braindecode 1.2.0.dev169062562__py3-none-any.whl → 1.2.0.dev175267687__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/datasets/experimental.py +218 -0
- braindecode/models/__init__.py +6 -8
- braindecode/models/atcnet.py +152 -12
- braindecode/models/attentionbasenet.py +151 -26
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
- braindecode/models/ctnet.py +1 -1
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +118 -5
- braindecode/models/eegconformer.py +114 -15
- braindecode/models/eeginception_erp.py +76 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegnet.py +62 -176
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +1 -1
- braindecode/models/sccnet.py +79 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/summary.csv +39 -41
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +103 -9
- braindecode/models/util.py +5 -5
- braindecode/modules/attention.py +6 -3
- braindecode/modules/convolution.py +10 -7
- braindecode/modules/filter.py +8 -6
- braindecode/training/scoring.py +2 -8
- braindecode/version.py +1 -1
- braindecode/visualization/gradients.py +6 -1
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/METADATA +7 -2
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/RECORD +37 -37
- braindecode/models/eegresnet.py +0 -362
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/top_level.txt +0 -0
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,39 @@
|
|
|
1
|
-
Model,
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
41
|
-
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
1
|
+
Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
|
|
20
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
26
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
|
+
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
29
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
30
|
+
AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
31
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
32
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
33
|
+
TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
34
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
35
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
36
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
37
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
braindecode/models/tidnet.py
CHANGED
|
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
|
|
|
13
13
|
class TIDNet(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
|
|
17
19
|
:align: center
|
|
18
20
|
:alt: TIDNet Architecture
|
|
@@ -7,19 +7,21 @@ from __future__ import annotations
|
|
|
7
7
|
import torch
|
|
8
8
|
import torch.nn as nn
|
|
9
9
|
from einops.layers.torch import Rearrange
|
|
10
|
-
from mne.utils import warn
|
|
10
|
+
from mne.utils import deprecated, warn
|
|
11
11
|
|
|
12
12
|
from braindecode.models.base import EEGModuleMixin
|
|
13
13
|
|
|
14
14
|
|
|
15
|
-
class
|
|
15
|
+
class TSception(EEGModuleMixin, nn.Module):
|
|
16
16
|
"""TSception model from Ding et al. (2020) from [ding2020]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
TSception: A deep learning framework for emotion detection using EEG.
|
|
19
21
|
|
|
20
22
|
.. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
|
|
21
23
|
:align: center
|
|
22
|
-
:alt:
|
|
24
|
+
:alt: TSception Architecture
|
|
23
25
|
|
|
24
26
|
The model consists of temporal and spatial convolutional layers
|
|
25
27
|
(Tception and Sception) designed to learn temporal and spatial features
|
|
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
|
|
|
281
283
|
activation(),
|
|
282
284
|
nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
|
|
283
285
|
)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
@deprecated(
|
|
289
|
+
"`TSceptionV1` was renamed to `TSception` in v1.12; "
|
|
290
|
+
"this alias will be removed in v1.14."
|
|
291
|
+
)
|
|
292
|
+
class TSceptionV1(TSception):
|
|
293
|
+
"""Deprecated alias for TSception."""
|
|
294
|
+
|
|
295
|
+
pass
|
braindecode/models/usleep.py
CHANGED
|
@@ -15,22 +15,116 @@ class USleep(EEGModuleMixin, nn.Module):
|
|
|
15
15
|
"""
|
|
16
16
|
Sleep staging architecture from Perslev et al. (2021) [1]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
.. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
|
|
19
21
|
:align: center
|
|
20
22
|
:alt: USleep Architecture
|
|
21
23
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
+
Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
|
|
25
|
+
the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
|
|
26
|
+
classifier (right) which generates sleep stages at a chosen temporal resolution.
|
|
27
|
+
|
|
28
|
+
.. rubric:: Architectural Overview
|
|
29
|
+
|
|
30
|
+
U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
|
|
31
|
+
time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
|
|
32
|
+
per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
|
|
33
|
+
processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
|
|
34
|
+
hypnograms in seconds.
|
|
35
|
+
|
|
36
|
+
- (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
|
|
37
|
+
- (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
|
|
38
|
+
- (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
|
|
39
|
+
per-epoch probabilities. Integrates into the USleep class.
|
|
40
|
+
|
|
41
|
+
.. rubric:: Macro Components
|
|
42
|
+
|
|
43
|
+
- Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
|
|
44
|
+
|
|
45
|
+
- *Operations.*
|
|
46
|
+
- **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
|
|
47
|
+
- **ELU** (:class:`torch.nn.ELU`)
|
|
48
|
+
- **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
|
|
49
|
+
- **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
|
|
50
|
+
|
|
51
|
+
Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
|
|
52
|
+
(pre-pooling activation) to the matching decoder block.
|
|
53
|
+
*Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
|
|
54
|
+
context over minutes—foundational for robust cross-cohort staging.
|
|
55
|
+
|
|
56
|
+
The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
|
|
57
|
+
to the matching decoder block.
|
|
58
|
+
|
|
59
|
+
**Rationale.**
|
|
60
|
+
- Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
|
|
61
|
+
|
|
62
|
+
- Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
|
|
63
|
+
|
|
64
|
+
- *Operations.*
|
|
65
|
+
- **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
|
|
66
|
+
- **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
|
|
67
|
+
- ELU, :class:`torch.nn.ELU`
|
|
68
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`
|
|
69
|
+
- **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
|
|
70
|
+
- **Convolution**, :class:`torch.nn.Conv2d`
|
|
71
|
+
- ELU, :class:`torch.nn.ELU`
|
|
72
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`.
|
|
73
|
+
|
|
74
|
+
**Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
|
|
75
|
+
|
|
76
|
+
- **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
|
|
77
|
+
|
|
78
|
+
- *Operations.*
|
|
79
|
+
- **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
|
|
80
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d`
|
|
81
|
+
- ELU, :class:`torch.nn.ELU`
|
|
82
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
|
|
83
|
+
|
|
84
|
+
**Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
|
|
85
|
+
|
|
86
|
+
.. rubric:: Convolutional Details
|
|
87
|
+
|
|
88
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
89
|
+
All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
|
|
90
|
+
(reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
|
|
91
|
+
The decoder restores sample-level resolution before epoch aggregation.
|
|
92
|
+
|
|
93
|
+
- **Spatial (how channels are processed).**
|
|
94
|
+
Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
|
|
95
|
+
is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
|
|
96
|
+
supporting robustness to channel placement and hardware differences.
|
|
97
|
+
|
|
98
|
+
- **Spectral (how frequency content is captured).**
|
|
99
|
+
No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
|
|
100
|
+
filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
|
|
101
|
+
retains fine temporal detail for the segment classifier.
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
.. rubric:: Attention / Sequential Modules
|
|
105
|
+
|
|
106
|
+
U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
|
|
107
|
+
segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
.. rubric:: Additional Mechanisms
|
|
111
|
+
|
|
112
|
+
- **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
|
|
113
|
+
switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
|
|
114
|
+
**two-layer** pointwise head—improving capacity and resilience across datasets.
|
|
115
|
+
- **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
|
|
116
|
+
staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
|
|
117
|
+
limiting long-range context.
|
|
118
|
+
- **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
|
|
119
|
+
and memory (as described in the paper's topology table).
|
|
120
|
+
|
|
24
121
|
|
|
25
|
-
|
|
26
|
-
- the temporal dimension shrinks (via maxpooling in the time-domain)
|
|
27
|
-
- the spatial dimension expands (via more conv1d filters in the time-domain)
|
|
122
|
+
.. rubric:: Usage and Configuration
|
|
28
123
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
124
|
+
- **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
|
|
125
|
+
length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
|
|
126
|
+
≥ 17.5 min chunks).
|
|
32
127
|
|
|
33
|
-
Both do so at exponential rates.
|
|
34
128
|
|
|
35
129
|
Parameters
|
|
36
130
|
----------
|
braindecode/models/util.py
CHANGED
|
@@ -22,6 +22,8 @@ def _init_models_dict():
|
|
|
22
22
|
issubclass(m[1], models.base.EEGModuleMixin)
|
|
23
23
|
and m[1] != models.base.EEGModuleMixin
|
|
24
24
|
):
|
|
25
|
+
if m[1].__name__ == "EEGNetv4":
|
|
26
|
+
continue
|
|
25
27
|
models_dict[m[0]] = m[1]
|
|
26
28
|
|
|
27
29
|
|
|
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
|
|
|
55
57
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
58
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
59
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("
|
|
59
|
-
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
-
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
+
("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
61
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
62
62
|
(
|
|
63
63
|
"SleepStagerBlanco2020",
|
|
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
|
|
|
66
66
|
),
|
|
67
67
|
("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
68
68
|
(
|
|
69
|
-
"
|
|
69
|
+
"AttnSleep",
|
|
70
70
|
["n_outputs", "n_times", "sfreq"],
|
|
71
71
|
dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
|
|
72
72
|
), # 1 channel
|
|
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
|
|
|
79
79
|
("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
80
80
|
("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
|
|
81
81
|
("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
|
|
82
|
-
("
|
|
82
|
+
("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
83
83
|
("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
84
84
|
("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
85
85
|
("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
|
braindecode/modules/attention.py
CHANGED
|
@@ -157,7 +157,8 @@ class FCA(nn.Module):
|
|
|
157
157
|
):
|
|
158
158
|
super(FCA, self).__init__()
|
|
159
159
|
mapper_y = [freq_idx]
|
|
160
|
-
|
|
160
|
+
if in_channels % len(mapper_y) != 0:
|
|
161
|
+
raise ValueError("in_channels must be divisible by number of DCT filters")
|
|
161
162
|
|
|
162
163
|
self.weight = nn.Parameter(
|
|
163
164
|
self.get_dct_filter(seq_len, mapper_y, in_channels), requires_grad=False
|
|
@@ -295,7 +296,8 @@ class ECA(nn.Module):
|
|
|
295
296
|
def __init__(self, in_channels: int, kernel_size: int):
|
|
296
297
|
super(ECA, self).__init__()
|
|
297
298
|
self.gap = nn.AdaptiveAvgPool2d(1)
|
|
298
|
-
|
|
299
|
+
if kernel_size % 2 != 1:
|
|
300
|
+
raise ValueError("kernel size must be odd for same padding")
|
|
299
301
|
self.conv = nn.Conv1d(
|
|
300
302
|
1, 1, kernel_size=kernel_size, padding=kernel_size // 2, bias=False
|
|
301
303
|
)
|
|
@@ -530,7 +532,8 @@ class CBAM(nn.Module):
|
|
|
530
532
|
nn.ReLU(),
|
|
531
533
|
nn.Conv2d(in_channels // reduction_rate, in_channels, 1, bias=False),
|
|
532
534
|
)
|
|
533
|
-
|
|
535
|
+
if kernel_size % 2 != 1:
|
|
536
|
+
raise ValueError("kernel size must be odd for same padding")
|
|
534
537
|
self.conv = nn.Conv2d(2, 1, (1, kernel_size), padding=(0, kernel_size // 2))
|
|
535
538
|
|
|
536
539
|
def forward(self, x):
|
|
@@ -136,7 +136,8 @@ class CombinedConv(nn.Module):
|
|
|
136
136
|
# Calculate bias terms
|
|
137
137
|
if self.bias_time:
|
|
138
138
|
time_bias = self.conv_time.bias
|
|
139
|
-
|
|
139
|
+
if time_bias is None:
|
|
140
|
+
raise RuntimeError("conv_time.bias is None despite bias_time=True")
|
|
140
141
|
calculated_bias = (
|
|
141
142
|
self.conv_spat.weight.squeeze()
|
|
142
143
|
.sum(-1)
|
|
@@ -145,7 +146,8 @@ class CombinedConv(nn.Module):
|
|
|
145
146
|
)
|
|
146
147
|
if self.bias_spat:
|
|
147
148
|
spat_bias = self.conv_spat.bias
|
|
148
|
-
|
|
149
|
+
if spat_bias is None:
|
|
150
|
+
raise RuntimeError("conv_spat.bias is None despite bias_spat=True")
|
|
149
151
|
if calculated_bias is None:
|
|
150
152
|
calculated_bias = spat_bias
|
|
151
153
|
else:
|
|
@@ -190,11 +192,12 @@ class CausalConv1d(nn.Conv1d):
|
|
|
190
192
|
dilation=1,
|
|
191
193
|
**kwargs,
|
|
192
194
|
):
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
195
|
+
if "padding" in kwargs:
|
|
196
|
+
raise ValueError(
|
|
197
|
+
"The padding parameter is controlled internally by "
|
|
198
|
+
f"{type(self).__name__} class. You should not try to override this"
|
|
199
|
+
" parameter."
|
|
200
|
+
)
|
|
198
201
|
|
|
199
202
|
super().__init__(
|
|
200
203
|
in_channels=in_channels,
|
braindecode/modules/filter.py
CHANGED
|
@@ -452,12 +452,14 @@ class GeneralizedGaussianFilter(nn.Module):
|
|
|
452
452
|
self.inverse_fourier = inverse_fourier
|
|
453
453
|
self.affine_group_delay = affine_group_delay
|
|
454
454
|
self.clamp_f_mean = clamp_f_mean
|
|
455
|
-
|
|
456
|
-
"out_channels has to be multiple of in_channels"
|
|
457
|
-
)
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
455
|
+
if out_channels % in_channels != 0:
|
|
456
|
+
raise ValueError("out_channels has to be multiple of in_channels")
|
|
457
|
+
if len(f_mean) * in_channels != out_channels:
|
|
458
|
+
raise ValueError("len(f_mean) * in_channels must equal out_channels")
|
|
459
|
+
if len(bandwidth) * in_channels != out_channels:
|
|
460
|
+
raise ValueError("len(bandwidth) * in_channels must equal out_channels")
|
|
461
|
+
if len(shape) * in_channels != out_channels:
|
|
462
|
+
raise ValueError("len(shape) * in_channels must equal out_channels")
|
|
461
463
|
|
|
462
464
|
# Range from 0 to half sample rate, normalized
|
|
463
465
|
self.n_range = nn.Parameter(
|
braindecode/training/scoring.py
CHANGED
|
@@ -11,7 +11,6 @@ from contextlib import contextmanager
|
|
|
11
11
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
import torch
|
|
14
|
-
from mne.utils.check import check_version
|
|
15
14
|
from skorch.callbacks.scoring import EpochScoring
|
|
16
15
|
from skorch.dataset import unpack_data
|
|
17
16
|
from skorch.utils import to_numpy
|
|
@@ -370,13 +369,8 @@ class PostEpochTrainScoring(EpochScoring):
|
|
|
370
369
|
y_preds = []
|
|
371
370
|
y_test = []
|
|
372
371
|
for batch in iterator:
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
if not check_version("skorch", min_version="0.10.1"):
|
|
376
|
-
yp = net.evaluation_step(batch_X, training=False)
|
|
377
|
-
# X, y unpacking has been pushed downstream in skorch 0.10
|
|
378
|
-
else:
|
|
379
|
-
yp = net.evaluation_step(batch, training=False)
|
|
372
|
+
_, batch_y = unpack_data(batch)
|
|
373
|
+
yp = net.evaluation_step(batch, training=False)
|
|
380
374
|
yp = yp.to(device="cpu")
|
|
381
375
|
y_test.append(self.target_extractor(batch_y))
|
|
382
376
|
y_preds.append(yp)
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.2.0.
|
|
1
|
+
__version__ = "1.2.0.dev175267687"
|
|
@@ -6,8 +6,13 @@ import numpy as np
|
|
|
6
6
|
import torch
|
|
7
7
|
from skorch.utils import to_numpy, to_tensor
|
|
8
8
|
|
|
9
|
+
from braindecode.util import set_random_seeds
|
|
9
10
|
|
|
10
|
-
|
|
11
|
+
|
|
12
|
+
def compute_amplitude_gradients(model, dataset, batch_size, seed=20240205):
|
|
13
|
+
"""Compute amplitude gradients after seeding for reproducibility."""
|
|
14
|
+
cuda = next(model.parameters()).is_cuda
|
|
15
|
+
set_random_seeds(seed=seed, cuda=cuda)
|
|
11
16
|
loader = torch.utils.data.DataLoader(
|
|
12
17
|
dataset, batch_size=batch_size, drop_last=False, shuffle=False
|
|
13
18
|
)
|
{braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: braindecode
|
|
3
|
-
Version: 1.2.0.
|
|
3
|
+
Version: 1.2.0.dev175267687
|
|
4
4
|
Summary: Deep learning software to decode EEG, ECG or MEG signals
|
|
5
5
|
Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
6
6
|
Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
|
|
@@ -17,7 +17,7 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
|
17
17
|
Classifier: Programming Language :: Python :: 3.10
|
|
18
18
|
Classifier: Programming Language :: Python :: 3.11
|
|
19
19
|
Classifier: Programming Language :: Python :: 3.12
|
|
20
|
-
Requires-Python:
|
|
20
|
+
Requires-Python: >=3.10
|
|
21
21
|
Description-Content-Type: text/x-rst
|
|
22
22
|
License-File: LICENSE.txt
|
|
23
23
|
License-File: NOTICE.txt
|
|
@@ -49,6 +49,10 @@ Requires-Dist: mypy; extra == "tests"
|
|
|
49
49
|
Provides-Extra: docs
|
|
50
50
|
Requires-Dist: sphinx_gallery; extra == "docs"
|
|
51
51
|
Requires-Dist: sphinx_rtd_theme; extra == "docs"
|
|
52
|
+
Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
|
|
53
|
+
Requires-Dist: sphinx-autobuild; extra == "docs"
|
|
54
|
+
Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
|
|
55
|
+
Requires-Dist: sphinx_sitemap; extra == "docs"
|
|
52
56
|
Requires-Dist: pydata_sphinx_theme; extra == "docs"
|
|
53
57
|
Requires-Dist: numpydoc; extra == "docs"
|
|
54
58
|
Requires-Dist: memory_profiler; extra == "docs"
|
|
@@ -59,6 +63,7 @@ Requires-Dist: lightning; extra == "docs"
|
|
|
59
63
|
Requires-Dist: seaborn; extra == "docs"
|
|
60
64
|
Requires-Dist: pre-commit; extra == "docs"
|
|
61
65
|
Requires-Dist: openneuro-py; extra == "docs"
|
|
66
|
+
Requires-Dist: plotly; extra == "docs"
|
|
62
67
|
Provides-Extra: all
|
|
63
68
|
Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
|
|
64
69
|
Dynamic: license-file
|
{braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/RECORD
RENAMED
|
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
|
|
|
3
3
|
braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
|
|
4
4
|
braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
|
|
5
5
|
braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
|
|
6
|
-
braindecode/version.py,sha256=
|
|
6
|
+
braindecode/version.py,sha256=DjAGynn_F-_dyPfKBBkITwv_h_JYqDSa0IISxiwpVAE,35
|
|
7
7
|
braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
|
|
8
8
|
braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
|
|
9
9
|
braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
|
|
@@ -13,6 +13,7 @@ braindecode/datasets/base.py,sha256=ED8RQWusMyWf0T7b_HXwouR2Ax47qppEc506AlSzBt0,
|
|
|
13
13
|
braindecode/datasets/bbci.py,sha256=BC9o1thEyYBREAo930O7zZz3xZB-l4Odt5j8E_1huXI,19277
|
|
14
14
|
braindecode/datasets/bcicomp.py,sha256=ER_XmqxhpoO2FWELMesQXQ40OTe7BXoy7nYDSiZG9kE,7556
|
|
15
15
|
braindecode/datasets/bids.py,sha256=4asq1HyQHgJjwW7w-GMlvTVQhi-hR2HWLJ8Z__UrUS4,8846
|
|
16
|
+
braindecode/datasets/experimental.py,sha256=Z_uzMNA875-l878LAv7bWiWYJX3QAefmb5quBkcPp7M,8514
|
|
16
17
|
braindecode/datasets/mne.py,sha256=Dg6RZAAwd8TVGrvLOPF5B_JrbyGUWg52vWmn6fLMOQM,6135
|
|
17
18
|
braindecode/datasets/moabb.py,sha256=JmBcFV7QJT8GCgLNNKWgxJVnEVnO5wd9U_uiIqTIxDM,7091
|
|
18
19
|
braindecode/datasets/nmt.py,sha256=E4T8OYBEwWRSjh7VFzmyxaZbf5ufFVEBYYmQEd1ghUU,10430
|
|
@@ -26,25 +27,25 @@ braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,
|
|
|
26
27
|
braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
|
|
27
28
|
braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
|
|
28
29
|
braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
|
|
29
|
-
braindecode/models/__init__.py,sha256=
|
|
30
|
-
braindecode/models/atcnet.py,sha256=
|
|
31
|
-
braindecode/models/attentionbasenet.py,sha256=
|
|
30
|
+
braindecode/models/__init__.py,sha256=v2Pn0H-rM_9xr1EEoKIFygmhbS9r52qh8XwFzXuhK70,2455
|
|
31
|
+
braindecode/models/atcnet.py,sha256=jA_18BOaasmiqGbLJOvfBY5q2xHtKdoRFKzN_aqpDoQ,32107
|
|
32
|
+
braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
|
|
33
|
+
braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
|
|
32
34
|
braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
|
|
33
35
|
braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
|
|
34
36
|
braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
|
|
35
|
-
braindecode/models/ctnet.py,sha256
|
|
36
|
-
braindecode/models/deep4.py,sha256
|
|
37
|
-
braindecode/models/deepsleepnet.py,sha256=
|
|
38
|
-
braindecode/models/eegconformer.py,sha256=
|
|
39
|
-
braindecode/models/eeginception_erp.py,sha256=
|
|
40
|
-
braindecode/models/eeginception_mi.py,sha256=
|
|
37
|
+
braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
|
|
38
|
+
braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
|
|
39
|
+
braindecode/models/deepsleepnet.py,sha256=wGSAXW73Ga1-HFbn7kXiLeGsJceiqZyMLZnX2UZZXWw,15207
|
|
40
|
+
braindecode/models/eegconformer.py,sha256=rxMAmqErDVLq7nS77CnTtpcC3C2OR_EoZ8-jG-dKP9I,17433
|
|
41
|
+
braindecode/models/eeginception_erp.py,sha256=FYXoM-u4kOodMzGgvKDn7IwJwHl9Z0iiWx9bVHiO9EY,16324
|
|
42
|
+
braindecode/models/eeginception_mi.py,sha256=VoWtsaWj1xQ4FlrvCbnPvo8eosufYUmTrL4uvFtqKcg,12456
|
|
41
43
|
braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
|
|
42
44
|
braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
|
|
43
|
-
braindecode/models/eegnet.py,sha256=
|
|
44
|
-
braindecode/models/eegnex.py,sha256=
|
|
45
|
-
braindecode/models/
|
|
46
|
-
braindecode/models/
|
|
47
|
-
braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
|
|
45
|
+
braindecode/models/eegnet.py,sha256=dIaHZoz7xMII1qKrS0___IWdy1xg2QrMMiqUgTJM9E8,13682
|
|
46
|
+
braindecode/models/eegnex.py,sha256=eahHolFl15LwNWeC5qjQqUGqURibQZIV425rI1p-dG8,13604
|
|
47
|
+
braindecode/models/eegsimpleconv.py,sha256=6V5ZQNWijmd3-2wv7lJB_HGBS3wHWWVrKoNIeWTXu-w,7300
|
|
48
|
+
braindecode/models/eegtcnet.py,sha256=Y53uJEX_hoB6eHCew9SIfzNxCYea8UhljDARJTk-Tq8,10837
|
|
48
49
|
braindecode/models/fbcnet.py,sha256=RBCLOaiUvivfsT2mq6FN0Kp1-rR3iB0ElzVpHxRl4oI,7486
|
|
49
50
|
braindecode/models/fblightconvnet.py,sha256=d5MwhawhkjilAMo0ckaYMxJhdGMEuorWgHX-TBgwv6s,11041
|
|
50
51
|
braindecode/models/fbmsnet.py,sha256=9bZn2_n1dTrI1Qh3Sz9zMZnH_a-Yq-13UHYSmF6r_UE,11659
|
|
@@ -52,27 +53,26 @@ braindecode/models/hybrid.py,sha256=hA8jwD3_3LL71BxUjRM1dkhqlHU9E9hjuDokh-jBq-4,
|
|
|
52
53
|
braindecode/models/ifnet.py,sha256=Y2bwfko3SDjD74AzgUEzgMhKJFGCCw_Q_Noh5VONEjQ,15137
|
|
53
54
|
braindecode/models/labram.py,sha256=vcrpwiu4F-djtIPscFbtP2Y0jTosyR_cXnOMQQRGPLw,41798
|
|
54
55
|
braindecode/models/msvtnet.py,sha256=hxeCLkHS6w2w89YlLfEPCyQ4XQQpt45bEYPiQJ9SFzY,12642
|
|
55
|
-
braindecode/models/sccnet.py,sha256=
|
|
56
|
-
braindecode/models/shallow_fbcsp.py,sha256
|
|
56
|
+
braindecode/models/sccnet.py,sha256=ragbEzNrua0S84H4JR_j2QGLZWrFKGQ4CfIS2epIYEk,11919
|
|
57
|
+
braindecode/models/shallow_fbcsp.py,sha256=7U07DJBrm2JHV8v5ja-xuE5-IH5tfmryhJtrfO1n4jk,7531
|
|
57
58
|
braindecode/models/signal_jepa.py,sha256=UeSkeAM3Qmx8bbAqHCj5nP-PtZM00_5SGA8ibo9mptc,37079
|
|
58
59
|
braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-LqL7s,11907
|
|
59
|
-
braindecode/models/sleep_stager_blanco_2020.py,sha256=
|
|
60
|
-
braindecode/models/sleep_stager_chambon_2018.py,sha256=
|
|
61
|
-
braindecode/models/
|
|
62
|
-
braindecode/models/
|
|
63
|
-
braindecode/models/summary.csv,sha256=l7HYYwv3Z69JRPVIhVq-wr_nC1J1KIz6IGw_zeRSk58,6110
|
|
60
|
+
braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
|
|
61
|
+
braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
|
|
62
|
+
braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
|
|
63
|
+
braindecode/models/summary.csv,sha256=NfrmnjyfDmWVe2zyNqgczEQcLI910BOS4sICtcKS3gc,6765
|
|
64
64
|
braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
|
|
65
65
|
braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
|
|
66
|
-
braindecode/models/tidnet.py,sha256=
|
|
67
|
-
braindecode/models/tsinception.py,sha256=
|
|
68
|
-
braindecode/models/usleep.py,sha256=
|
|
69
|
-
braindecode/models/util.py,sha256=
|
|
66
|
+
braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
|
|
67
|
+
braindecode/models/tsinception.py,sha256=nnQxzpqRy9FPuN5xgh9fNQ386VbreQ_nZBSFNkSfal0,10356
|
|
68
|
+
braindecode/models/usleep.py,sha256=5uztUHX70T_LurqRob_XmVnKkZDwt74x2Iz181M7s54,17233
|
|
69
|
+
braindecode/models/util.py,sha256=VZGVPhUSsoP47pta0_UhC2-g5n5-EFZAW93ZVccrEHU,5232
|
|
70
70
|
braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
|
|
71
71
|
braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
|
|
72
|
-
braindecode/modules/attention.py,sha256=
|
|
72
|
+
braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
|
|
73
73
|
braindecode/modules/blocks.py,sha256=QE34HBg7kmEj0z-8dQZ1jJErLRPcniGIorMTeIArpv4,3621
|
|
74
|
-
braindecode/modules/convolution.py,sha256=
|
|
75
|
-
braindecode/modules/filter.py,sha256=
|
|
74
|
+
braindecode/modules/convolution.py,sha256=gZMMOa-2gy1nfduA_j2ezgdIdq5Bi2PtonNomWA4D8k,8481
|
|
75
|
+
braindecode/modules/filter.py,sha256=iCz0HiGKrBS09m3aGiNnZEt8jpYOOrmn6SpPCUcuHfU,25291
|
|
76
76
|
braindecode/modules/layers.py,sha256=w_tAGcm8BDFiyMdAYM4DNLx46zIUted8B6my8_jtpps,3724
|
|
77
77
|
braindecode/modules/linear.py,sha256=pNhSUU0u-IGEUCjAfEDq_TJWnIJMWuOk7Y5L-7I8Meg,1702
|
|
78
78
|
braindecode/modules/parametrization.py,sha256=sTvV21-sdpqpiY2PzwDebi7SeEvkFw8yDgA6OqJDo34,1310
|
|
@@ -89,13 +89,13 @@ braindecode/samplers/ssl.py,sha256=C-FKopnbncN_-spQPCrgljY5Qds4fgTLr2TG3s_-QqU,9
|
|
|
89
89
|
braindecode/training/__init__.py,sha256=sxtfI6MgxX3aP03EFc0wJYA37uULoL9SQyUao1Oxyn0,523
|
|
90
90
|
braindecode/training/callbacks.py,sha256=LqXqzJd6s3w0pvAKy9TEVTxWwVRyWNEu2uyWVsvb9RQ,839
|
|
91
91
|
braindecode/training/losses.py,sha256=EyVVZE_028G6WwrAtzLbrRfDLgsoKwLLhqIkOYBXNL4,3551
|
|
92
|
-
braindecode/training/scoring.py,sha256=
|
|
92
|
+
braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4eU,18716
|
|
93
93
|
braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
|
|
94
94
|
braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
|
|
95
|
-
braindecode/visualization/gradients.py,sha256=
|
|
96
|
-
braindecode-1.2.0.
|
|
97
|
-
braindecode-1.2.0.
|
|
98
|
-
braindecode-1.2.0.
|
|
99
|
-
braindecode-1.2.0.
|
|
100
|
-
braindecode-1.2.0.
|
|
101
|
-
braindecode-1.2.0.
|
|
95
|
+
braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
|
|
96
|
+
braindecode-1.2.0.dev175267687.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
|
|
97
|
+
braindecode-1.2.0.dev175267687.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
|
|
98
|
+
braindecode-1.2.0.dev175267687.dist-info/METADATA,sha256=oQss190zuseCAh-RsSLYE_Ak5oLrSIQzh0G2PrdZwNA,7129
|
|
99
|
+
braindecode-1.2.0.dev175267687.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
100
|
+
braindecode-1.2.0.dev175267687.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
|
|
101
|
+
braindecode-1.2.0.dev175267687.dist-info/RECORD,,
|