX3QAefmb5quBkcPp7M,8514
|
|
16
17
|
braindecode/datasets/mne.py,sha256=Dg6RZAAwd8TVGrvLOPF5B_JrbyGUWg52vWmn6fLMOQM,6135
|
|
17
18
|
braindecode/datasets/moabb.py,sha256=JmBcFV7QJT8GCgLNNKWgxJVnEVnO5wd9U_uiIqTIxDM,7091
|
|
18
19
|
braindecode/datasets/nmt.py,sha256=E4T8OYBEwWRSjh7VFzmyxaZbf5ufFVEBYYmQEd1ghUU,10430
|
|
19
|
-
braindecode/datasets/sleep_physio_challe_18.py,sha256=
|
|
20
|
+
braindecode/datasets/sleep_physio_challe_18.py,sha256=66A86_9VssszKrVXowb0oFyL3xbF1VRqQK5FtW33QlM,15427
|
|
20
21
|
braindecode/datasets/sleep_physionet.py,sha256=jieRx6u-MQ4jn_5Zox_pVV8WjBwXKLv9uq4GXRAZ_58,4087
|
|
21
22
|
braindecode/datasets/tuh.py,sha256=iG1hOtdevzKGEVpeuRFDBOnsW_rWa5zEmMFJfYR1hqg,22867
|
|
22
23
|
braindecode/datasets/xy.py,sha256=xT-nS_5jpuVKJ0SGqc7Ia0FVpqj86UfuzcYQdEGZdp0,2986
|
|
23
24
|
braindecode/datautil/__init__.py,sha256=GB9xOudUhJGDyG08PBrnotw6HnWoWIXAHfRNFO-pxSk,1797
|
|
24
|
-
braindecode/datautil/serialization.py,sha256=
|
|
25
|
+
braindecode/datautil/serialization.py,sha256=g_EVg3oTieqFRattw9OdwMaYjfjANVG-uCS3xVkuHjg,13293
|
|
25
26
|
braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,674
|
|
26
27
|
braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
|
|
27
28
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
28
29
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
29
|
-
braindecode/models/__init__.py,sha256=
|
|
30
|
-
braindecode/models/atcnet.py,sha256=
|
|
31
|
-
braindecode/models/attentionbasenet.py,sha256=
|
|
30
|
+
braindecode/models/__init__.py,sha256=v2Pn0H-rM_9xr1EEoKIFygmhbS9r52qh8XwFzXuhK70,2455
|
|
31
|
+
braindecode/models/atcnet.py,sha256=8wq13mTrn0ZAjfbO5E_yfQZo8vT4jYs1f9xA1S6UhI8,32212
|
|
32
|
+
braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
|
|
33
|
+
braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
|
|
32
34
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
33
|
-
braindecode/models/biot.py,sha256=
|
|
35
|
+
braindecode/models/biot.py,sha256=d2P1i_8k98SU3FkN_dKPXcCoFVmyQIIrBbI1-F3g-8E,17509
|
|
34
36
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
35
|
-
braindecode/models/ctnet.py,sha256
|
|
36
|
-
braindecode/models/deep4.py,sha256
|
|
37
|
-
braindecode/models/deepsleepnet.py,sha256=
|
|
38
|
-
braindecode/models/eegconformer.py,sha256=
|
|
39
|
-
braindecode/models/eeginception_erp.py,sha256=
|
|
40
|
-
braindecode/models/eeginception_mi.py,sha256=
|
|
37
|
+
braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
|
|
38
|
+
braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
|
|
39
|
+
braindecode/models/deepsleepnet.py,sha256=wGSAXW73Ga1-HFbn7kXiLeGsJceiqZyMLZnX2UZZXWw,15207
|
|
40
|
+
braindecode/models/eegconformer.py,sha256=rxMAmqErDVLq7nS77CnTtpcC3C2OR_EoZ8-jG-dKP9I,17433
|
|
41
|
+
braindecode/models/eeginception_erp.py,sha256=FYXoM-u4kOodMzGgvKDn7IwJwHl9Z0iiWx9bVHiO9EY,16324
|
|
42
|
+
braindecode/models/eeginception_mi.py,sha256=VoWtsaWj1xQ4FlrvCbnPvo8eosufYUmTrL4uvFtqKcg,12456
|
|
41
43
|
braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
|
|
42
44
|
braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
|
|
43
|
-
braindecode/models/eegnet.py,sha256=
|
|
44
|
-
braindecode/models/eegnex.py,sha256=
|
|
45
|
-
braindecode/models/
|
|
46
|
-
braindecode/models/
|
|
47
|
-
braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
|
|
45
|
+
braindecode/models/eegnet.py,sha256=i5HzBKTd82fTlKDfB42uc14HpDYxN29SGPfCa4ON5gk,13686
|
|
46
|
+
braindecode/models/eegnex.py,sha256=eahHolFl15LwNWeC5qjQqUGqURibQZIV425rI1p-dG8,13604
|
|
47
|
+
braindecode/models/eegsimpleconv.py,sha256=6V5ZQNWijmd3-2wv7lJB_HGBS3wHWWVrKoNIeWTXu-w,7300
|
|
48
|
+
braindecode/models/eegtcnet.py,sha256=Y53uJEX_hoB6eHCew9SIfzNxCYea8UhljDARJTk-Tq8,10837
|
|
48
49
|
braindecode/models/fbcnet.py,sha256=RBCLOaiUvivfsT2mq6FN0Kp1-rR3iB0ElzVpHxRl4oI,7486
|
|
49
50
|
braindecode/models/fblightconvnet.py,sha256=d5MwhawhkjilAMo0ckaYMxJhdGMEuorWgHX-TBgwv6s,11041
|
|
50
51
|
braindecode/models/fbmsnet.py,sha256=9bZn2_n1dTrI1Qh3Sz9zMZnH_a-Yq-13UHYSmF6r_UE,11659
|
|
@@ -52,21 +53,20 @@ braindecode/models/hybrid.py,sha256=hA8jwD3_3LL71BxUjRM1dkhqlHU9E9hjuDokh-jBq-4,
|
|
|
52
53
|
braindecode/models/ifnet.py,sha256=Y2bwfko3SDjD74AzgUEzgMhKJFGCCw_Q_Noh5VONEjQ,15137
|
|
53
54
|
braindecode/models/labram.py,sha256=vcrpwiu4F-djtIPscFbtP2Y0jTosyR_cXnOMQQRGPLw,41798
|
|
54
55
|
braindecode/models/msvtnet.py,sha256=hxeCLkHS6w2w89YlLfEPCyQ4XQQpt45bEYPiQJ9SFzY,12642
|
|
55
|
-
braindecode/models/sccnet.py,sha256=
|
|
56
|
-
braindecode/models/shallow_fbcsp.py,sha256
|
|
56
|
+
braindecode/models/sccnet.py,sha256=C7vdwIR5cI6wJCl5f8TnGQG6qinq21y4HG6l-D5AwbY,11971
|
|
57
|
+
braindecode/models/shallow_fbcsp.py,sha256=7U07DJBrm2JHV8v5ja-xuE5-IH5tfmryhJtrfO1n4jk,7531
|
|
57
58
|
braindecode/models/signal_jepa.py,sha256=UeSkeAM3Qmx8bbAqHCj5nP-PtZM00_5SGA8ibo9mptc,37079
|
|
58
59
|
braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-LqL7s,11907
|
|
59
|
-
braindecode/models/sleep_stager_blanco_2020.py,sha256=
|
|
60
|
-
braindecode/models/sleep_stager_chambon_2018.py,sha256=
|
|
61
|
-
braindecode/models/
|
|
62
|
-
braindecode/models/
|
|
63
|
-
braindecode/models/summary.csv,sha256=l7HYYwv3Z69JRPVIhVq-wr_nC1J1KIz6IGw_zeRSk58,6110
|
|
60
|
+
braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
|
|
61
|
+
braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
|
|
62
|
+
braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
|
|
63
|
+
braindecode/models/summary.csv,sha256=z5aXQbPyxS8-Is2dF0DSN_8g7LjCPbGZHvjxEtfQMUw,6747
|
|
64
64
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
65
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
|
-
braindecode/models/tidnet.py,sha256=
|
|
67
|
-
braindecode/models/tsinception.py,sha256=
|
|
68
|
-
braindecode/models/usleep.py,sha256=
|
|
69
|
-
braindecode/models/util.py,sha256=
|
|
66
|
+
braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
|
|
67
|
+
braindecode/models/tsinception.py,sha256=nnQxzpqRy9FPuN5xgh9fNQ386VbreQ_nZBSFNkSfal0,10356
|
|
68
|
+
braindecode/models/usleep.py,sha256=5uztUHX70T_LurqRob_XmVnKkZDwt74x2Iz181M7s54,17233
|
|
69
|
+
braindecode/models/util.py,sha256=VZGVPhUSsoP47pta0_UhC2-g5n5-EFZAW93ZVccrEHU,5232
|
|
70
70
|
braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
|
|
71
71
|
braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
|
|
72
72
|
braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
|
|
@@ -81,7 +81,7 @@ braindecode/modules/util.py,sha256=tVXEhzeTsYrr_wZ5CiXaq3VYGtC5TmGEEW2hMYjTQAE,2
|
|
|
81
81
|
braindecode/modules/wrapper.py,sha256=Z-aZ4wxA0psYefMOfj03r7D1XjD4az6GpZpaQoDPJv0,2421
|
|
82
82
|
braindecode/preprocessing/__init__.py,sha256=V0iwdzb6DzpUaCabA7I6HmOqXK_XvTbpP5HaEduSJ4s,776
|
|
83
83
|
braindecode/preprocessing/mne_preprocess.py,sha256=_Jczaitqbx16utsUOhnonEcoExf6jPsWNwVOVvoKFfU,2210
|
|
84
|
-
braindecode/preprocessing/preprocess.py,sha256
|
|
84
|
+
braindecode/preprocessing/preprocess.py,sha256=da_-Tn1NLPunsZC2-uzzgCYgdm_Xj-CIJjwf_CTMuFs,17899
|
|
85
85
|
braindecode/preprocessing/windowers.py,sha256=6w6mOnroGWnV7tS23UagZZepswaxaL00S45Jr5AViRE,36551
|
|
86
86
|
braindecode/samplers/__init__.py,sha256=TLuO6gXv2WioJdX671MI_CHVSsOfbjnly1Xv9K3_WdA,452
|
|
87
87
|
braindecode/samplers/base.py,sha256=z_Txp9cEwUmIBL0J6FPJbx1cMSsU9l9mxymRCGqNss0,15111
|
|
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
|
|
|
93
93
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
94
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
95
|
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
-
braindecode-1.
|
|
97
|
-
braindecode-1.
|
|
98
|
-
braindecode-1.
|
|
99
|
-
braindecode-1.
|
|
100
|
-
braindecode-1.
|
|
101
|
-
braindecode-1.
|
|
96
|
+
braindecode-1.3.0.dev168011974.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
97
|
+
braindecode-1.3.0.dev168011974.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
98
|
+
braindecode-1.3.0.dev168011974.dist-info/METADATA,sha256=BYYnxgWBWnBrKFXNdHVJvB97sKbkz42bGXlOTkiCgII,7129
|
|
99
|
+
braindecode-1.3.0.dev168011974.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
100
|
+
braindecode-1.3.0.dev168011974.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
101
|
+
braindecode-1.3.0.dev168011974.dist-info/RECORD,,
|