braindecode 1.2.0.dev176358851__py3-none-any.whl → 1.2.0.dev182051616__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/models/__init__.py +1 -2
- braindecode/models/atcnet.py +152 -12
- braindecode/models/attentionbasenet.py +151 -26
- braindecode/models/eegconformer.py +25 -22
- braindecode/models/eegnet.py +9 -10
- braindecode/models/eegnex.py +115 -6
- braindecode/models/summary.csv +40 -41
- braindecode/models/util.py +0 -1
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/METADATA +5 -1
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/RECORD +15 -15
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/top_level.txt +0 -0
braindecode/models/__init__.py
CHANGED
|
@@ -15,7 +15,7 @@ from .eeginception_erp import EEGInceptionERP
|
|
|
15
15
|
from .eeginception_mi import EEGInceptionMI
|
|
16
16
|
from .eegitnet import EEGITNet
|
|
17
17
|
from .eegminer import EEGMiner
|
|
18
|
-
from .eegnet import
|
|
18
|
+
from .eegnet import EEGNetv4
|
|
19
19
|
from .eegnex import EEGNeX
|
|
20
20
|
from .eegresnet import EEGResNet
|
|
21
21
|
from .eegsimpleconv import EEGSimpleConv
|
|
@@ -65,7 +65,6 @@ __all__ = [
|
|
|
65
65
|
"EEGInceptionMI",
|
|
66
66
|
"EEGITNet",
|
|
67
67
|
"EEGMiner",
|
|
68
|
-
"EEGNetv1",
|
|
69
68
|
"EEGNetv4",
|
|
70
69
|
"EEGNeX",
|
|
71
70
|
"EEGResNet",
|
braindecode/models/atcnet.py
CHANGED
|
@@ -13,13 +13,154 @@ from braindecode.modules import CausalConv1d, Ensure4d, MaxNormLinear
|
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
class ATCNet(EEGModuleMixin, nn.Module):
|
|
16
|
-
"""ATCNet
|
|
16
|
+
"""ATCNet from Altaheri et al. (2022) [1]_.
|
|
17
17
|
|
|
18
|
-
|
|
18
|
+
:bdg-success:`Convolution` :bdg-info:`Small Attention`
|
|
19
19
|
|
|
20
20
|
.. figure:: https://user-images.githubusercontent.com/25565236/185449791-e8539453-d4fa-41e1-865a-2cf7e91f60ef.png
|
|
21
|
-
|
|
22
|
-
|
|
21
|
+
:align: center
|
|
22
|
+
:alt: ATCNet Architecture
|
|
23
|
+
:width: 650px
|
|
24
|
+
|
|
25
|
+
.. rubric:: Architectural Overview
|
|
26
|
+
|
|
27
|
+
ATCNet is a *convolution-first* architecture augmented with a *lightweight attention–TCN*
|
|
28
|
+
sequence module. The end-to-end flow is:
|
|
29
|
+
|
|
30
|
+
- (i) :class:`_ConvBlock` learns temporal filter-banks and spatial projections (EEGNet-style),
|
|
31
|
+
downsampling time to a compact feature map;
|
|
32
|
+
|
|
33
|
+
- (ii) Sliding Windows carve overlapping temporal windows from this map;
|
|
34
|
+
|
|
35
|
+
- (iii) for each window, :class:`_AttentionBlock` applies small multi-head self-attention
|
|
36
|
+
over time, followed by a :class:`_TCNResidualBlock` stack (causal, dilated);
|
|
37
|
+
|
|
38
|
+
- (iv) window-level features are aggregated (mean of window logits or concatenation)
|
|
39
|
+
and mapped via a max-norm–constrained linear layer.
|
|
40
|
+
|
|
41
|
+
Relative to ViT, ATCNet replaces linear patch projection with learned *temporal–spatial*
|
|
42
|
+
convolutions; it processes *parallel* window encoders (attention→TCN) instead of a deep
|
|
43
|
+
stack; and swaps the MLP head for a TCN suited to 1-D EEG sequences.
|
|
44
|
+
|
|
45
|
+
.. rubric:: Macro Components
|
|
46
|
+
|
|
47
|
+
- :class:`_ConvBlock` **(Shallow conv stem → feature map)**
|
|
48
|
+
|
|
49
|
+
- *Operations.*
|
|
50
|
+
- **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_t, 1)`` builds a
|
|
51
|
+
FIR-like filter bank (``F1`` maps).
|
|
52
|
+
- **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=F1``) with kernel
|
|
53
|
+
``(1, n_chans)`` learns per-filter spatial projections (akin to EEGNet’s CSP-like step).
|
|
54
|
+
- **BN → ELU → AvgPool → Dropout** to stabilize and condense activations.
|
|
55
|
+
- **Refining temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(L_r, 1)`` +
|
|
56
|
+
**BN → ELU → AvgPool → Dropout**.
|
|
57
|
+
|
|
58
|
+
The output shape is ``(B, F2, T_c, 1)`` with ``F2 = F1·D`` and ``T_c = T/(P1·P2)``.
|
|
59
|
+
Temporal kernels behave as FIR filters; the depthwise-spatial conv yields frequency-specific
|
|
60
|
+
topographies. Pooling acts as a local integrator, reducing variance and imposing a
|
|
61
|
+
useful inductive bias on short EEG windows.
|
|
62
|
+
|
|
63
|
+
- **Sliding-Window Sequencer**
|
|
64
|
+
|
|
65
|
+
From the condensed time axis (length ``T_c``), ATCNet forms ``n`` overlapping windows
|
|
66
|
+
of width ``T_w = T_c - n + 1`` (one start per index). Each window produces a sequence
|
|
67
|
+
``(B, F2, T_w)`` forwarded to its own attention–TCN branch. This creates *parallel*
|
|
68
|
+
encoders over shifted contexts and is key to robustness on nonstationary EEG.
|
|
69
|
+
|
|
70
|
+
- :class:`_AttentionBlock` **(small MHA on temporal positions)**
|
|
71
|
+
|
|
72
|
+
- *Operations.*
|
|
73
|
+
- Rearrange to ``(B, T_w, F2)``,
|
|
74
|
+
- Normalization :class:`torch.nn.LayerNorm`
|
|
75
|
+
- Custom MultiHeadAttention :class:`_MHA` (``num_heads=H``, per-head dim ``d_h``) + residual add,
|
|
76
|
+
- Dropout :class:`torch.nn.Dropout`
|
|
77
|
+
- Rearrange back to ``(B, F2, T_w)``.
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
**Note**: Attention is *local to a window* and purely temporal.
|
|
81
|
+
|
|
82
|
+
*Role.* Re-weights evidence across the window, letting the model emphasize informative
|
|
83
|
+
segments (onsets, bursts) before causal convolutions aggregate history.
|
|
84
|
+
|
|
85
|
+
- :class:`_TCNResidualBlock` **(causal dilated temporal CNN)**
|
|
86
|
+
|
|
87
|
+
- *Operations.*
|
|
88
|
+
- Two :class:`braindecode.modules.CausalConv1d` layers per block with dilation ``1, 2, 4, …``
|
|
89
|
+
- Across blocks of `torch.nn.ELU` + `torch.nn.BatchNorm1d` + `torch.nn.Dropout`) +
|
|
90
|
+
a residual (identity or 1x1 mapping).
|
|
91
|
+
- The final feature used per window is the *last* causal step ``[..., -1]`` (forecast-style).
|
|
92
|
+
|
|
93
|
+
*Role.* Efficient long-range temporal integration with stable gradients; the dilated
|
|
94
|
+
receptive field complements attention’s soft selection.
|
|
95
|
+
|
|
96
|
+
- **Aggregation & Classifier**
|
|
97
|
+
|
|
98
|
+
- *Operations.*
|
|
99
|
+
- Either (a) map each window feature ``(B, F2)`` to logits via :class:`braindecode.modules.MaxNormLinear`
|
|
100
|
+
and **average** across windows (default, matching official code), or
|
|
101
|
+
- (b) **concatenate** all window features ``(B, n·F2)`` and apply a single :class:`MaxNormLinear`.
|
|
102
|
+
The max-norm constraint regularizes the readout.
|
|
103
|
+
|
|
104
|
+
.. rubric:: Convolutional Details
|
|
105
|
+
|
|
106
|
+
- **Temporal.** Temporal structure is learned in three places:
|
|
107
|
+
- (1) the stem’s wide ``(L_t, 1)`` conv (learned filter bank),
|
|
108
|
+
- (2) the refining ``(L_r, 1)`` conv after pooling (short-term dynamics), and
|
|
109
|
+
- (3) the TCN’s causal 1-D convolutions with exponentially increasing dilation
|
|
110
|
+
(long-range dependencies). The minimum sequence length required by the TCN stack is
|
|
111
|
+
``(K_t - 1)·2^{L-1} + 1``; the implementation *auto-scales* kernels/pools/windows
|
|
112
|
+
when inputs are shorter to preserve feasibility.
|
|
113
|
+
|
|
114
|
+
- **Spatial.** A depthwise spatial conv spans the **full montage** (kernel ``(1, n_chans)``),
|
|
115
|
+
producing *per-temporal-filter* spatial projections (no cross-filter mixing at this step).
|
|
116
|
+
This mirrors EEGNet’s interpretability: each temporal filter has its own spatial pattern.
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
.. rubric:: Attention / Sequential Modules
|
|
120
|
+
|
|
121
|
+
- **Type.** Multi-head self-attention with ``H`` heads and per-head dim ``d_h`` implemented
|
|
122
|
+
in :class:`_MHA`, allowing ``embed_dim = H·d_h`` independent of input and output dims.
|
|
123
|
+
- **Shapes.** ``(B, F2, T_w) → (B, T_w, F2) → (B, F2, T_w)``. Attention operates along
|
|
124
|
+
the **temporal** axis within a window; channels/features stay in the embedding dim ``F2``.
|
|
125
|
+
- **Role.** Highlights salient temporal positions prior to causal convolution; small attention
|
|
126
|
+
keeps compute modest while improving context modeling over pooled features.
|
|
127
|
+
|
|
128
|
+
.. rubric:: Additional Mechanisms
|
|
129
|
+
|
|
130
|
+
- **Parallel encoders over shifted windows.** Improves montage/phase robustness by
|
|
131
|
+
ensembling nearby contexts rather than committing to a single segmentation.
|
|
132
|
+
- **Max-norm classifier.** Enforces weight norm constraints at the readout, a common
|
|
133
|
+
stabilization trick in EEG decoding.
|
|
134
|
+
- **ViT vs. ATCNet (design choices).** Convolutional *nonlinear* projection rather than
|
|
135
|
+
linear patchification; attention followed by **TCN** (not MLP); *parallel* window
|
|
136
|
+
encoders rather than stacked encoders.
|
|
137
|
+
|
|
138
|
+
.. rubric:: Usage and Configuration
|
|
139
|
+
|
|
140
|
+
- ``conv_block_n_filters (F1)``, ``conv_block_depth_mult (D)`` → capacity of the stem
|
|
141
|
+
(with ``F2 = F1·D`` feeding attention/TCN), dimensions aligned to ``F2``, like `EEGNetv4`.
|
|
142
|
+
- Pool sizes ``P1,P2`` trade temporal resolution for stability/compute; they set
|
|
143
|
+
``T_c = T/(P1·P2)`` and thus window width ``T_w``.
|
|
144
|
+
- ``n_windows`` controls the ensemble over shifts (compute ∝ windows).
|
|
145
|
+
- ``att_num_heads``, ``att_head_dim`` set attention capacity; keep ``H·d_h ≈ F2``.
|
|
146
|
+
- ``tcn_depth``, ``tcn_kernel_size`` govern receptive field; larger values demand
|
|
147
|
+
longer inputs (see minimum length above). The implementation warns and *rescales*
|
|
148
|
+
kernels/pools/windows if inputs are too short.
|
|
149
|
+
- **Aggregation choice.** ``concat=False`` (default, average of per-window logits) matches
|
|
150
|
+
the official code; ``concat=True`` mirrors the paper’s concatenation variant.
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
Notes
|
|
154
|
+
-----
|
|
155
|
+
- Inputs substantially shorter than the implied minimum length trigger **automatic
|
|
156
|
+
downscaling** of kernels, pools, windows, and TCN kernel size to maintain validity.
|
|
157
|
+
- The attention–TCN sequence operates **per window**; the last causal step is used as the
|
|
158
|
+
window feature, aligning the temporal semantics across windows.
|
|
159
|
+
|
|
160
|
+
.. versionadded:: 1.1
|
|
161
|
+
|
|
162
|
+
- More detailed documentation of the model.
|
|
163
|
+
|
|
23
164
|
|
|
24
165
|
Parameters
|
|
25
166
|
----------
|
|
@@ -85,15 +226,13 @@ class ATCNet(EEGModuleMixin, nn.Module):
|
|
|
85
226
|
Maximum L2-norm constraint imposed on weights of the last
|
|
86
227
|
fully-connected layer. Defaults to 0.25.
|
|
87
228
|
|
|
88
|
-
|
|
89
229
|
References
|
|
90
230
|
----------
|
|
91
|
-
.. [1] H. Altaheri, G. Muhammad
|
|
92
|
-
Physics-informed attention temporal convolutional network for EEG-based
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
|
|
231
|
+
.. [1] H. Altaheri, G. Muhammad, M. Alsulaiman (2022).
|
|
232
|
+
*Physics-informed attention temporal convolutional network for EEG-based motor imagery classification.*
|
|
233
|
+
IEEE Transactions on Industrial Informatics. doi:10.1109/TII.2022.3197419.
|
|
234
|
+
.. [2] Official EEG-ATCNet implementation (TensorFlow):
|
|
235
|
+
https://github.com/Altaheri/EEG-ATCNet/blob/main/models.py
|
|
97
236
|
"""
|
|
98
237
|
|
|
99
238
|
def __init__(
|
|
@@ -556,7 +695,8 @@ class _TCNResidualBlock(nn.Module):
|
|
|
556
695
|
# Reshape the input for the residual connection when necessary
|
|
557
696
|
if in_channels != n_filters:
|
|
558
697
|
self.reshaping_conv = nn.Conv1d(
|
|
559
|
-
|
|
698
|
+
in_channels=in_channels,
|
|
699
|
+
out_channels=n_filters,
|
|
560
700
|
kernel_size=1,
|
|
561
701
|
padding="same",
|
|
562
702
|
)
|
|
@@ -26,25 +26,150 @@ from braindecode.modules.attention import (
|
|
|
26
26
|
class AttentionBaseNet(EEGModuleMixin, nn.Module):
|
|
27
27
|
"""AttentionBaseNet from Wimpff M et al. (2023) [Martin2023]_.
|
|
28
28
|
|
|
29
|
+
:bdg-success:`Convolution` :bdg-info:`Small Attention`
|
|
30
|
+
|
|
29
31
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/21/3/036020/revision2/jnead48b9f2_hr.jpg
|
|
30
|
-
|
|
31
|
-
|
|
32
|
+
:align: center
|
|
33
|
+
:alt: AttentionBaseNet Architecture
|
|
34
|
+
:width: 640px
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
.. rubric:: Architectural Overview
|
|
38
|
+
|
|
39
|
+
AttentionBaseNet is a *convolution-first* network with a *channel-attention* stage.
|
|
40
|
+
The end-to-end flow is:
|
|
41
|
+
|
|
42
|
+
- (i) :class:`_FeatureExtractor` learns a temporal filter bank and per-filter spatial
|
|
43
|
+
projections (depthwise across electrodes), then condenses time by pooling;
|
|
44
|
+
- (ii) **Channel Expansion** uses a ``1x1`` convolution to set the feature width;
|
|
45
|
+
- (iii) :class:`_ChannelAttentionBlock` refines features via depthwise–pointwise temporal
|
|
46
|
+
convs and an optional channel-attention module (SE/CBAM/ECA/…);
|
|
47
|
+
- (iv) **Classifier** flattens the sequence and applies a linear readout.
|
|
48
|
+
|
|
49
|
+
This design mirrors shallow CNN pipelines (EEGNet-style stem) but inserts a pluggable
|
|
50
|
+
attention unit that *re-weights channels* (and optionally temporal positions) before
|
|
51
|
+
classification.
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
.. rubric:: Macro Components
|
|
55
|
+
|
|
56
|
+
- :class:`_FeatureExtractor` **(Shallow conv stem → condensed feature map)**
|
|
57
|
+
|
|
58
|
+
- *Operations.*
|
|
59
|
+
- **Temporal conv** (:class:`torch.nn.Conv2d`) with kernel ``(1, L_t)`` creates a learned
|
|
60
|
+
FIR-like filter bank with ``n_temporal_filters`` maps.
|
|
61
|
+
- **Depthwise spatial conv** (:class:`torch.nn.Conv2d`, ``groups=n_temporal_filters``)
|
|
62
|
+
with kernel ``(n_chans, 1)`` learns per-filter spatial projections over the full montage.
|
|
63
|
+
- **BatchNorm → ELU → AvgPool → Dropout** stabilize and downsample time.
|
|
64
|
+
- Output shape: ``(B, F2, 1, T₁)`` with ``F2 = n_temporal_filters x spatial_expansion``.
|
|
65
|
+
|
|
66
|
+
*Interpretability/robustness.* Temporal kernels behave as analyzable FIR filters; the
|
|
67
|
+
depthwise spatial step yields rhythm-specific topographies. Pooling acts as a local
|
|
68
|
+
integrator that reduces variance on short EEG windows.
|
|
69
|
+
|
|
70
|
+
- **Channel Expansion**
|
|
71
|
+
|
|
72
|
+
- *Operations.*
|
|
73
|
+
- A ``1x1`` conv → BN → activation maps ``F2 → ch_dim`` without changing
|
|
74
|
+
the temporal length ``T₁`` (shape: ``(B, ch_dim, 1, T₁)``).
|
|
75
|
+
This sets the embedding width for the attention block.
|
|
76
|
+
|
|
77
|
+
- :class:`_ChannelAttentionBlock` **(temporal refinement + channel attention)**
|
|
78
|
+
|
|
79
|
+
- *Operations.*
|
|
80
|
+
- **Depthwise temporal conv** ``(1, L_a)`` (groups=``ch_dim``) + **pointwise ``1x1``**,
|
|
81
|
+
BN and activation → preserves shape ``(B, ch_dim, 1, T₁)`` while refining timing.
|
|
82
|
+
- **Optional attention module** (see *Additional Mechanisms*) applies channel reweighting
|
|
83
|
+
(some variants also apply temporal gating).
|
|
84
|
+
- **AvgPool (1, P₂)** with stride ``(1, S₂)`` and **Dropout** → outputs
|
|
85
|
+
``(B, ch_dim, 1, T₂)``.
|
|
86
|
+
|
|
87
|
+
*Role.* Emphasizes informative channels (and, in certain modes, salient time steps)
|
|
88
|
+
before the classifier; complements the convolutional priors with adaptive re-weighting.
|
|
89
|
+
|
|
90
|
+
- **Classifier (aggregation + readout)**
|
|
91
|
+
|
|
92
|
+
*Operations.* :class:`torch.nn.Flatten` → :class:`torch.nn.Linear` from
|
|
93
|
+
``(B, ch_dim·T₂)`` to classes.
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
.. rubric:: Convolutional Details
|
|
97
|
+
|
|
98
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
99
|
+
Wide kernels in the stem (``(1, L_t)``) act as a learned filter bank for oscillatory
|
|
100
|
+
bands/transients; the attention block’s depthwise temporal conv (``(1, L_a)``) sharpens
|
|
101
|
+
short-term dynamics after downsampling. Pool sizes/strides (``P₁,S₁`` then ``P₂,S₂``)
|
|
102
|
+
set the token rate and effective temporal resolution.
|
|
103
|
+
|
|
104
|
+
- **Spatial (how electrodes are processed).**
|
|
105
|
+
A depthwise spatial conv with kernel ``(n_chans, 1)`` spans the full montage to
|
|
106
|
+
learn *per-temporal-filter* spatial projections (no cross-filter mixing at this step),
|
|
107
|
+
mirroring the interpretable spatial stage in shallow CNNs.
|
|
32
108
|
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
109
|
+
- **Spectral (how frequency content is captured).**
|
|
110
|
+
No explicit Fourier/wavelet transform is used in the stem—spectral selectivity
|
|
111
|
+
emerges from learned temporal kernels. When ``attention_mode="fca"``, a frequency
|
|
112
|
+
channel attention (DCT-based) summarizes frequencies to drive channel weights.
|
|
36
113
|
|
|
37
|
-
The paper and original code with more details about the methodological
|
|
38
|
-
choices are available at the [Martin2023]_ and [MartinCode]_.
|
|
39
114
|
|
|
40
|
-
|
|
41
|
-
- Input Block that performs a temporal convolution and a spatial
|
|
42
|
-
convolution.
|
|
43
|
-
- Channel Expansion that modifies the number of channels.
|
|
44
|
-
- An attention block that performs channel attention with several
|
|
45
|
-
options
|
|
46
|
-
- ClassificationHead
|
|
115
|
+
.. rubric:: Attention / Sequential Modules
|
|
47
116
|
|
|
117
|
+
- **Type.** Channel attention chosen by ``attention_mode`` (SE, ECA, CBAM, CAT, GSoP,
|
|
118
|
+
EncNet, GE, GCT, SRM, CATLite). Most operate purely on channels; CBAM/CAT additionally
|
|
119
|
+
include temporal attention.
|
|
120
|
+
|
|
121
|
+
- **Shapes.** Input/Output around attention: ``(B, ch_dim, 1, T₁)``. Re-arrangements
|
|
122
|
+
(if any) are internal to the module; the block returns the same shape before pooling.
|
|
123
|
+
|
|
124
|
+
- **Role.** Re-weights channels (and optionally time) to highlight informative sources
|
|
125
|
+
and suppress distractors, improving SNR ahead of the linear head.
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
.. rubric:: Additional Mechanisms
|
|
129
|
+
|
|
130
|
+
- **Attention variants at a glance.**
|
|
131
|
+
- ``"se"``: Squeeze-and-Excitation (global pooling → bottleneck → gates).
|
|
132
|
+
- ``"gsop"``: Global second-order pooling (covariance-aware channel weights).
|
|
133
|
+
- ``"fca"``: Frequency Channel Attention (DCT summary; uses ``seq_len`` and ``freq_idx``).
|
|
134
|
+
- ``"encnet"``: EncNet with learned codewords (uses ``n_codewords``).
|
|
135
|
+
- ``"eca"``: Efficient Channel Attention (local 1-D conv over channel descriptor; uses ``kernel_size``).
|
|
136
|
+
- ``"ge"``: Gather–Excite (context pooling with optional MLP; can use ``extra_params``).
|
|
137
|
+
- ``"gct"``: Gated Channel Transformation (global context normalization + gating).
|
|
138
|
+
- ``"srm"``: Style-based recalibration (mean–std descriptors; optional MLP).
|
|
139
|
+
- ``"cbam"``: Channel then temporal attention (uses ``kernel_size``).
|
|
140
|
+
- ``"cat"`` / ``"catlite"``: Collaborative (channel ± temporal) attention; *lite* omits temporal.
|
|
141
|
+
- **Auto-compatibility on short inputs.**
|
|
142
|
+
|
|
143
|
+
If the input duration is too short for the configured kernels/pools, the implementation
|
|
144
|
+
**automatically rescales** temporal lengths/strides downward (with a warning) to keep
|
|
145
|
+
shapes valid and preserve the pipeline semantics.
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
.. rubric:: Usage and Configuration
|
|
149
|
+
|
|
150
|
+
- ``n_temporal_filters``, ``temporal_filter_length`` and ``spatial_expansion``:
|
|
151
|
+
control the capacity and the number of spatial projections in the stem.
|
|
152
|
+
- ``pool_length_inp``, ``pool_stride_inp`` then ``pool_length``, ``pool_stride``:
|
|
153
|
+
trade temporal resolution for compute; they determine the final sequence length ``T₂``.
|
|
154
|
+
- ``ch_dim``: width after the ``1x1`` expansion and the effective embedding size for attention.
|
|
155
|
+
- ``attention_mode`` + its specific hyperparameters (``reduction_rate``,
|
|
156
|
+
``kernel_size``, ``seq_len``, ``freq_idx``, ``n_codewords``, ``use_mlp``):
|
|
157
|
+
select and tune the reweighting mechanism.
|
|
158
|
+
- ``drop_prob_inp`` and ``drop_prob_attn``: regularize stem and attention stages.
|
|
159
|
+
- **Training tips.**
|
|
160
|
+
|
|
161
|
+
Start with moderate pooling (e.g., ``P₁=75,S₁=15``) and ELU activations; enable attention
|
|
162
|
+
only after the stem learns stable filters. For small datasets, prefer simpler modes
|
|
163
|
+
(``"se"``, ``"eca"``) before heavier ones (``"gsop"``, ``"encnet"``).
|
|
164
|
+
|
|
165
|
+
Notes
|
|
166
|
+
-----
|
|
167
|
+
- Sequence length after each stage is computed internally; the final classifier expects
|
|
168
|
+
a flattened ``ch_dim x T₂`` vector.
|
|
169
|
+
- Attention operates on *channel* dimension by design; temporal gating exists only in
|
|
170
|
+
specific variants (CBAM/CAT).
|
|
171
|
+
- The paper and original code with more details about the methodological
|
|
172
|
+
choices are available at the [Martin2023]_ and [MartinCode]_.
|
|
48
173
|
.. versionadded:: 0.9
|
|
49
174
|
|
|
50
175
|
Parameters
|
|
@@ -73,18 +198,18 @@ class AttentionBaseNet(EEGModuleMixin, nn.Module):
|
|
|
73
198
|
the depth of the network after the initial layer. Default is 16.
|
|
74
199
|
attention_mode : str, optional
|
|
75
200
|
The type of attention mechanism to apply. If `None`, no attention is applied.
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
201
|
+
- "se" for Squeeze-and-excitation network
|
|
202
|
+
- "gsop" for Global Second-Order Pooling
|
|
203
|
+
- "fca" for Frequency Channel Attention Network
|
|
204
|
+
- "encnet" for context encoding module
|
|
205
|
+
- "eca" for Efficient channel attention for deep convolutional neural networks
|
|
206
|
+
- "ge" for Gather-Excite
|
|
207
|
+
- "gct" for Gated Channel Transformation
|
|
208
|
+
- "srm" for Style-based Recalibration Module
|
|
209
|
+
- "cbam" for Convolutional Block Attention Module
|
|
210
|
+
- "cat" for Learning to collaborate channel and temporal attention
|
|
211
|
+
from multi-information fusion
|
|
212
|
+
- "catlite" for Learning to collaborate channel attention
|
|
88
213
|
from multi-information fusion (lite version, cat w/o temporal attention)
|
|
89
214
|
pool_length : int, default=8
|
|
90
215
|
The length of the window for the average pooling operation.
|
|
@@ -27,22 +27,25 @@ class EEGConformer(EEGModuleMixin, nn.Module):
|
|
|
27
27
|
EEG-Conformer is a *convolution-first* model augmented with a *lightweight transformer
|
|
28
28
|
encoder*. The end-to-end flow is:
|
|
29
29
|
|
|
30
|
-
- (i) :class:`_PatchEmbedding` converts the continuous EEG into a compact sequence of tokens via a
|
|
31
|
-
|
|
30
|
+
- (i) :class:`_PatchEmbedding` converts the continuous EEG into a compact sequence of tokens via a
|
|
31
|
+
:class:`ShallowFBCSPNet` temporal–spatial conv stem and temporal pooling;
|
|
32
|
+
- (ii) :class:`_TransformerEncoder` applies small multi-head self-attention to integrate
|
|
33
|
+
longer-range temporal context across tokens;
|
|
32
34
|
- (iii) :class:`_ClassificationHead` aggregates the sequence and performs a linear readout.
|
|
33
|
-
|
|
34
|
-
|
|
35
|
+
This preserves the strong inductive biases of shallow CNN filter banks while adding
|
|
36
|
+
just enough attention to capture dependencies beyond the pooling horizon [song2022]_.
|
|
35
37
|
|
|
36
38
|
.. rubric:: Macro Components
|
|
37
39
|
|
|
38
40
|
- :class:`_PatchEmbedding` **(Shallow conv stem → tokens)**
|
|
39
41
|
|
|
40
|
-
|
|
41
|
-
- A temporal convolution (`:class
|
|
42
|
-
- A spatial convolution (`:class
|
|
43
|
-
|
|
44
|
-
- **
|
|
45
|
-
- **
|
|
42
|
+
- *Operations.*
|
|
43
|
+
- A temporal convolution (`:class:torch.nn.Conv2d`) ``(1 x L_t)`` forms a data-driven "filter bank";
|
|
44
|
+
- A spatial convolution (`:class:torch.nn.Conv2d`) (n_chans x 1)`` projects across electrodes,
|
|
45
|
+
collapsing the channel axis into a virtual channel.
|
|
46
|
+
- **Normalization function** :class:`torch.nn.BatchNorm`
|
|
47
|
+
- **Activation function** :class:`torch.nn.ELU`
|
|
48
|
+
- **Average Pooling** :class:`torch.nn.AvgPool` along time (kernel ``(1, P)`` with stride ``(1, S)``)
|
|
46
49
|
- final ``1x1`` :class:`torch.nn.Linear` projection.
|
|
47
50
|
|
|
48
51
|
The result is rearranged to a token sequence ``(B, S_tokens, D)``, where ``D = n_filters_time``.
|
|
@@ -53,7 +56,7 @@ class EEGConformer(EEGModuleMixin, nn.Module):
|
|
|
53
56
|
|
|
54
57
|
- :class:`_TransformerEncoder` **(context over temporal tokens)**
|
|
55
58
|
|
|
56
|
-
|
|
59
|
+
- *Operations.*
|
|
57
60
|
- A stack of ``att_depth`` encoder blocks. :class:`_TransformerEncoderBlock`
|
|
58
61
|
- Each block applies LayerNorm :class:`torch.nn.LayerNorm`
|
|
59
62
|
- Multi-Head Self-Attention (``att_heads``) with dropout + residual :class:`MultiHeadAttention` (:class:`torch.nn.Dropout`)
|
|
@@ -67,7 +70,7 @@ class EEGConformer(EEGModuleMixin, nn.Module):
|
|
|
67
70
|
|
|
68
71
|
- :class:`ClassificationHead` **(aggregation + readout)**
|
|
69
72
|
|
|
70
|
-
|
|
73
|
+
- *Operations*.
|
|
71
74
|
- Flatten, :class:`torch.nn.Flatten` the sequence ``(B, S_tokens·D)`` -
|
|
72
75
|
- MLP (:class:`torch.nn.Linear` → activation (default: :class:`torch.nn.ELU`) → :class:`torch.nn.Dropout` → :class:`torch.nn.Linear`)
|
|
73
76
|
- final Linear to classes.
|
|
@@ -100,8 +103,8 @@ class EEGConformer(EEGModuleMixin, nn.Module):
|
|
|
100
103
|
- **Type.** Standard multi-head self-attention (MHA) with ``att_heads`` heads over the token sequence.
|
|
101
104
|
- **Shapes.** Input/Output: ``(B, S_tokens, D)``; attention operates along the ``S_tokens`` axis.
|
|
102
105
|
- **Role.** Re-weights and integrates evidence across pooled windows, capturing dependencies
|
|
103
|
-
|
|
104
|
-
|
|
106
|
+
longer than any single token while leaving channel relationships to the convolutional stem.
|
|
107
|
+
The design is intentionally *small*—attention refines rather than replaces convolutional feature extraction.
|
|
105
108
|
|
|
106
109
|
.. rubric:: Additional Mechanisms
|
|
107
110
|
|
|
@@ -112,20 +115,20 @@ class EEGConformer(EEGModuleMixin, nn.Module):
|
|
|
112
115
|
refine temporal context before classification.
|
|
113
116
|
|
|
114
117
|
- **Tokenization knob.** ``pool_time_length`` and especially ``pool_time_stride`` set
|
|
115
|
-
|
|
116
|
-
|
|
118
|
+
the number of tokens ``S_tokens``. Smaller strides → more tokens and higher attention
|
|
119
|
+
capacity (but higher compute); larger strides → fewer tokens and stronger inductive bias.
|
|
117
120
|
|
|
118
121
|
- **Embedding dimension = filters.** ``n_filters_time`` serves double duty as both the
|
|
119
|
-
|
|
120
|
-
|
|
122
|
+
number of temporal filters in the stem and the transformer’s embedding size ``D``,
|
|
123
|
+
simplifying dimensional alignment.
|
|
121
124
|
|
|
122
125
|
.. rubric:: Usage and Configuration
|
|
123
126
|
|
|
124
127
|
- **Instantiation.** Choose ``n_filters_time`` (embedding size ``D``) and
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
128
|
+
``filter_time_length`` to match the rhythms of interest. Tune
|
|
129
|
+
``pool_time_length/stride`` to trade temporal resolution for sequence length.
|
|
130
|
+
Keep ``att_depth`` modest (e.g., 4–6) and set ``att_heads`` to divide ``D``.
|
|
131
|
+
``final_fc_length="auto"`` infers the flattened size from PatchEmbedding.
|
|
129
132
|
|
|
130
133
|
Notes
|
|
131
134
|
-----
|
braindecode/models/eegnet.py
CHANGED
|
@@ -31,8 +31,7 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
|
|
|
31
31
|
|
|
32
32
|
.. rubric:: Architectural Overview
|
|
33
33
|
|
|
34
|
-
EEGNetv4 is a compact convolutional network designed for EEG decoding with a
|
|
35
|
-
pipeline that mirrors classical EEG processing:
|
|
34
|
+
EEGNetv4 is a compact convolutional network designed for EEG decoding with a pipeline that mirrors classical EEG processing:
|
|
36
35
|
- (i) learn temporal frequency-selective filters,
|
|
37
36
|
- (ii) learn spatial filters for those frequencies, and
|
|
38
37
|
- (iii) condense features with depthwise–separable convolutions before a lightweight classifier.
|
|
@@ -56,16 +55,16 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
|
|
|
56
55
|
|
|
57
56
|
.. rubric:: Convolutional Details
|
|
58
57
|
|
|
59
|
-
**Temporal.** The initial temporal convs serve as a *learned filter bank*:
|
|
60
|
-
|
|
61
|
-
|
|
58
|
+
- **Temporal.** The initial temporal convs serve as a *learned filter bank*:
|
|
59
|
+
long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
|
|
60
|
+
Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature’s spectrum [Lawhern2018]_.
|
|
62
61
|
|
|
63
|
-
**Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
|
|
64
|
-
|
|
65
|
-
|
|
62
|
+
- **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
|
|
63
|
+
With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
|
|
64
|
+
typically regularized with max-norm.
|
|
66
65
|
|
|
67
|
-
**Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
|
|
68
|
-
|
|
66
|
+
- **Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
|
|
67
|
+
is captured implicitly by the temporal filter bank; later depthwise temporal kernels act as short-time integrators/refiners.
|
|
69
68
|
|
|
70
69
|
.. rubric:: Additional Comments
|
|
71
70
|
|
braindecode/models/eegnex.py
CHANGED
|
@@ -16,9 +16,124 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
|
|
|
16
16
|
class EEGNeX(EEGModuleMixin, nn.Module):
|
|
17
17
|
"""EEGNeX model from Chen et al. (2024) [eegnex]_.
|
|
18
18
|
|
|
19
|
+
:bdg-success:`Convolution`
|
|
20
|
+
|
|
19
21
|
.. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
|
|
20
22
|
:align: center
|
|
21
23
|
:alt: EEGNeX Architecture
|
|
24
|
+
:width: 620px
|
|
25
|
+
|
|
26
|
+
.. rubric:: Architectural Overview
|
|
27
|
+
|
|
28
|
+
EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
|
|
29
|
+
and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
|
|
30
|
+
flow is:
|
|
31
|
+
|
|
32
|
+
- (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
|
|
33
|
+
learned FIR-like *temporal filter bank* (no pooling yet);
|
|
34
|
+
- (ii) **Block-3**: depthwise **spatial** convolution across electrodes
|
|
35
|
+
``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
|
|
36
|
+
- (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
|
|
37
|
+
to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
|
|
38
|
+
- (iv) **Classifier**: a max-norm–constrained linear layer.
|
|
39
|
+
|
|
40
|
+
The published work positions EEGNeX as a compact, conv-only alternative that consistently
|
|
41
|
+
outperforms prior baselines across MOABB-style benchmarks, with the popular
|
|
42
|
+
“EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
.. rubric:: Macro Components
|
|
46
|
+
|
|
47
|
+
- **Block-1 / Block-2 — Temporal filter (learned).**
|
|
48
|
+
|
|
49
|
+
- *Operations.*
|
|
50
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, L)``
|
|
51
|
+
- :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
|
|
52
|
+
These layers set up frequency-selective detectors before spatial mixing.
|
|
53
|
+
|
|
54
|
+
- *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
|
|
55
|
+
convs allow longer effective kernels without parameter blow-up.
|
|
56
|
+
|
|
57
|
+
- **Block-3 — Spatial projection + condensation.**
|
|
58
|
+
|
|
59
|
+
- *Operations.*
|
|
60
|
+
- :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
|
|
61
|
+
and ``groups = filter_2`` (depthwise across filters)
|
|
62
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
63
|
+
- :class:`torch.nn.ELU`
|
|
64
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
65
|
+
- :class:`torch.nn.Dropout`.
|
|
66
|
+
|
|
67
|
+
*Role.* Learns per-filter spatial patterns over the **full montage** while temporal
|
|
68
|
+
pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
|
|
69
|
+
weights similar to EEGNet practice.
|
|
70
|
+
|
|
71
|
+
- **Block-4 / Block-5 — Dilated temporal integration.**
|
|
72
|
+
|
|
73
|
+
- *Operations.*
|
|
74
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
|
|
75
|
+
(e.g., 2 then 4);
|
|
76
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
77
|
+
- :class:`torch.nn.ELU`
|
|
78
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
79
|
+
- :class:`torch.nn.Dropout`
|
|
80
|
+
- :class:`torch.nn.Flatten`.
|
|
81
|
+
|
|
82
|
+
*Role.* Expands the temporal receptive field efficiently to capture rhythms and
|
|
83
|
+
long-range context after condensation.
|
|
84
|
+
|
|
85
|
+
- **Final Classifier — Max-norm linear.**
|
|
86
|
+
|
|
87
|
+
- *Operations.*
|
|
88
|
+
- :class:`braindecode.modules.LinearWithConstraint` maps the flattened
|
|
89
|
+
vector to the target classes; the max-norm constraint regularizes the readout.
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
.. rubric:: Convolutional Details
|
|
93
|
+
|
|
94
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
95
|
+
Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
|
|
96
|
+
use **dilation** to integrate over longer horizons without extra pooling. The final
|
|
97
|
+
AvgPool in Block-5 sets the output token rate and helps noise suppression.
|
|
98
|
+
|
|
99
|
+
- **Spatial (how electrodes are processed).**
|
|
100
|
+
A *single* depthwise spatial conv (Block-3) spans the entire electrode set
|
|
101
|
+
(kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
|
|
102
|
+
mixing occurs at this stage, aiding interpretability.
|
|
103
|
+
|
|
104
|
+
- **Spectral (how frequency content is captured).**
|
|
105
|
+
Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
|
|
106
|
+
bandwidth coverage by composing multiple scales.
|
|
107
|
+
|
|
108
|
+
.. rubric:: Additional Mechanisms
|
|
109
|
+
|
|
110
|
+
- **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
|
|
111
|
+
reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
|
|
112
|
+
and a deeper conv stack.
|
|
113
|
+
- **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
|
|
114
|
+
regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
|
|
115
|
+
patterns.
|
|
116
|
+
|
|
117
|
+
.. rubric:: Usage and Configuration
|
|
118
|
+
|
|
119
|
+
- **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
|
|
120
|
+
``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
|
|
121
|
+
the paper's “pure conv” profile.
|
|
122
|
+
- **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
|
|
123
|
+
increase dilations (Blocks 4-5) to widen temporal context when windows are short.
|
|
124
|
+
- **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
|
|
125
|
+
classifier layers; prefer ELU activations for stable training on small EEG datasets.
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
Notes
|
|
129
|
+
-----
|
|
130
|
+
- The braindecode implementation follows the paper's conv-only design with five blocks
|
|
131
|
+
and reproduces the depthwise spatial step and dilated temporal stack. See the class
|
|
132
|
+
reference for exact kernel sizes, dilations, and pooling defaults. You can check the
|
|
133
|
+
original implementation at [EEGNexCode]_.
|
|
134
|
+
|
|
135
|
+
.. versionadded:: 1.1
|
|
136
|
+
|
|
22
137
|
|
|
23
138
|
Parameters
|
|
24
139
|
----------
|
|
@@ -45,12 +160,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
|
|
|
45
160
|
avg_pool_block5 : tuple[int, int], optional
|
|
46
161
|
Pooling size for block 5. Default is (1, 8).
|
|
47
162
|
|
|
48
|
-
Notes
|
|
49
|
-
-----
|
|
50
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
51
|
-
by original authors, only reimplemented from the paper description and
|
|
52
|
-
source code in tensorflow [EEGNexCode]_.
|
|
53
|
-
|
|
54
163
|
References
|
|
55
164
|
----------
|
|
56
165
|
.. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
|
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,40 @@
|
|
|
1
|
-
Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
1
|
+
Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution"
|
|
17
|
+
EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)","Interpretability"
|
|
18
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
19
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
20
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
|
|
21
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
22
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
23
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
24
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
25
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
26
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
27
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
28
|
+
ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
29
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
30
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
31
|
+
SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
32
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
33
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
34
|
+
TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
35
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
36
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
37
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
40
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
braindecode/models/util.py
CHANGED
|
@@ -55,7 +55,6 @@ models_mandatory_parameters = [
|
|
|
55
55
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
56
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
57
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
|
|
59
58
|
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
59
|
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
60
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.2.0.
|
|
1
|
+
__version__ = "1.2.0.dev182051616"
|
{braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.2.0.
|
|
3
|
+
Version: 1.2.0.dev182051616
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
@@ -49,6 +49,9 @@ Requires-Dist: mypy; extra == "tests"
|
|
|
49
49
|
Provides-Extra: docs
|
|
50
50
|
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
51
51
|
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
52
|
+
Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
|
|
53
|
+
Requires-Dist: sphinx-autobuild; extra == "docs"
|
|
54
|
+
Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
|
|
52
55
|
Requires-Dist: pydata_sphinx_theme; extra == "docs"
|
|
53
56
|
Requires-Dist: numpydoc; extra == "docs"
|
|
54
57
|
Requires-Dist: memory_profiler; extra == "docs"
|
|
@@ -59,6 +62,7 @@ Requires-Dist: lightning; extra == "docs"
|
|
|
59
62
|
Requires-Dist: seaborn; extra == "docs"
|
|
60
63
|
Requires-Dist: pre-commit; extra == "docs"
|
|
61
64
|
Requires-Dist: openneuro-py; extra == "docs"
|
|
65
|
+
Requires-Dist: plotly; extra == "docs"
|
|
62
66
|
Provides-Extra: all
|
|
63
67
|
Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
|
|
64
68
|
Dynamic: license-file
|
{braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/RECORD
RENAMED
|
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
|
|
|
3
3
|
braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=UBhbCtvDxXjja87T5xAaQL56WHDquQLzEwy-0_4QxRE,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
9
|
braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
|
|
@@ -26,22 +26,22 @@ braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,
|
|
|
26
26
|
braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
|
|
27
27
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
28
28
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
29
|
-
braindecode/models/__init__.py,sha256=
|
|
30
|
-
braindecode/models/atcnet.py,sha256=
|
|
31
|
-
braindecode/models/attentionbasenet.py,sha256=
|
|
29
|
+
braindecode/models/__init__.py,sha256=tFnuWNTnQreNCpLGIOFYVqQ2hrXT0p8_Zcd11ln8zW4,2525
|
|
30
|
+
braindecode/models/atcnet.py,sha256=Pn5KzQjv7YxSNDr_CY6O_Yg9K4m9XJ7btCIqyzkcPxc,32102
|
|
31
|
+
braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
|
|
32
32
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
33
33
|
braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
|
|
34
34
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
35
35
|
braindecode/models/ctnet.py,sha256=-J9QtUM8kcntz_xinfuBBvwDMECHiMPMcr2MS4GDPEY,17308
|
|
36
36
|
braindecode/models/deep4.py,sha256=YJQUw-0EuFUi4qjm8caJGB8wRM_aeJa5X_d8jrGaQAI,14588
|
|
37
37
|
braindecode/models/deepsleepnet.py,sha256=RrciuVJtZ-fhiUl-yLPfK2FP-G29V5Wor6pPlrMHQWQ,9218
|
|
38
|
-
braindecode/models/eegconformer.py,sha256=
|
|
38
|
+
braindecode/models/eegconformer.py,sha256=rxMAmqErDVLq7nS77CnTtpcC3C2OR_EoZ8-jG-dKP9I,17433
|
|
39
39
|
braindecode/models/eeginception_erp.py,sha256=mwh3rGSHAJVvnbOlYTuWWkKxlmFAdAXBNCrq4IPgOS4,11408
|
|
40
40
|
braindecode/models/eeginception_mi.py,sha256=aKJRFuYrpbcRbmmT2xVghKbK8pnl7fzu5hrV0ybRKso,12424
|
|
41
41
|
braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
|
|
42
42
|
braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
|
|
43
|
-
braindecode/models/eegnet.py,sha256=
|
|
44
|
-
braindecode/models/eegnex.py,sha256=
|
|
43
|
+
braindecode/models/eegnet.py,sha256=CtfQuw7iaxQh3j1dRmF_UhdjfO3uHOlObnmasHk_boM,19268
|
|
44
|
+
braindecode/models/eegnex.py,sha256=JsQNFe5sXutgF6db2oOhqhQPubTdPRNIouEfUCOtE84,13614
|
|
45
45
|
braindecode/models/eegresnet.py,sha256=cqWOSGqfJN_dNYUU9l8nYd_S3T1N-UX5-encKQzfBlg,12057
|
|
46
46
|
braindecode/models/eegsimpleconv.py,sha256=sHpK-7ZGOCMuXsdkSVuarFTd1T0jMJUP_xwXP3gxQwc,7268
|
|
47
47
|
braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
|
|
@@ -60,13 +60,13 @@ braindecode/models/sleep_stager_blanco_2020.py,sha256=qPKMDLuv4J7et4dZHyTe-j0oB6
|
|
|
60
60
|
braindecode/models/sleep_stager_chambon_2018.py,sha256=62x2Rdjd5UZDX8YlnfAtdRCrjLsPvPpnUweGElZLdkw,5213
|
|
61
61
|
braindecode/models/sleep_stager_eldele_2021.py,sha256=-4ISuznykDy9ZFzUM-OeiGCwmgM3U-LuyoDSrhPbRDw,17555
|
|
62
62
|
braindecode/models/sparcnet.py,sha256=eZMoJOxlcIyHPdQiX7KXUKuUBlAWkTwsXNWmNma_KAI,13941
|
|
63
|
-
braindecode/models/summary.csv,sha256=
|
|
63
|
+
braindecode/models/summary.csv,sha256=9AKKSeyp8mYV5RhbDxF599c-KZCiAMbKyjgIzz8qFZM,6910
|
|
64
64
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
65
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
66
|
braindecode/models/tidnet.py,sha256=k7Q0yAnEBmq1sqhsvoV4-g8wfYSUQ-C3iYxfLp5m8xQ,11805
|
|
67
67
|
braindecode/models/tsinception.py,sha256=EcfLDDJXZloh_vrKRuxAHYRZ1EVWlEKHNXqybTRrTbQ,10116
|
|
68
68
|
braindecode/models/usleep.py,sha256=dFh3KiZITu13gMxcbPGoK4hq2ySDWzVSCQXkj1006w0,11605
|
|
69
|
-
braindecode/models/util.py,sha256=
|
|
69
|
+
braindecode/models/util.py,sha256=mrfQz7srxcpHvZEOuCesMDkgrZUlfusnCvFLjDLAh5Y,5241
|
|
70
70
|
braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
|
|
71
71
|
braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
|
|
72
72
|
braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
|
|
@@ -93,9 +93,9 @@ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4
|
|
|
93
93
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
94
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
95
|
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
-
braindecode-1.2.0.
|
|
97
|
-
braindecode-1.2.0.
|
|
98
|
-
braindecode-1.2.0.
|
|
99
|
-
braindecode-1.2.0.
|
|
100
|
-
braindecode-1.2.0.
|
|
101
|
-
braindecode-1.2.0.
|
|
96
|
+
braindecode-1.2.0.dev182051616.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
97
|
+
braindecode-1.2.0.dev182051616.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
98
|
+
braindecode-1.2.0.dev182051616.dist-info/METADATA,sha256=EvvamvHaX0hF1VtnVroRL1_yXfpiuxNNXj8QI6iJDuk,7081
|
|
99
|
+
braindecode-1.2.0.dev182051616.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
100
|
+
braindecode-1.2.0.dev182051616.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
101
|
+
braindecode-1.2.0.dev182051616.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{braindecode-1.2.0.dev176358851.dist-info → braindecode-1.2.0.dev182051616.dist-info}/top_level.txt
RENAMED
|
File without changes
|