braindecode 1.2.0.dev169062562__py3-none-any.whl → 1.2.0.dev176281713__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

@@ -12,33 +12,129 @@ from braindecode.modules import FeedForwardBlock, MultiHeadAttention
12
12
 
13
13
 
14
14
  class EEGConformer(EEGModuleMixin, nn.Module):
15
- """EEG Conformer from Song et al. (2022) from [song2022]_.
15
+ """EEG Conformer from Song et al. (2022) [song2022]_.
16
16
 
17
- .. figure:: https://raw.githubusercontent.com/eeyhsong/EEG-Conformer/refs/heads/main/visualization/Fig1.png
17
+ :bdg-success:`Convolution` :bdg-info:`Small Attention`
18
+
19
+ .. figure:: https://raw.githubusercontent.com/eeyhsong/EEG-Conformer/refs/heads/main/visualization/Fig1.png
18
20
  :align: center
19
21
  :alt: EEGConformer Architecture
22
+ :width: 600px
23
+
24
+
25
+ .. rubric:: Architectural Overview
26
+
27
+ EEG-Conformer is a *convolution-first* model augmented with a *lightweight transformer
28
+ encoder*. The end-to-end flow is:
29
+
30
+ - (i) :class:`_PatchEmbedding` converts the continuous EEG into a compact sequence of tokens via a
31
+ :class:`ShallowFBCSPNet` temporal–spatial conv stem and temporal pooling;
32
+ - (ii) :class:`_TransformerEncoder` applies small multi-head self-attention to integrate
33
+ longer-range temporal context across tokens;
34
+ - (iii) :class:`_ClassificationHead` aggregates the sequence and performs a linear readout.
35
+ This preserves the strong inductive biases of shallow CNN filter banks while adding
36
+ just enough attention to capture dependencies beyond the pooling horizon [song2022]_.
37
+
38
+ .. rubric:: Macro Components
39
+
40
+ - :class:`_PatchEmbedding` **(Shallow conv stem → tokens)**
41
+
42
+ - *Operations.*
43
+ - A temporal convolution (`:class:torch.nn.Conv2d`) ``(1 x L_t)`` forms a data-driven "filter bank";
44
+ - A spatial convolution (`:class:torch.nn.Conv2d`) (n_chans x 1)`` projects across electrodes,
45
+ collapsing the channel axis into a virtual channel.
46
+ - **Normalization function** :class:`torch.nn.BatchNorm`
47
+ - **Activation function** :class:`torch.nn.ELU`
48
+ - **Average Pooling** :class:`torch.nn.AvgPool` along time (kernel ``(1, P)`` with stride ``(1, S)``)
49
+ - final ``1x1`` :class:`torch.nn.Linear` projection.
50
+
51
+ The result is rearranged to a token sequence ``(B, S_tokens, D)``, where ``D = n_filters_time``.
52
+
53
+ *Interpretability/robustness.* Temporal kernels can be inspected as FIR filters;
54
+ the spatial conv yields channel projections analogous to :class:`ShallowFBCSPNet`’s learned
55
+ spatial filters. Temporal pooling stabilizes statistics and reduces sequence length.
56
+
57
+ - :class:`_TransformerEncoder` **(context over temporal tokens)**
58
+
59
+ - *Operations.*
60
+ - A stack of ``att_depth`` encoder blocks. :class:`_TransformerEncoderBlock`
61
+ - Each block applies LayerNorm :class:`torch.nn.LayerNorm`
62
+ - Multi-Head Self-Attention (``att_heads``) with dropout + residual :class:`MultiHeadAttention` (:class:`torch.nn.Dropout`)
63
+ - LayerNorm :class:`torch.nn.LayerNorm`
64
+ - 2-layer feed-forward (≈4x expansion, :class:`torch.nn.GELU`) with dropout + residual.
65
+
66
+ Shapes remain ``(B, S_tokens, D)`` throughout.
20
67
 
21
- Convolutional Transformer for EEG decoding.
68
+ *Role.* Small attention focuses on interactions among *temporal patches* (not channels),
69
+ extending effective receptive fields at modest cost.
22
70
 
23
- The paper and original code with more details about the methodological
24
- choices are available at the [song2022]_ and [ConformerCode]_.
71
+ - :class:`ClassificationHead` **(aggregation + readout)**
25
72
 
26
- This neural network architecture receives a traditional braindecode input.
27
- The input shape should be three-dimensional matrix representing the EEG
28
- signals.
73
+ - *Operations*.
74
+ - Flatten, :class:`torch.nn.Flatten` the sequence ``(B, S_tokens·D)`` -
75
+ - MLP (:class:`torch.nn.Linear` → activation (default: :class:`torch.nn.ELU`) → :class:`torch.nn.Dropout` → :class:`torch.nn.Linear`)
76
+ - final Linear to classes.
29
77
 
30
- `(batch_size, n_channels, n_timesteps)`.
78
+ With ``return_features=True``, features before the last Linear can be exported for
79
+ linear probing or downstream tasks.
31
80
 
32
- The EEG Conformer architecture is composed of three modules:
33
- - PatchEmbedding
34
- - TransformerEncoder
35
- - ClassificationHead
81
+ .. rubric:: Convolutional Details
82
+
83
+ - **Temporal (where time-domain patterns are learned).**
84
+ The initial ``(1 x L_t)`` conv per channel acts as a *learned filter bank* for oscillatory
85
+ bands and transients. Subsequent **AvgPool** along time performs local integration,
86
+ converting activations into “patches” (tokens). Pool length/stride control the
87
+ token rate and set the lower bound on temporal context within each token.
88
+
89
+ - **Spatial (how electrodes are processed).**
90
+ A single conv with kernel ``(n_chans x 1)`` spans the full montage to learn spatial
91
+ projections for each temporal feature map, collapsing the channel axis into a
92
+ virtual channel before tokenization. This mirrors the shallow spatial step in
93
+ :class:`ShallowFBCSPNet` (temporal filters → spatial projection → temporal condensation).
94
+
95
+ - **Spectral (how frequency content is captured).**
96
+ No explicit Fourier/wavelet stage is used. Spectral selectivity emerges implicitly
97
+ from the learned temporal kernels; pooling further smooths high-frequency noise.
98
+ The effective spectral resolution is thus governed by ``L_t`` and the pooling
99
+ configuration.
100
+
101
+ .. rubric:: Attention / Sequential Modules
102
+
103
+ - **Type.** Standard multi-head self-attention (MHA) with ``att_heads`` heads over the token sequence.
104
+ - **Shapes.** Input/Output: ``(B, S_tokens, D)``; attention operates along the ``S_tokens`` axis.
105
+ - **Role.** Re-weights and integrates evidence across pooled windows, capturing dependencies
106
+ longer than any single token while leaving channel relationships to the convolutional stem.
107
+ The design is intentionally *small*—attention refines rather than replaces convolutional feature extraction.
108
+
109
+ .. rubric:: Additional Mechanisms
110
+
111
+ - **Parallel with ShallowFBCSPNet.** Both begin with a learned temporal filter bank,
112
+ spatial projection across electrodes, and early temporal condensation.
113
+ :class:`ShallowFBCSPNet` then computes band-power (via squaring/log-variance), whereas
114
+ EEG-Conformer applies BN/ELU and **continues with attention** over tokens to
115
+ refine temporal context before classification.
116
+
117
+ - **Tokenization knob.** ``pool_time_length`` and especially ``pool_time_stride`` set
118
+ the number of tokens ``S_tokens``. Smaller strides → more tokens and higher attention
119
+ capacity (but higher compute); larger strides → fewer tokens and stronger inductive bias.
120
+
121
+ - **Embedding dimension = filters.** ``n_filters_time`` serves double duty as both the
122
+ number of temporal filters in the stem and the transformer’s embedding size ``D``,
123
+ simplifying dimensional alignment.
124
+
125
+ .. rubric:: Usage and Configuration
126
+
127
+ - **Instantiation.** Choose ``n_filters_time`` (embedding size ``D``) and
128
+ ``filter_time_length`` to match the rhythms of interest. Tune
129
+ ``pool_time_length/stride`` to trade temporal resolution for sequence length.
130
+ Keep ``att_depth`` modest (e.g., 4–6) and set ``att_heads`` to divide ``D``.
131
+ ``final_fc_length="auto"`` infers the flattened size from PatchEmbedding.
36
132
 
37
133
  Notes
38
134
  -----
39
135
  The authors recommend using data augmentation before using Conformer,
40
136
  e.g. segmentation and recombination,
41
- Please refer to the original paper and code for more details.
137
+ Please refer to the original paper and code for more details [ConformerCode]_.
42
138
 
43
139
  The model was initially tuned on 4 seconds of 250 Hz data.
44
140
  Please adjust the scale of the temporal convolutional layer,
@@ -47,7 +143,10 @@ class EEGConformer(EEGModuleMixin, nn.Module):
47
143
  .. versionadded:: 0.8
48
144
 
49
145
  We aggregate the parameters based on the parts of the models, or
50
- when the parameters were used first, e.g. n_filters_time.
146
+ when the parameters were used first, e.g. ``n_filters_time``.
147
+
148
+ .. versionadded:: 1.1
149
+
51
150
 
52
151
  Parameters
53
152
  ----------
@@ -20,13 +20,59 @@ from braindecode.modules import (
20
20
 
21
21
 
22
22
  class EEGNetv4(EEGModuleMixin, nn.Sequential):
23
- """EEGNet v4 model from Lawhern et al. (2018) [EEGNet4]_.
23
+ """EEGNet v4 model from Lawhern et al. (2018) [Lawhern2018]_.
24
+
25
+ :bdg-success:`Convolution` :bdg-secondary:`Depthwise–Separable`
24
26
 
25
27
  .. figure:: https://content.cld.iop.org/journals/1741-2552/15/5/056013/revision2/jneaace8cf01_hr.jpg
26
28
  :align: center
27
- :alt: EEGNet4 Architecture
29
+ :alt: EEGNetv4 Architecture
30
+ :width: 600px
31
+
32
+ .. rubric:: Architectural Overview
33
+
34
+ EEGNetv4 is a compact convolutional network designed for EEG decoding with a pipeline that mirrors classical EEG processing:
35
+ - (i) learn temporal frequency-selective filters,
36
+ - (ii) learn spatial filters for those frequencies, and
37
+ - (iii) condense features with depthwise–separable convolutions before a lightweight classifier.
38
+
39
+ The architecture is deliberately small (temporal convolutional and spatial patterns) [Lawhern2018]_.
40
+
41
+ .. rubric:: Macro Components
42
+
43
+ - **Temporal convolution**
44
+ Temporal convolution applied per channel; learns ``F1`` kernels that act as data-driven band-pass filters.
45
+ - **Depthwise Spatial Filtering.**
46
+ Depthwise convolution spanning the channel dimension with ``groups = F1``,
47
+ yielding ``D`` spatial filters for each temporal filter (no cross-filter mixing).
48
+ - **Norm–Nonlinearity–Pooling (+ dropout).**
49
+ Batch normalization → ELU → temporal pooling, with dropout.
50
+ - **Depthwise–Separable Convolution Block.**
51
+ (a) depthwise temporal conv to refine temporal structure;
52
+ (b) pointwise 1x1 conv to mix feature maps into ``F2`` combinations.
53
+ - **Classifier Head.**
54
+ Lightweight 1x1 conv or dense layer (often with max-norm constraint).
28
55
 
29
- See details in [EEGNet4]_.
56
+ .. rubric:: Convolutional Details
57
+
58
+ - **Temporal.** The initial temporal convs serve as a *learned filter bank*:
59
+ long 1-D kernels (implemented as 2-D with singleton spatial extent) emphasize oscillatory bands and transients.
60
+ Because this stage is linear prior to BN/ELU, kernels can be analyzed as FIR filters to reveal each feature’s spectrum [Lawhern2018]_.
61
+
62
+ - **Spatial.** The depthwise spatial conv spans the full channel axis (kernel height = #electrodes; temporal size = 1).
63
+ With ``groups = F1``, each temporal filter learns its own set of ``D`` spatial projections—akin to CSP, learned end-to-end and
64
+ typically regularized with max-norm.
65
+
66
+ - **Spectral.** No explicit Fourier/wavelet transform is used. Frequency structure
67
+ is captured implicitly by the temporal filter bank; later depthwise temporal kernels act as short-time integrators/refiners.
68
+
69
+ .. rubric:: Additional Comments
70
+
71
+ - **Filter-bank structure:** Parallel temporal kernels (``F1``) emulate classical filter banks; pairing them with frequency-specific spatial filters
72
+ yields features mappable to rhythms and topographies.
73
+ - **Depthwise & separable convs:** Parameter-efficient decomposition (depthwise + pointwise) retains power while limiting overfitting
74
+ [Chollet2017]_ and keeps temporal vs. mixing steps interpretable.
75
+ - **Regularization:** Batch norm, dropout, pooling, and optional max-norm on spatial kernels aid stability on small EEG datasets.
30
76
 
31
77
  Parameters
32
78
  ----------
@@ -68,10 +114,13 @@ class EEGNetv4(EEGModuleMixin, nn.Sequential):
68
114
 
69
115
  References
70
116
  ----------
71
- .. [EEGNet4] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
117
+ .. [Lawhern2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M.,
72
118
  Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional
73
119
  neural network for EEG-based brain–computer interfaces. Journal of
74
120
  neural engineering, 15(5), 056013.
121
+ .. [Chollet2017] Chollet, F., *Xception: Deep Learning with Depthwise Separable
122
+ Convolutions*, CVPR, 2017.
123
+
75
124
  """
76
125
 
77
126
  def __init__(
@@ -16,9 +16,124 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
16
16
  class EEGNeX(EEGModuleMixin, nn.Module):
17
17
  """EEGNeX model from Chen et al. (2024) [eegnex]_.
18
18
 
19
+ :bdg-success:`Convolution`
20
+
19
21
  .. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
20
22
  :align: center
21
23
  :alt: EEGNeX Architecture
24
+ :width: 620px
25
+
26
+ .. rubric:: Architectural Overview
27
+
28
+ EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
29
+ and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
30
+ flow is:
31
+
32
+ - (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
33
+ learned FIR-like *temporal filter bank* (no pooling yet);
34
+ - (ii) **Block-3**: depthwise **spatial** convolution across electrodes
35
+ ``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
36
+ - (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
37
+ to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
38
+ - (iv) **Classifier**: a max-norm–constrained linear layer.
39
+
40
+ The published work positions EEGNeX as a compact, conv-only alternative that consistently
41
+ outperforms prior baselines across MOABB-style benchmarks, with the popular
42
+ “EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
43
+
44
+
45
+ .. rubric:: Macro Components
46
+
47
+ - **Block-1 / Block-2 — Temporal filter (learned).**
48
+
49
+ - *Operations.*
50
+ - :class:`torch.nn.Conv2d` with kernels ``(1, L)``
51
+ - :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
52
+ These layers set up frequency-selective detectors before spatial mixing.
53
+
54
+ - *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
55
+ convs allow longer effective kernels without parameter blow-up.
56
+
57
+ - **Block-3 — Spatial projection + condensation.**
58
+
59
+ - *Operations.*
60
+ - :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
61
+ and ``groups = filter_2`` (depthwise across filters)
62
+ - :class:`torch.nn.BatchNorm2d`
63
+ - :class:`torch.nn.ELU`
64
+ - :class:`torch.nn.AvgPool2d` (time)
65
+ - :class:`torch.nn.Dropout`.
66
+
67
+ *Role.* Learns per-filter spatial patterns over the **full montage** while temporal
68
+ pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
69
+ weights similar to EEGNet practice.
70
+
71
+ - **Block-4 / Block-5 — Dilated temporal integration.**
72
+
73
+ - *Operations.*
74
+ - :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
75
+ (e.g., 2 then 4);
76
+ - :class:`torch.nn.BatchNorm2d`
77
+ - :class:`torch.nn.ELU`
78
+ - :class:`torch.nn.AvgPool2d` (time)
79
+ - :class:`torch.nn.Dropout`
80
+ - :class:`torch.nn.Flatten`.
81
+
82
+ *Role.* Expands the temporal receptive field efficiently to capture rhythms and
83
+ long-range context after condensation.
84
+
85
+ - **Final Classifier — Max-norm linear.**
86
+
87
+ - *Operations.*
88
+ - :class:`braindecode.modules.LinearWithConstraint` maps the flattened
89
+ vector to the target classes; the max-norm constraint regularizes the readout.
90
+
91
+
92
+ .. rubric:: Convolutional Details
93
+
94
+ - **Temporal (where time-domain patterns are learned).**
95
+ Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
96
+ use **dilation** to integrate over longer horizons without extra pooling. The final
97
+ AvgPool in Block-5 sets the output token rate and helps noise suppression.
98
+
99
+ - **Spatial (how electrodes are processed).**
100
+ A *single* depthwise spatial conv (Block-3) spans the entire electrode set
101
+ (kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
102
+ mixing occurs at this stage, aiding interpretability.
103
+
104
+ - **Spectral (how frequency content is captured).**
105
+ Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
106
+ bandwidth coverage by composing multiple scales.
107
+
108
+ .. rubric:: Additional Mechanisms
109
+
110
+ - **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
111
+ reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
112
+ and a deeper conv stack.
113
+ - **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
114
+ regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
115
+ patterns.
116
+
117
+ .. rubric:: Usage and Configuration
118
+
119
+ - **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
120
+ ``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
121
+ the paper's “pure conv” profile.
122
+ - **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
123
+ increase dilations (Blocks 4-5) to widen temporal context when windows are short.
124
+ - **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
125
+ classifier layers; prefer ELU activations for stable training on small EEG datasets.
126
+
127
+
128
+ Notes
129
+ -----
130
+ - The braindecode implementation follows the paper's conv-only design with five blocks
131
+ and reproduces the depthwise spatial step and dilated temporal stack. See the class
132
+ reference for exact kernel sizes, dilations, and pooling defaults. You can check the
133
+ original implementation at [EEGNexCode]_.
134
+
135
+ .. versionadded:: 1.1
136
+
22
137
 
23
138
  Parameters
24
139
  ----------
@@ -45,12 +160,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
45
160
  avg_pool_block5 : tuple[int, int], optional
46
161
  Pooling size for block 5. Default is (1, 8).
47
162
 
48
- Notes
49
- -----
50
- This implementation is not guaranteed to be correct, has not been checked
51
- by original authors, only reimplemented from the paper description and
52
- source code in tensorflow [EEGNexCode]_.
53
-
54
163
  References
55
164
  ----------
56
165
  .. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
@@ -1,41 +1,40 @@
1
- Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
2
- ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
3
- AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
4
- BDTCN,Normal/Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
6
- ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
7
- CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
8
- Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
9
- DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
10
- EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)."
11
- EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
12
- EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
13
- EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
14
- EEGNetv1,General,Classification,128,"n_chans, n_outputs, n_times",3052,"EEGNetv1(n_chans=22, n_outputs=4, n_times=512)"
15
- EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)"
16
- EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)"
17
- EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)"
18
- EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)"
19
- EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)"
20
- EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)"
21
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
22
- MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)"
23
- SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)"
24
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
25
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
26
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
27
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
28
- SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
29
- ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
30
- SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
31
- SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)"
32
- SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
33
- SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)"
34
- SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
35
- TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
36
- TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)"
37
- USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
38
- FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
39
- FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
40
- FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
41
- IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
1
+ Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
2
+ ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
+ AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
+ BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
6
+ ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
+ CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
+ Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
9
+ DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution"
10
+ EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
11
+ EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
12
+ EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
13
+ EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
14
+ EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)","Convolution"
15
+ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
16
+ EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution"
17
+ EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)","Interpretability"
18
+ EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
19
+ EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
20
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
21
+ MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
22
+ SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
23
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
25
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
26
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
27
+ SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
28
+ ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
29
+ SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
30
+ SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
31
+ SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
32
+ SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
33
+ SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
34
+ TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
35
+ TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
36
+ USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
37
+ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
+ FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
+ FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
40
+ IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
@@ -55,7 +55,6 @@ models_mandatory_parameters = [
55
55
  ("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
56
56
  ("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
57
57
  ("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
58
- ("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
59
58
  ("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
60
59
  ("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
61
60
  ("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
@@ -157,7 +157,8 @@ class FCA(nn.Module):
157
157
  ):
158
158
  super(FCA, self).__init__()
159
159
  mapper_y = [freq_idx]
160
- assert in_channels % len(mapper_y) == 0
160
+ if in_channels % len(mapper_y) != 0:
161
+ raise ValueError("in_channels must be divisible by number of DCT filters")
161
162
 
162
163
  self.weight = nn.Parameter(
163
164
  self.get_dct_filter(seq_len, mapper_y, in_channels), requires_grad=False
@@ -295,7 +296,8 @@ class ECA(nn.Module):
295
296
  def __init__(self, in_channels: int, kernel_size: int):
296
297
  super(ECA, self).__init__()
297
298
  self.gap = nn.AdaptiveAvgPool2d(1)
298
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
299
+ if kernel_size % 2 != 1:
300
+ raise ValueError("kernel size must be odd for same padding")
299
301
  self.conv = nn.Conv1d(
300
302
  1, 1, kernel_size=kernel_size, padding=kernel_size // 2, bias=False
301
303
  )
@@ -530,7 +532,8 @@ class CBAM(nn.Module):
530
532
  nn.ReLU(),
531
533
  nn.Conv2d(in_channels // reduction_rate, in_channels, 1, bias=False),
532
534
  )
533
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
535
+ if kernel_size % 2 != 1:
536
+ raise ValueError("kernel size must be odd for same padding")
534
537
  self.conv = nn.Conv2d(2, 1, (1, kernel_size), padding=(0, kernel_size // 2))
535
538
 
536
539
  def forward(self, x):
@@ -136,7 +136,8 @@ class CombinedConv(nn.Module):
136
136
  # Calculate bias terms
137
137
  if self.bias_time:
138
138
  time_bias = self.conv_time.bias
139
- assert time_bias is not None
139
+ if time_bias is None:
140
+ raise RuntimeError("conv_time.bias is None despite bias_time=True")
140
141
  calculated_bias = (
141
142
  self.conv_spat.weight.squeeze()
142
143
  .sum(-1)
@@ -145,7 +146,8 @@ class CombinedConv(nn.Module):
145
146
  )
146
147
  if self.bias_spat:
147
148
  spat_bias = self.conv_spat.bias
148
- assert spat_bias is not None
149
+ if spat_bias is None:
150
+ raise RuntimeError("conv_spat.bias is None despite bias_spat=True")
149
151
  if calculated_bias is None:
150
152
  calculated_bias = spat_bias
151
153
  else:
@@ -190,11 +192,12 @@ class CausalConv1d(nn.Conv1d):
190
192
  dilation=1,
191
193
  **kwargs,
192
194
  ):
193
- assert "padding" not in kwargs, (
194
- "The padding parameter is controlled internally by "
195
- f"{type(self).__name__} class. You should not try to override this"
196
- " parameter."
197
- )
195
+ if "padding" in kwargs:
196
+ raise ValueError(
197
+ "The padding parameter is controlled internally by "
198
+ f"{type(self).__name__} class. You should not try to override this"
199
+ " parameter."
200
+ )
198
201
 
199
202
  super().__init__(
200
203
  in_channels=in_channels,
@@ -452,12 +452,14 @@ class GeneralizedGaussianFilter(nn.Module):
452
452
  self.inverse_fourier = inverse_fourier
453
453
  self.affine_group_delay = affine_group_delay
454
454
  self.clamp_f_mean = clamp_f_mean
455
- assert out_channels % in_channels == 0, (
456
- "out_channels has to be multiple of in_channels"
457
- )
458
- assert len(f_mean) * in_channels == out_channels
459
- assert len(bandwidth) * in_channels == out_channels
460
- assert len(shape) * in_channels == out_channels
455
+ if out_channels % in_channels != 0:
456
+ raise ValueError("out_channels has to be multiple of in_channels")
457
+ if len(f_mean) * in_channels != out_channels:
458
+ raise ValueError("len(f_mean) * in_channels must equal out_channels")
459
+ if len(bandwidth) * in_channels != out_channels:
460
+ raise ValueError("len(bandwidth) * in_channels must equal out_channels")
461
+ if len(shape) * in_channels != out_channels:
462
+ raise ValueError("len(shape) * in_channels must equal out_channels")
461
463
 
462
464
  # Range from 0 to half sample rate, normalized
463
465
  self.n_range = nn.Parameter(
@@ -11,7 +11,6 @@ from contextlib import contextmanager
11
11
 
12
12
  import numpy as np
13
13
  import torch
14
- from mne.utils.check import check_version
15
14
  from skorch.callbacks.scoring import EpochScoring
16
15
  from skorch.dataset import unpack_data
17
16
  from skorch.utils import to_numpy
@@ -370,13 +369,8 @@ class PostEpochTrainScoring(EpochScoring):
370
369
  y_preds = []
371
370
  y_test = []
372
371
  for batch in iterator:
373
- batch_X, batch_y = unpack_data(batch)
374
- # TODO: remove after skorch 0.10 release
375
- if not check_version("skorch", min_version="0.10.1"):
376
- yp = net.evaluation_step(batch_X, training=False)
377
- # X, y unpacking has been pushed downstream in skorch 0.10
378
- else:
379
- yp = net.evaluation_step(batch, training=False)
372
+ _, batch_y = unpack_data(batch)
373
+ yp = net.evaluation_step(batch, training=False)
380
374
  yp = yp.to(device="cpu")
381
375
  y_test.append(self.target_extractor(batch_y))
382
376
  y_preds.append(yp)
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.0.dev169062562"
1
+ __version__ = "1.2.0.dev176281713"
@@ -6,8 +6,13 @@ import numpy as np
6
6
  import torch
7
7
  from skorch.utils import to_numpy, to_tensor
8
8
 
9
+ from braindecode.util import set_random_seeds
9
10
 
10
- def compute_amplitude_gradients(model, dataset, batch_size):
11
+
12
+ def compute_amplitude_gradients(model, dataset, batch_size, seed=20240205):
13
+ """Compute amplitude gradients after seeding for reproducibility."""
14
+ cuda = next(model.parameters()).is_cuda
15
+ set_random_seeds(seed=seed, cuda=cuda)
11
16
  loader = torch.utils.data.DataLoader(
12
17
  dataset, batch_size=batch_size, drop_last=False, shuffle=False
13
18
  )