braindecode 1.2.0.dev169062562__py3-none-any.whl → 1.2.0.dev176358851__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

@@ -12,33 +12,126 @@ from braindecode.modules import FeedForwardBlock, MultiHeadAttention
12
12
 
13
13
 
14
14
  class EEGConformer(EEGModuleMixin, nn.Module):
15
- """EEG Conformer from Song et al. (2022) from [song2022]_.
15
+ """EEG Conformer from Song et al. (2022) [song2022]_.
16
16
 
17
- .. figure:: https://raw.githubusercontent.com/eeyhsong/EEG-Conformer/refs/heads/main/visualization/Fig1.png
17
+ :bdg-success:`Convolution` :bdg-info:`Small Attention`
18
+
19
+ .. figure:: https://raw.githubusercontent.com/eeyhsong/EEG-Conformer/refs/heads/main/visualization/Fig1.png
18
20
  :align: center
19
21
  :alt: EEGConformer Architecture
22
+ :width: 600px
23
+
24
+
25
+ .. rubric:: Architectural Overview
26
+
27
+ EEG-Conformer is a *convolution-first* model augmented with a *lightweight transformer
28
+ encoder*. The end-to-end flow is:
29
+
30
+ - (i) :class:`_PatchEmbedding` converts the continuous EEG into a compact sequence of tokens via a :class:`ShallowFBCSPNet` temporal–spatial conv stem and temporal pooling;
31
+ - (ii) :class:`_TransformerEncoder applies small multi-head self-attention to integrate longer-range temporal context across tokens;
32
+ - (iii) :class:`_ClassificationHead` aggregates the sequence and performs a linear readout.
33
+ This preserves the strong inductive biases of shallow CNN filter banks while adding
34
+ just enough attention to capture dependencies beyond the pooling horizon [song2022]_.
35
+
36
+ .. rubric:: Macro Components
37
+
38
+ - :class:`_PatchEmbedding` **(Shallow conv stem → tokens)**
39
+
40
+ - *Operations.*
41
+ - A temporal convolution (`:class:`torch.nn.Conv2d`) ``(1 x L_t)`` forms a data-driven "filter bank";
42
+ - A spatial convolution (`:class:`torch.nn.Conv2d`) (n_chans x 1)`` projects across electrodes, collapsing the channel axis into a virtual channel.
43
+ - **Normalization function** `:class:torch.nn.BatchNorm`
44
+ - **Activation function** `:class:torch.nn.ELU`
45
+ - **Average Pooling** `:class:torch.nn.AvgPool` along time (kernel ``(1, P)`` with stride ``(1, S)``)
46
+ - final ``1x1`` :class:`torch.nn.Linear` projection.
47
+
48
+ The result is rearranged to a token sequence ``(B, S_tokens, D)``, where ``D = n_filters_time``.
49
+
50
+ *Interpretability/robustness.* Temporal kernels can be inspected as FIR filters;
51
+ the spatial conv yields channel projections analogous to :class:`ShallowFBCSPNet`’s learned
52
+ spatial filters. Temporal pooling stabilizes statistics and reduces sequence length.
53
+
54
+ - :class:`_TransformerEncoder` **(context over temporal tokens)**
55
+
56
+ - *Operations.*
57
+ - A stack of ``att_depth`` encoder blocks. :class:`_TransformerEncoderBlock`
58
+ - Each block applies LayerNorm :class:`torch.nn.LayerNorm`
59
+ - Multi-Head Self-Attention (``att_heads``) with dropout + residual :class:`MultiHeadAttention` (:class:`torch.nn.Dropout`)
60
+ - LayerNorm :class:`torch.nn.LayerNorm`
61
+ - 2-layer feed-forward (≈4x expansion, :class:`torch.nn.GELU`) with dropout + residual.
62
+
63
+ Shapes remain ``(B, S_tokens, D)`` throughout.
20
64
 
21
- Convolutional Transformer for EEG decoding.
65
+ *Role.* Small attention focuses on interactions among *temporal patches* (not channels),
66
+ extending effective receptive fields at modest cost.
22
67
 
23
- The paper and original code with more details about the methodological
24
- choices are available at the [song2022]_ and [ConformerCode]_.
68
+ - :class:`ClassificationHead` **(aggregation + readout)**
25
69
 
26
- This neural network architecture receives a traditional braindecode input.
27
- The input shape should be three-dimensional matrix representing the EEG
28
- signals.
70
+ - *Operations*.
71
+ - Flatten, :class:`torch.nn.Flatten` the sequence ``(B, S_tokens·D)`` -
72
+ - MLP (:class:`torch.nn.Linear` → activation (default: :class:`torch.nn.ELU`) → :class:`torch.nn.Dropout` → :class:`torch.nn.Linear`)
73
+ - final Linear to classes.
29
74
 
30
- `(batch_size, n_channels, n_timesteps)`.
75
+ With ``return_features=True``, features before the last Linear can be exported for
76
+ linear probing or downstream tasks.
31
77
 
32
- The EEG Conformer architecture is composed of three modules:
33
- - PatchEmbedding
34
- - TransformerEncoder
35
- - ClassificationHead
78
+ .. rubric:: Convolutional Details
79
+
80
+ - **Temporal (where time-domain patterns are learned).**
81
+ The initial ``(1 x L_t)`` conv per channel acts as a *learned filter bank* for oscillatory
82
+ bands and transients. Subsequent **AvgPool** along time performs local integration,
83
+ converting activations into “patches” (tokens). Pool length/stride control the
84
+ token rate and set the lower bound on temporal context within each token.
85
+
86
+ - **Spatial (how electrodes are processed).**
87
+ A single conv with kernel ``(n_chans x 1)`` spans the full montage to learn spatial
88
+ projections for each temporal feature map, collapsing the channel axis into a
89
+ virtual channel before tokenization. This mirrors the shallow spatial step in
90
+ :class:`ShallowFBCSPNet` (temporal filters → spatial projection → temporal condensation).
91
+
92
+ - **Spectral (how frequency content is captured).**
93
+ No explicit Fourier/wavelet stage is used. Spectral selectivity emerges implicitly
94
+ from the learned temporal kernels; pooling further smooths high-frequency noise.
95
+ The effective spectral resolution is thus governed by ``L_t`` and the pooling
96
+ configuration.
97
+
98
+ .. rubric:: Attention / Sequential Modules
99
+
100
+ - **Type.** Standard multi-head self-attention (MHA) with ``att_heads`` heads over the token sequence.
101
+ - **Shapes.** Input/Output: ``(B, S_tokens, D)``; attention operates along the ``S_tokens`` axis.
102
+ - **Role.** Re-weights and integrates evidence across pooled windows, capturing dependencies
103
+ longer than any single token while leaving channel relationships to the convolutional stem.
104
+ The design is intentionally *small*—attention refines rather than replaces convolutional feature extraction.
105
+
106
+ .. rubric:: Additional Mechanisms
107
+
108
+ - **Parallel with ShallowFBCSPNet.** Both begin with a learned temporal filter bank,
109
+ spatial projection across electrodes, and early temporal condensation.
110
+ :class:`ShallowFBCSPNet` then computes band-power (via squaring/log-variance), whereas
111
+ EEG-Conformer applies BN/ELU and **continues with attention** over tokens to
112
+ refine temporal context before classification.
113
+
114
+ - **Tokenization knob.** ``pool_time_length`` and especially ``pool_time_stride`` set
115
+ the number of tokens ``S_tokens``. Smaller strides → more tokens and higher attention
116
+ capacity (but higher compute); larger strides → fewer tokens and stronger inductive bias.
117
+
118
+ - **Embedding dimension = filters.** ``n_filters_time`` serves double duty as both the
119
+ number of temporal filters in the stem and the transformer’s embedding size ``D``,
120
+ simplifying dimensional alignment.
121
+
122
+ .. rubric:: Usage and Configuration
123
+
124
+ - **Instantiation.** Choose ``n_filters_time`` (embedding size ``D``) and
125
+ ``filter_time_length`` to match the rhythms of interest. Tune
126
+ ``pool_time_length/stride`` to trade temporal resolution for sequence length.
127
+ Keep ``att_depth`` modest (e.g., 4–6) and set ``att_heads`` to divide ``D``.
128
+ ``final_fc_length="auto"`` infers the flattened size from PatchEmbedding.
36
129
 
37
130
  Notes
38
131
  -----
39
132
  The authors recommend using data augmentation before using Conformer,
40
133
  e.g. segmentation and recombination,
41
- Please refer to the original paper and code for more details.
134
+ Please refer to the original paper and code for more details [ConformerCode]_.
42
135
 
43
136
  The model was initially tuned on 4 seconds of 250 Hz data.
44
137
  Please adjust the scale of the temporal convolutional layer,
@@ -47,7 +140,10 @@ class EEGConformer(EEGModuleMixin, nn.Module):
47
140
  .. versionadded:: 0.8
48
141
 
49
142
  We aggregate the parameters based on the parts of the models, or
50
- when the parameters were used first, e.g. n_filters_time.
143
+ when the parameters were used first, e.g. ``n_filters_time``.
144
+
145
+ .. versionadded:: 1.1
146
+
51
147
 
52
148
  Parameters
53
149
  ----------
@@ -20,13 +20,60 @@ from braindecode.modules import (
20
20
 
21
21
 
22
22
  class EEGNetv4(EEGModuleMixin, nn.Sequential):
23
- """EEGNet v4 model from Lawhern et al. (2018) [EEGNet4]_.
23
+ """EEGNet v4 model from Lawhern et al. (2018) [Lawhern2018]_.
24
+
25
+ :bdg-success:`Convolution` :bdg-secondary:`Depthwise–Separable`
24
26
 
25
27
  .. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
26
28
  :align: center
27
- :alt: EEGNet4 Architecture
29
+ :alt: EEGNetv4 Architecture
30
+ :width: 600px
31
+
32
+ .. rubric:: Architectural Overview
33
+
34
+ EEGNetv4 is a compact convolutional network designed for EEG decoding with a
35
+ pipeline that mirrors classical EEG processing:
36
+ - (i) learn temporal frequency-selective filters,
37
+ - (ii) learn spatial filters for those frequencies, and
38
+ - (iii) condense features with depthwise–separable convolutions before a lightweight classifier.
39
+
40
+ The architecture is deliberately small (temporal convolutional and spatial patterns) [Lawhern2018]_.
41
+
42
+ .. rubric:: Macro Components
43
+
44
+ - **Temporal convolution**
45
+ Temporal convolution applied per channel; learns ``F1`` kernels that act as data-driven band-pass filters.
46
+ - **Depthwise Spatial Filtering.**
47
+ Depthwise convolution spanning the channel dimension with ``groups = F1``,
48
+ yielding ``D`` spatial filters for each temporal filter (no cross-filter mixing).
49
+ - **Norm–Nonlinearity–Pooling (+ dropout).**
50
+ Batch normalization → ELU → temporal pooling, with dropout.
51
+ - **Depthwise–Separable Convolution Block.**
52
+ (a) depthwise temporal conv to refine temporal structure;
53
+ (b) pointwise 1x1 conv to mix feature maps into ``F2`` combinations.
54
+ - **Classifier Head.**
55
+ Lightweight 1x1 conv or dense layer (often with max-norm constraint).
28
56
 
29
- See details in [EEGNet4]_.
57
+ .. rubric:: Convolutional Details
58
+
59
+ **Temporal.** The initial temporal convs serve as a *learned filter bank*:
60
+ long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
61
+ Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature’s spectrum [Lawhern2018]_.
62
+
63
+ **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
64
+ With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
65
+ typically regularized with max-norm.
66
+
67
+ **Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
68
+ is captured implicitly by the temporal filter bank; later depthwise temporal kernels act as short-time integrators/refiners.
69
+
70
+ .. rubric:: Additional Comments
71
+
72
+ - **Filter-bank structure:** Parallel temporal kernels (``F1``) emulate classical filter banks; pairing them with frequency-specific spatial filters
73
+ yields features mappable to rhythms and topographies.
74
+ - **Depthwise & separable convs:** Parameter-efficient decomposition (depthwise + pointwise) retains power while limiting overfitting
75
+ [Chollet2017]_ and keeps temporal vs. mixing steps interpretable.
76
+ - **Regularization:** Batch norm, dropout, pooling, and optional max-norm on spatial kernels aid stability on small EEG datasets.
30
77
 
31
78
  Parameters
32
79
  ----------
@@ -68,10 +115,13 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
68
115
 
69
116
  References
70
117
  ----------
71
- .. [EEGNet4] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
118
+ .. [Lawhern2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
72
119
  Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional
73
120
  neural network for EEG-based brain–computer interfaces. Journal of
74
121
  neural engineering, 15(5), 056013.
122
+ .. [Chollet2017] Chollet, F., *Xception: Deep Learning with Depthwise Separable
123
+ Convolutions*, CVPR, 2017.
124
+
75
125
  """
76
126
 
77
127
  def __init__(
@@ -157,7 +157,8 @@ class FCA(nn.Module):
157
157
  ):
158
158
  super(FCA, self).__init__()
159
159
  mapper_y = [freq_idx]
160
- assert in_channels % len(mapper_y) == 0
160
+ if in_channels % len(mapper_y) != 0:
161
+ raise ValueError("in_channels must be divisible by number of DCT filters")
161
162
 
162
163
  self.weight = nn.Parameter(
163
164
  self.get_dct_filter(seq_len, mapper_y, in_channels), requires_grad=False
@@ -295,7 +296,8 @@ class ECA(nn.Module):
295
296
  def __init__(self, in_channels: int, kernel_size: int):
296
297
  super(ECA, self).__init__()
297
298
  self.gap = nn.AdaptiveAvgPool2d(1)
298
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
299
+ if kernel_size % 2 != 1:
300
+ raise ValueError("kernel size must be odd for same padding")
299
301
  self.conv = nn.Conv1d(
300
302
  1, 1, kernel_size=kernel_size, padding=kernel_size // 2, bias=False
301
303
  )
@@ -530,7 +532,8 @@ class CBAM(nn.Module):
530
532
  nn.ReLU(),
531
533
  nn.Conv2d(in_channels // reduction_rate, in_channels, 1, bias=False),
532
534
  )
533
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
535
+ if kernel_size % 2 != 1:
536
+ raise ValueError("kernel size must be odd for same padding")
534
537
  self.conv = nn.Conv2d(2, 1, (1, kernel_size), padding=(0, kernel_size // 2))
535
538
 
536
539
  def forward(self, x):
@@ -136,7 +136,8 @@ class CombinedConv(nn.Module):
136
136
  # Calculate bias terms
137
137
  if self.bias_time:
138
138
  time_bias = self.conv_time.bias
139
- assert time_bias is not None
139
+ if time_bias is None:
140
+ raise RuntimeError("conv_time.bias is None despite bias_time=True")
140
141
  calculated_bias = (
141
142
  self.conv_spat.weight.squeeze()
142
143
  .sum(-1)
@@ -145,7 +146,8 @@ class CombinedConv(nn.Module):
145
146
  )
146
147
  if self.bias_spat:
147
148
  spat_bias = self.conv_spat.bias
148
- assert spat_bias is not None
149
+ if spat_bias is None:
150
+ raise RuntimeError("conv_spat.bias is None despite bias_spat=True")
149
151
  if calculated_bias is None:
150
152
  calculated_bias = spat_bias
151
153
  else:
@@ -190,11 +192,12 @@ class CausalConv1d(nn.Conv1d):
190
192
  dilation=1,
191
193
  **kwargs,
192
194
  ):
193
- assert "padding" not in kwargs, (
194
- "The padding parameter is controlled internally by "
195
- f"{type(self).__name__} class. You should not try to override this"
196
- " parameter."
197
- )
195
+ if "padding" in kwargs:
196
+ raise ValueError(
197
+ "The padding parameter is controlled internally by "
198
+ f"{type(self).__name__} class. You should not try to override this"
199
+ " parameter."
200
+ )
198
201
 
199
202
  super().__init__(
200
203
  in_channels=in_channels,
@@ -452,12 +452,14 @@ class GeneralizedGaussianFilter(nn.Module):
452
452
  self.inverse_fourier = inverse_fourier
453
453
  self.affine_group_delay = affine_group_delay
454
454
  self.clamp_f_mean = clamp_f_mean
455
- assert out_channels % in_channels == 0, (
456
- "out_channels has to be multiple of in_channels"
457
- )
458
- assert len(f_mean) * in_channels == out_channels
459
- assert len(bandwidth) * in_channels == out_channels
460
- assert len(shape) * in_channels == out_channels
455
+ if out_channels % in_channels != 0:
456
+ raise ValueError("out_channels has to be multiple of in_channels")
457
+ if len(f_mean) * in_channels != out_channels:
458
+ raise ValueError("len(f_mean) * in_channels must equal out_channels")
459
+ if len(bandwidth) * in_channels != out_channels:
460
+ raise ValueError("len(bandwidth) * in_channels must equal out_channels")
461
+ if len(shape) * in_channels != out_channels:
462
+ raise ValueError("len(shape) * in_channels must equal out_channels")
461
463
 
462
464
  # Range from 0 to half sample rate, normalized
463
465
  self.n_range = nn.Parameter(
@@ -11,7 +11,6 @@ from contextlib import contextmanager
11
11
 
12
12
  import numpy as np
13
13
  import torch
14
- from mne.utils.check import check_version
15
14
  from skorch.callbacks.scoring import EpochScoring
16
15
  from skorch.dataset import unpack_data
17
16
  from skorch.utils import to_numpy
@@ -370,13 +369,8 @@ class PostEpochTrainScoring(EpochScoring):
370
369
  y_preds = []
371
370
  y_test = []
372
371
  for batch in iterator:
373
- batch_X, batch_y = unpack_data(batch)
374
- # TODO: remove after skorch 0.10 release
375
- if not check_version("skorch", min_version="0.10.1"):
376
- yp = net.evaluation_step(batch_X, training=False)
377
- # X, y unpacking has been pushed downstream in skorch 0.10
378
- else:
379
- yp = net.evaluation_step(batch, training=False)
372
+ _, batch_y = unpack_data(batch)
373
+ yp = net.evaluation_step(batch, training=False)
380
374
  yp = yp.to(device="cpu")
381
375
  y_test.append(self.target_extractor(batch_y))
382
376
  y_preds.append(yp)
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.0.dev169062562"
1
+ __version__ = "1.2.0.dev176358851"
@@ -6,8 +6,13 @@ import numpy as np
6
6
  import torch
7
7
  from skorch.utils import to_numpy, to_tensor
8
8
 
9
+ from braindecode.util import set_random_seeds
9
10
 
10
- def compute_amplitude_gradients(model, dataset, batch_size):
11
+
12
+ def compute_amplitude_gradients(model, dataset, batch_size, seed=20240205):
13
+ """Compute amplitude gradients after seeding for reproducibility."""
14
+ cuda = next(model.parameters()).is_cuda
15
+ set_random_seeds(seed=seed, cuda=cuda)
11
16
  loader = torch.utils.data.DataLoader(
12
17
  dataset, batch_size=batch_size, drop_last=False, shuffle=False
13
18
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.2.0.dev169062562
3
+ Version: 1.2.0.dev176358851
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
3
3
  braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
4
4
  braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
5
5
  braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
6
- braindecode/version.py,sha256=peEUr8wSaU7Geu5W6LeP3IamWD3aza4xEKMC4rdjQl4,35
6
+ braindecode/version.py,sha256=pqOP2XIkF23sSxHn98gks8lm_NZ40LR5V6vz_cuxJQo,35
7
7
  braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
8
8
  braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
9
9
  braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
@@ -35,12 +35,12 @@ braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTA
35
35
  braindecode/models/ctnet.py,sha256=-J9QtUM8kcntz_xinfuBBvwDMECHiMPMcr2MS4GDPEY,17308
36
36
  braindecode/models/deep4.py,sha256=YJQUw-0EuFUi4qjm8caJGB8wRM_aeJa5X_d8jrGaQAI,14588
37
37
  braindecode/models/deepsleepnet.py,sha256=RrciuVJtZ-fhiUl-yLPfK2FP-G29V5Wor6pPlrMHQWQ,9218
38
- braindecode/models/eegconformer.py,sha256=_Y0SXprBD74zD8nKPcS9HQ6PoWzfpu-VCY7Tj6R7Xrs,11612
38
+ braindecode/models/eegconformer.py,sha256=OSORbNYwMA0hvUMjuyB8wI8qBKVSiraioLHTHmt8sdQ,17376
39
39
  braindecode/models/eeginception_erp.py,sha256=mwh3rGSHAJVvnbOlYTuWWkKxlmFAdAXBNCrq4IPgOS4,11408
40
40
  braindecode/models/eeginception_mi.py,sha256=aKJRFuYrpbcRbmmT2xVghKbK8pnl7fzu5hrV0ybRKso,12424
41
41
  braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
42
42
  braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
43
- braindecode/models/eegnet.py,sha256=1ZAG0KLDedkodDfqgnGGsoZj6iuU55kGmBlyQo1b47w,16284
43
+ braindecode/models/eegnet.py,sha256=YeBCmU6Al9FDS4MZQTOLd0MCUfPbM6tmVlGWpb59Qzg,19256
44
44
  braindecode/models/eegnex.py,sha256=KNJIh8pFNhY087Bey2OPzDD4Uqw9pS6UkwMjnOngBzg,8497
45
45
  braindecode/models/eegresnet.py,sha256=cqWOSGqfJN_dNYUU9l8nYd_S3T1N-UX5-encKQzfBlg,12057
46
46
  braindecode/models/eegsimpleconv.py,sha256=sHpK-7ZGOCMuXsdkSVuarFTd1T0jMJUP_xwXP3gxQwc,7268
@@ -69,10 +69,10 @@ braindecode/models/usleep.py,sha256=dFh3KiZITu13gMxcbPGoK4hq2ySDWzVSCQXkj1006w0,
69
69
  braindecode/models/util.py,sha256=VrhwG1YBGwKohCej6TmhrNAIoleQHRu3YdiBPuHFY_E,5302
70
70
  braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
71
71
  braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
72
- braindecode/modules/attention.py,sha256=fsjruzqMdtPbcS6jbU5ux8xtHl0BVrKt4agyf2yNe_E,23966
72
+ braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
73
73
  braindecode/modules/blocks.py,sha256=QE34HBg7kmEj0z-8dQZ1jJErLRPcniGIorMTeIArpv4,3621
74
- braindecode/modules/convolution.py,sha256=VAqJXj1Xfb7qlnjRAhH_fJT8qPcaAqy5FHu_sNEbkWw,8291
75
- braindecode/modules/filter.py,sha256=tj3zFQf40kt605yKE3bGpmnxtf91FTY7cWqxwAIIGPc,25050
74
+ braindecode/modules/convolution.py,sha256=gZMMOa-2gy1nfduA_j2ezgdIdq5Bi2PtonNomWA4D8k,8481
75
+ braindecode/modules/filter.py,sha256=iCz0HiGKrBS09m3aGiNnZEt8jpYOOrmn6SpPCUcuHfU,25291
76
76
  braindecode/modules/layers.py,sha256=w_tAGcm8BDFiyMdAYM4DNLx46zIUted8B6my8_jtpps,3724
77
77
  braindecode/modules/linear.py,sha256=pNhSUU0u-IGEUCjAfEDq_TJWnIJMWuOk7Y5L-7I8Meg,1702
78
78
  braindecode/modules/parametrization.py,sha256=sTvV21-sdpqpiY2PzwDebi7SeEvkFw8yDgA6OqJDo34,1310
@@ -89,13 +89,13 @@ braindecode/samplers/ssl.py,sha256=C-FKopnbncN_-spQPCrgljY5Qds4fgTLr2TG3s_-QqU,9
89
89
  braindecode/training/__init__.py,sha256=sxtfI6MgxX3aP03EFc0wJYA37uULoL9SQyUao1Oxyn0,523
90
90
  braindecode/training/callbacks.py,sha256=LqXqzJd6s3w0pvAKy9TEVTxWwVRyWNEu2uyWVsvb9RQ,839
91
91
  braindecode/training/losses.py,sha256=EyVVZE_028G6WwrAtzLbrRfDLgsoKwLLhqIkOYBXNL4,3551
92
- braindecode/training/scoring.py,sha256=tG7uCojIG3KIQZq3AymrdwlIJLlzbgsS0nBLUXQ-A8s,19062
92
+ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4eU,18716
93
93
  braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
94
94
  braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
95
- braindecode/visualization/gradients.py,sha256=qAtXmuXkCDsWs8RMxvE6T9dz3uv_BhwTqhzkFFsEUDI,1948
96
- braindecode-1.2.0.dev169062562.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
- braindecode-1.2.0.dev169062562.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
- braindecode-1.2.0.dev169062562.dist-info/METADATA,sha256=-76DvxesVFpEyLE_1OeR6BFkmbyz5Hij3w-epsTsM3w,6883
99
- braindecode-1.2.0.dev169062562.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- braindecode-1.2.0.dev169062562.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
- braindecode-1.2.0.dev169062562.dist-info/RECORD,,
95
+ braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
96
+ braindecode-1.2.0.dev176358851.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
+ braindecode-1.2.0.dev176358851.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
+ braindecode-1.2.0.dev176358851.dist-info/METADATA,sha256=23uR3nYKaKV2G4EtrutqVU6r40qFe4_Oh9DuXDX5fFI,6883
99
+ braindecode-1.2.0.dev176358851.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
+ braindecode-1.2.0.dev176358851.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
+ braindecode-1.2.0.dev176358851.dist-info/RECORD,,