braindecode 1.2.0.dev169062562__py3-none-any.whl → 1.2.0.dev175267687__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (38) hide show
  1. braindecode/datasets/experimental.py +218 -0
  2. braindecode/models/__init__.py +6 -8
  3. braindecode/models/atcnet.py +152 -12
  4. braindecode/models/attentionbasenet.py +151 -26
  5. braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
  6. braindecode/models/ctnet.py +1 -1
  7. braindecode/models/deep4.py +6 -2
  8. braindecode/models/deepsleepnet.py +118 -5
  9. braindecode/models/eegconformer.py +114 -15
  10. braindecode/models/eeginception_erp.py +76 -7
  11. braindecode/models/eeginception_mi.py +2 -0
  12. braindecode/models/eegnet.py +62 -176
  13. braindecode/models/eegnex.py +113 -6
  14. braindecode/models/eegsimpleconv.py +2 -0
  15. braindecode/models/eegtcnet.py +1 -1
  16. braindecode/models/sccnet.py +79 -8
  17. braindecode/models/shallow_fbcsp.py +2 -0
  18. braindecode/models/sleep_stager_blanco_2020.py +2 -0
  19. braindecode/models/sleep_stager_chambon_2018.py +2 -0
  20. braindecode/models/sparcnet.py +2 -0
  21. braindecode/models/summary.csv +39 -41
  22. braindecode/models/tidnet.py +2 -0
  23. braindecode/models/tsinception.py +15 -3
  24. braindecode/models/usleep.py +103 -9
  25. braindecode/models/util.py +5 -5
  26. braindecode/modules/attention.py +6 -3
  27. braindecode/modules/convolution.py +10 -7
  28. braindecode/modules/filter.py +8 -6
  29. braindecode/training/scoring.py +2 -8
  30. braindecode/version.py +1 -1
  31. braindecode/visualization/gradients.py +6 -1
  32. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/METADATA +7 -2
  33. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/RECORD +37 -37
  34. braindecode/models/eegresnet.py +0 -362
  35. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/WHEEL +0 -0
  36. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/LICENSE.txt +0 -0
  37. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/NOTICE.txt +0 -0
  38. {braindecode-1.2.0.dev169062562.dist-info → braindecode-1.2.0.dev175267687.dist-info}/top_level.txt +0 -0
@@ -1,41 +1,39 @@
1
- Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
2
- ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
3
- AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
4
- BDTCN,Normal/Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
6
- ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
7
- CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
8
- Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
9
- DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
10
- EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)."
11
- EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
12
- EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
13
- EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
14
- EEGNetv1,General,Classification,128,"n_chans, n_outputs, n_times",3052,"EEGNetv1(n_chans=22, n_outputs=4, n_times=512)"
15
- EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)"
16
- EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)"
17
- EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)"
18
- EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)"
19
- EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)"
20
- EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)"
21
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
22
- MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)"
23
- SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)"
24
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
25
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
26
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
27
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
28
- SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
29
- ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
30
- SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
31
- SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)"
32
- SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
33
- SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)"
34
- SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
35
- TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
36
- TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)"
37
- USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
38
- FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
39
- FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
40
- FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
41
- IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
1
+ Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
2
+ ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
+ AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
+ BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
6
+ ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
+ CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
+ Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
9
+ DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
10
+ EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
11
+ EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
12
+ EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
13
+ EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
14
+ EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
15
+ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
16
+ EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
+ EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
+ EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
20
+ MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
+ SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
26
+ SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
+ ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
+ SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
29
+ SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
30
+ AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
31
+ SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
32
+ SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
33
+ TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
34
+ TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
35
+ USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
36
+ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
37
+ FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
+ FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
+ IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
13
13
  class TIDNet(EEGModuleMixin, nn.Module):
14
14
  """Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
15
15
 
16
+ :bdg-success:`Convolution`
17
+
16
18
  .. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
17
19
  :align: center
18
20
  :alt: TIDNet Architecture
@@ -7,19 +7,21 @@ from __future__ import annotations
7
7
  import torch
8
8
  import torch.nn as nn
9
9
  from einops.layers.torch import Rearrange
10
- from mne.utils import warn
10
+ from mne.utils import deprecated, warn
11
11
 
12
12
  from braindecode.models.base import EEGModuleMixin
13
13
 
14
14
 
15
- class TSceptionV1(EEGModuleMixin, nn.Module):
15
+ class TSception(EEGModuleMixin, nn.Module):
16
16
  """TSception model from Ding et al. (2020) from [ding2020]_.
17
17
 
18
+ :bdg-success:`Convolution`
19
+
18
20
  TSception: A deep learning framework for emotion detection using EEG.
19
21
 
20
22
  .. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
21
23
  :align: center
22
- :alt: TSceptionV1 Architecture
24
+ :alt: TSception Architecture
23
25
 
24
26
  The model consists of temporal and spatial convolutional layers
25
27
  (Tception and Sception) designed to learn temporal and spatial features
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
281
283
  activation(),
282
284
  nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
283
285
  )
286
+
287
+
288
+ @deprecated(
289
+ "`TSceptionV1` was renamed to `TSception` in v1.12; "
290
+ "this alias will be removed in v1.14."
291
+ )
292
+ class TSceptionV1(TSception):
293
+ """Deprecated alias for TSception."""
294
+
295
+ pass
@@ -15,22 +15,116 @@ class USleep(EEGModuleMixin, nn.Module):
15
15
  """
16
16
  Sleep staging architecture from Perslev et al. (2021) [1]_.
17
17
 
18
+ :bdg-success:`Convolution`
19
+
18
20
  .. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
19
21
  :align: center
20
22
  :alt: USleep Architecture
21
23
 
22
- U-Net (autoencoder with skip connections) feature-extractor for sleep
23
- staging described in [1]_.
24
+ Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
25
+ the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
26
+ classifier (right) which generates sleep stages at a chosen temporal resolution.
27
+
28
+ .. rubric:: Architectural Overview
29
+
30
+ U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
31
+ time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
32
+ per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
33
+ processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
34
+ hypnograms in seconds.
35
+
36
+ - (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
37
+ - (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
38
+ - (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
39
+ per-epoch probabilities. Integrates into the USleep class.
40
+
41
+ .. rubric:: Macro Components
42
+
43
+ - Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
44
+
45
+ - *Operations.*
46
+ - **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
47
+ - **ELU** (:class:`torch.nn.ELU`)
48
+ - **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
49
+ - **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
50
+
51
+ Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
52
+ (pre-pooling activation) to the matching decoder block.
53
+ *Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
54
+ context over minutes—foundational for robust cross-cohort staging.
55
+
56
+ The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
57
+ to the matching decoder block.
58
+
59
+ **Rationale.**
60
+ - Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
61
+
62
+ - Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
63
+
64
+ - *Operations.*
65
+ - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
66
+ - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
67
+ - ELU, :class:`torch.nn.ELU`
68
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`
69
+ - **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
70
+ - **Convolution**, :class:`torch.nn.Conv2d`
71
+ - ELU, :class:`torch.nn.ELU`
72
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`.
73
+
74
+ **Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
75
+
76
+ - **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
77
+
78
+ - *Operations.*
79
+ - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
80
+ - **1x1 conv**, :class:`torch.nn.Conv2d`
81
+ - ELU, :class:`torch.nn.ELU`
82
+ - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
83
+
84
+ **Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
85
+
86
+ .. rubric:: Convolutional Details
87
+
88
+ - **Temporal (where time-domain patterns are learned).**
89
+ All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
90
+ (reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
91
+ The decoder restores sample-level resolution before epoch aggregation.
92
+
93
+ - **Spatial (how channels are processed).**
94
+ Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
95
+ is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
96
+ supporting robustness to channel placement and hardware differences.
97
+
98
+ - **Spectral (how frequency content is captured).**
99
+ No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
100
+ filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
101
+ retains fine temporal detail for the segment classifier.
102
+
103
+
104
+ .. rubric:: Attention / Sequential Modules
105
+
106
+ U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
107
+ segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
108
+
109
+
110
+ .. rubric:: Additional Mechanisms
111
+
112
+ - **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
113
+ switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
114
+ **two-layer** pointwise head—improving capacity and resilience across datasets.
115
+ - **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
116
+ staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
117
+ limiting long-range context.
118
+ - **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
119
+ and memory (as described in the paper's topology table).
120
+
24
121
 
25
- For the encoder ('down'):
26
- - the temporal dimension shrinks (via maxpooling in the time-domain)
27
- - the spatial dimension expands (via more conv1d filters in the time-domain)
122
+ .. rubric:: Usage and Configuration
28
123
 
29
- For the decoder ('up'):
30
- - the temporal dimension expands (via upsampling in the time-domain)
31
- - the spatial dimension shrinks (via fewer conv1d filters in the time-domain)
124
+ - **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
125
+ length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
126
+ 17.5 min chunks).
32
127
 
33
- Both do so at exponential rates.
34
128
 
35
129
  Parameters
36
130
  ----------
@@ -22,6 +22,8 @@ def _init_models_dict():
22
22
  issubclass(m[1], models.base.EEGModuleMixin)
23
23
  and m[1] != models.base.EEGModuleMixin
24
24
  ):
25
+ if m[1].__name__ == "EEGNetv4":
26
+ continue
25
27
  models_dict[m[0]] = m[1]
26
28
 
27
29
 
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
55
57
  ("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
56
58
  ("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
57
59
  ("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
58
- ("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
59
- ("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
60
- ("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
60
+ ("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
61
61
  ("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
62
62
  (
63
63
  "SleepStagerBlanco2020",
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
66
66
  ),
67
67
  ("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
68
68
  (
69
- "SleepStagerEldele2021",
69
+ "AttnSleep",
70
70
  ["n_outputs", "n_times", "sfreq"],
71
71
  dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
72
72
  ), # 1 channel
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
79
79
  ("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
80
80
  ("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
81
81
  ("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
82
- ("TSceptionV1", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
82
+ ("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
83
83
  ("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
84
84
  ("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
85
85
  ("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
@@ -157,7 +157,8 @@ class FCA(nn.Module):
157
157
  ):
158
158
  super(FCA, self).__init__()
159
159
  mapper_y = [freq_idx]
160
- assert in_channels % len(mapper_y) == 0
160
+ if in_channels % len(mapper_y) != 0:
161
+ raise ValueError("in_channels must be divisible by number of DCT filters")
161
162
 
162
163
  self.weight = nn.Parameter(
163
164
  self.get_dct_filter(seq_len, mapper_y, in_channels), requires_grad=False
@@ -295,7 +296,8 @@ class ECA(nn.Module):
295
296
  def __init__(self, in_channels: int, kernel_size: int):
296
297
  super(ECA, self).__init__()
297
298
  self.gap = nn.AdaptiveAvgPool2d(1)
298
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
299
+ if kernel_size % 2 != 1:
300
+ raise ValueError("kernel size must be odd for same padding")
299
301
  self.conv = nn.Conv1d(
300
302
  1, 1, kernel_size=kernel_size, padding=kernel_size // 2, bias=False
301
303
  )
@@ -530,7 +532,8 @@ class CBAM(nn.Module):
530
532
  nn.ReLU(),
531
533
  nn.Conv2d(in_channels // reduction_rate, in_channels, 1, bias=False),
532
534
  )
533
- assert kernel_size % 2 == 1, "kernel size must be odd for same padding"
535
+ if kernel_size % 2 != 1:
536
+ raise ValueError("kernel size must be odd for same padding")
534
537
  self.conv = nn.Conv2d(2, 1, (1, kernel_size), padding=(0, kernel_size // 2))
535
538
 
536
539
  def forward(self, x):
@@ -136,7 +136,8 @@ class CombinedConv(nn.Module):
136
136
  # Calculate bias terms
137
137
  if self.bias_time:
138
138
  time_bias = self.conv_time.bias
139
- assert time_bias is not None
139
+ if time_bias is None:
140
+ raise RuntimeError("conv_time.bias is None despite bias_time=True")
140
141
  calculated_bias = (
141
142
  self.conv_spat.weight.squeeze()
142
143
  .sum(-1)
@@ -145,7 +146,8 @@ class CombinedConv(nn.Module):
145
146
  )
146
147
  if self.bias_spat:
147
148
  spat_bias = self.conv_spat.bias
148
- assert spat_bias is not None
149
+ if spat_bias is None:
150
+ raise RuntimeError("conv_spat.bias is None despite bias_spat=True")
149
151
  if calculated_bias is None:
150
152
  calculated_bias = spat_bias
151
153
  else:
@@ -190,11 +192,12 @@ class CausalConv1d(nn.Conv1d):
190
192
  dilation=1,
191
193
  **kwargs,
192
194
  ):
193
- assert "padding" not in kwargs, (
194
- "The padding parameter is controlled internally by "
195
- f"{type(self).__name__} class. You should not try to override this"
196
- " parameter."
197
- )
195
+ if "padding" in kwargs:
196
+ raise ValueError(
197
+ "The padding parameter is controlled internally by "
198
+ f"{type(self).__name__} class. You should not try to override this"
199
+ " parameter."
200
+ )
198
201
 
199
202
  super().__init__(
200
203
  in_channels=in_channels,
@@ -452,12 +452,14 @@ class GeneralizedGaussianFilter(nn.Module):
452
452
  self.inverse_fourier = inverse_fourier
453
453
  self.affine_group_delay = affine_group_delay
454
454
  self.clamp_f_mean = clamp_f_mean
455
- assert out_channels % in_channels == 0, (
456
- "out_channels has to be multiple of in_channels"
457
- )
458
- assert len(f_mean) * in_channels == out_channels
459
- assert len(bandwidth) * in_channels == out_channels
460
- assert len(shape) * in_channels == out_channels
455
+ if out_channels % in_channels != 0:
456
+ raise ValueError("out_channels has to be multiple of in_channels")
457
+ if len(f_mean) * in_channels != out_channels:
458
+ raise ValueError("len(f_mean) * in_channels must equal out_channels")
459
+ if len(bandwidth) * in_channels != out_channels:
460
+ raise ValueError("len(bandwidth) * in_channels must equal out_channels")
461
+ if len(shape) * in_channels != out_channels:
462
+ raise ValueError("len(shape) * in_channels must equal out_channels")
461
463
 
462
464
  # Range from 0 to half sample rate, normalized
463
465
  self.n_range = nn.Parameter(
@@ -11,7 +11,6 @@ from contextlib import contextmanager
11
11
 
12
12
  import numpy as np
13
13
  import torch
14
- from mne.utils.check import check_version
15
14
  from skorch.callbacks.scoring import EpochScoring
16
15
  from skorch.dataset import unpack_data
17
16
  from skorch.utils import to_numpy
@@ -370,13 +369,8 @@ class PostEpochTrainScoring(EpochScoring):
370
369
  y_preds = []
371
370
  y_test = []
372
371
  for batch in iterator:
373
- batch_X, batch_y = unpack_data(batch)
374
- # TODO: remove after skorch 0.10 release
375
- if not check_version("skorch", min_version="0.10.1"):
376
- yp = net.evaluation_step(batch_X, training=False)
377
- # X, y unpacking has been pushed downstream in skorch 0.10
378
- else:
379
- yp = net.evaluation_step(batch, training=False)
372
+ _, batch_y = unpack_data(batch)
373
+ yp = net.evaluation_step(batch, training=False)
380
374
  yp = yp.to(device="cpu")
381
375
  y_test.append(self.target_extractor(batch_y))
382
376
  y_preds.append(yp)
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.0.dev169062562"
1
+ __version__ = "1.2.0.dev175267687"
@@ -6,8 +6,13 @@ import numpy as np
6
6
  import torch
7
7
  from skorch.utils import to_numpy, to_tensor
8
8
 
9
+ from braindecode.util import set_random_seeds
9
10
 
10
- def compute_amplitude_gradients(model, dataset, batch_size):
11
+
12
+ def compute_amplitude_gradients(model, dataset, batch_size, seed=20240205):
13
+ """Compute amplitude gradients after seeding for reproducibility."""
14
+ cuda = next(model.parameters()).is_cuda
15
+ set_random_seeds(seed=seed, cuda=cuda)
11
16
  loader = torch.utils.data.DataLoader(
12
17
  dataset, batch_size=batch_size, drop_last=False, shuffle=False
13
18
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: braindecode
3
- Version: 1.2.0.dev169062562
3
+ Version: 1.2.0.dev175267687
4
4
  Summary: Deep learning software to decode EEG, ECG or MEG signals
5
5
  Author-email: Robin Tibor Schirrmeister <robintibor@gmail.com>
6
6
  Maintainer-email: Alexandre Gramfort <agramfort@meta.com>, Bruno Aristimunha Pinto <b.aristimunha@gmail.com>, Robin Tibor Schirrmeister <robintibor@gmail.com>
@@ -17,7 +17,7 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
17
  Classifier: Programming Language :: Python :: 3.10
18
18
  Classifier: Programming Language :: Python :: 3.11
19
19
  Classifier: Programming Language :: Python :: 3.12
20
- Requires-Python: >3.10
20
+ Requires-Python: >=3.10
21
21
  Description-Content-Type: text/x-rst
22
22
  License-File: LICENSE.txt
23
23
  License-File: NOTICE.txt
@@ -49,6 +49,10 @@ Requires-Dist: mypy; extra == "tests"
49
49
  Provides-Extra: docs
50
50
  Requires-Dist: sphinx_gallery; extra == "docs"
51
51
  Requires-Dist: sphinx_rtd_theme; extra == "docs"
52
+ Requires-Dist: sphinx-autodoc-typehints; extra == "docs"
53
+ Requires-Dist: sphinx-autobuild; extra == "docs"
54
+ Requires-Dist: sphinxcontrib-bibtex; extra == "docs"
55
+ Requires-Dist: sphinx_sitemap; extra == "docs"
52
56
  Requires-Dist: pydata_sphinx_theme; extra == "docs"
53
57
  Requires-Dist: numpydoc; extra == "docs"
54
58
  Requires-Dist: memory_profiler; extra == "docs"
@@ -59,6 +63,7 @@ Requires-Dist: lightning; extra == "docs"
59
63
  Requires-Dist: seaborn; extra == "docs"
60
64
  Requires-Dist: pre-commit; extra == "docs"
61
65
  Requires-Dist: openneuro-py; extra == "docs"
66
+ Requires-Dist: plotly; extra == "docs"
62
67
  Provides-Extra: all
63
68
  Requires-Dist: braindecode[docs,moabb,tests]; extra == "all"
64
69
  Dynamic: license-file
@@ -3,7 +3,7 @@ braindecode/classifier.py,sha256=k9vSCtfQbld0YVleDi5rrrmk6k_k5JYEPPBYcNxYjZ8,980
3
3
  braindecode/eegneuralnet.py,sha256=dz8k_-2jV7WqkaX4bQG-dmr-vRT7ZtOwJqomXyC9PTw,15287
4
4
  braindecode/regressor.py,sha256=VLfrpiXklwI4onkwue3QmzlBWcvspu0tlrLo9RT1Oiw,9375
5
5
  braindecode/util.py,sha256=J-tBcDJNlMTIFW2mfOy6Ko0nsgdP4obRoEVDeg2rFH0,12686
6
- braindecode/version.py,sha256=peEUr8wSaU7Geu5W6LeP3IamWD3aza4xEKMC4rdjQl4,35
6
+ braindecode/version.py,sha256=DjAGynn_F-_dyPfKBBkITwv_h_JYqDSa0IISxiwpVAE,35
7
7
  braindecode/augmentation/__init__.py,sha256=LG7ONqCufYAF9NZt8POIp10lYXb8iSueYkF-CWGK2Ls,1001
8
8
  braindecode/augmentation/base.py,sha256=gg7wYsVfa9jfqBddtE03B5ZrPHFFmPl2sa3LOrRnGfo,7325
9
9
  braindecode/augmentation/functional.py,sha256=ygkMNEFHaUdRQfk7meMML19FnM406Uf34h-ztKXdJwM,37978
@@ -13,6 +13,7 @@ braindecode/datasets/base.py,sha256=ED8RQWusMyWf0T7b_HXwouR2Ax47qppEc506AlSzBt0,
13
13
  braindecode/datasets/bbci.py,sha256=BC9o1thEyYBREAo930O7zZz3xZB-l4Odt5j8E_1huXI,19277
14
14
  braindecode/datasets/bcicomp.py,sha256=ER_XmqxhpoO2FWELMesQXQ40OTe7BXoy7nYDSiZG9kE,7556
15
15
  braindecode/datasets/bids.py,sha256=4asq1HyQHgJjwW7w-GMlvTVQhi-hR2HWLJ8Z__UrUS4,8846
16
+ braindecode/datasets/experimental.py,sha256=Z_uzMNA875-l878LAv7bWiWYJX3QAefmb5quBkcPp7M,8514
16
17
  braindecode/datasets/mne.py,sha256=Dg6RZAAwd8TVGrvLOPF5B_JrbyGUWg52vWmn6fLMOQM,6135
17
18
  braindecode/datasets/moabb.py,sha256=JmBcFV7QJT8GCgLNNKWgxJVnEVnO5wd9U_uiIqTIxDM,7091
18
19
  braindecode/datasets/nmt.py,sha256=E4T8OYBEwWRSjh7VFzmyxaZbf5ufFVEBYYmQEd1ghUU,10430
@@ -26,25 +27,25 @@ braindecode/datautil/util.py,sha256=ZfDoxLieKsgI8xcWQqebV-vJ5pJYRvRRHkEwhwpgoKU,
26
27
  braindecode/functional/__init__.py,sha256=JPUDFeKtfogEzfrwPaZRBmxexPjBw7AglYMlImaAnWc,413
27
28
  braindecode/functional/functions.py,sha256=CoEweM6YLhigx0tNmmz6yAc8iQ078sTFY2GeCjK5fFs,8622
28
29
  braindecode/functional/initialization.py,sha256=BUSC7y2TMsfShpMYBVwm3xg3ODFqWp-STH7yD4sn8zk,1388
29
- braindecode/models/__init__.py,sha256=xv1QPELZxocPgbc_mz-eYM5w08ZDNOsDV4pOnIFhUww,2551
30
- braindecode/models/atcnet.py,sha256=PhDJl6nBChButabjsmLz_heRcGFCCMKoeUt7k7neNzs,24483
31
- braindecode/models/attentionbasenet.py,sha256=1uwrtsdEGiBwokkO8A_2SR5zapOTQUBZd4q7hIpR0cw,23359
30
+ braindecode/models/__init__.py,sha256=v2Pn0H-rM_9xr1EEoKIFygmhbS9r52qh8XwFzXuhK70,2455
31
+ braindecode/models/atcnet.py,sha256=jA_18BOaasmiqGbLJOvfBY5q2xHtKdoRFKzN_aqpDoQ,32107
32
+ braindecode/models/attentionbasenet.py,sha256=AK78VvwrZXyJY20zadzDUHl17C-5zcWCd5xPRN7Lr4o,30385
33
+ braindecode/models/attn_sleep.py,sha256=m6sdFfD4en2hHf_TpotLPC1hVweJcYZvjgf12bV5FZg,17822
32
34
  braindecode/models/base.py,sha256=9icrWNZBGbh_VLyB9m8g_K1QyK7s3mh8X-hJ29gEbWs,10802
33
35
  braindecode/models/biot.py,sha256=T4PymX3penMJcrdfb5Nq6B3P-jyP2laAIu_R9o3uCXo,17512
34
36
  braindecode/models/contrawr.py,sha256=eeR_ik4gNZ3rJLM6Mw9gJ2gTMkZ8CU8C4rN_GQMQTAE,10044
35
- braindecode/models/ctnet.py,sha256=-J9QtUM8kcntz_xinfuBBvwDMECHiMPMcr2MS4GDPEY,17308
36
- braindecode/models/deep4.py,sha256=YJQUw-0EuFUi4qjm8caJGB8wRM_aeJa5X_d8jrGaQAI,14588
37
- braindecode/models/deepsleepnet.py,sha256=RrciuVJtZ-fhiUl-yLPfK2FP-G29V5Wor6pPlrMHQWQ,9218
38
- braindecode/models/eegconformer.py,sha256=_Y0SXprBD74zD8nKPcS9HQ6PoWzfpu-VCY7Tj6R7Xrs,11612
39
- braindecode/models/eeginception_erp.py,sha256=mwh3rGSHAJVvnbOlYTuWWkKxlmFAdAXBNCrq4IPgOS4,11408
40
- braindecode/models/eeginception_mi.py,sha256=aKJRFuYrpbcRbmmT2xVghKbK8pnl7fzu5hrV0ybRKso,12424
37
+ braindecode/models/ctnet.py,sha256=ce5F31q2weBKvg7PL80iDm7za9fhGaCFvNfHoJW_dtg,17315
38
+ braindecode/models/deep4.py,sha256=-s-R3H7so2xlSiPsU226eSwscv1X9xJMYLm3LhZ3mSU,14645
39
+ braindecode/models/deepsleepnet.py,sha256=wGSAXW73Ga1-HFbn7kXiLeGsJceiqZyMLZnX2UZZXWw,15207
40
+ braindecode/models/eegconformer.py,sha256=rxMAmqErDVLq7nS77CnTtpcC3C2OR_EoZ8-jG-dKP9I,17433
41
+ braindecode/models/eeginception_erp.py,sha256=FYXoM-u4kOodMzGgvKDn7IwJwHl9Z0iiWx9bVHiO9EY,16324
42
+ braindecode/models/eeginception_mi.py,sha256=VoWtsaWj1xQ4FlrvCbnPvo8eosufYUmTrL4uvFtqKcg,12456
41
43
  braindecode/models/eegitnet.py,sha256=feXFmPCd-Ejxt7jgWPen1Ag0-oSclDVQai0Atwu9d_A,9827
42
44
  braindecode/models/eegminer.py,sha256=ouKZah9Q7_sxT7DJJMcPObwVxNQE87sEljJg6QwiQNw,9847
43
- braindecode/models/eegnet.py,sha256=1ZAG0KLDedkodDfqgnGGsoZj6iuU55kGmBlyQo1b47w,16284
44
- braindecode/models/eegnex.py,sha256=KNJIh8pFNhY087Bey2OPzDD4Uqw9pS6UkwMjnOngBzg,8497
45
- braindecode/models/eegresnet.py,sha256=cqWOSGqfJN_dNYUU9l8nYd_S3T1N-UX5-encKQzfBlg,12057
46
- braindecode/models/eegsimpleconv.py,sha256=sHpK-7ZGOCMuXsdkSVuarFTd1T0jMJUP_xwXP3gxQwc,7268
47
- braindecode/models/eegtcnet.py,sha256=np-93Ttctp2uaEYpMrfXfH5bJmCOUZZHLjv8GJEEym4,10830
45
+ braindecode/models/eegnet.py,sha256=dIaHZoz7xMII1qKrS0___IWdy1xg2QrMMiqUgTJM9E8,13682
46
+ braindecode/models/eegnex.py,sha256=eahHolFl15LwNWeC5qjQqUGqURibQZIV425rI1p-dG8,13604
47
+ braindecode/models/eegsimpleconv.py,sha256=6V5ZQNWijmd3-2wv7lJB_HGBS3wHWWVrKoNIeWTXu-w,7300
48
+ braindecode/models/eegtcnet.py,sha256=Y53uJEX_hoB6eHCew9SIfzNxCYea8UhljDARJTk-Tq8,10837
48
49
  braindecode/models/fbcnet.py,sha256=RBCLOaiUvivfsT2mq6FN0Kp1-rR3iB0ElzVpHxRl4oI,7486
49
50
  braindecode/models/fblightconvnet.py,sha256=d5MwhawhkjilAMo0ckaYMxJhdGMEuorWgHX-TBgwv6s,11041
50
51
  braindecode/models/fbmsnet.py,sha256=9bZn2_n1dTrI1Qh3Sz9zMZnH_a-Yq-13UHYSmF6r_UE,11659
@@ -52,27 +53,26 @@ braindecode/models/hybrid.py,sha256=hA8jwD3_3LL71BxUjRM1dkhqlHU9E9hjuDokh-jBq-4,
52
53
  braindecode/models/ifnet.py,sha256=Y2bwfko3SDjD74AzgUEzgMhKJFGCCw_Q_Noh5VONEjQ,15137
53
54
  braindecode/models/labram.py,sha256=vcrpwiu4F-djtIPscFbtP2Y0jTosyR_cXnOMQQRGPLw,41798
54
55
  braindecode/models/msvtnet.py,sha256=hxeCLkHS6w2w89YlLfEPCyQ4XQQpt45bEYPiQJ9SFzY,12642
55
- braindecode/models/sccnet.py,sha256=baGsNpVRdyWzbkTizOthJoJGejLb8BxMpN9ODwZinio,7919
56
- braindecode/models/shallow_fbcsp.py,sha256=-sL6XCmCUZVhKKrC84-KWgwhWKQQvev1oNSmH_d6FA4,7499
56
+ braindecode/models/sccnet.py,sha256=ragbEzNrua0S84H4JR_j2QGLZWrFKGQ4CfIS2epIYEk,11919
57
+ braindecode/models/shallow_fbcsp.py,sha256=7U07DJBrm2JHV8v5ja-xuE5-IH5tfmryhJtrfO1n4jk,7531
57
58
  braindecode/models/signal_jepa.py,sha256=UeSkeAM3Qmx8bbAqHCj5nP-PtZM00_5SGA8ibo9mptc,37079
58
59
  braindecode/models/sinc_shallow.py,sha256=Ilv8K1XhMGiRTBtQdq7L595i6cEFYOBe0_UDv-LqL7s,11907
59
- braindecode/models/sleep_stager_blanco_2020.py,sha256=qPKMDLuv4J7et4dZHyTe-j0oB6ESYn9mA_aW7RMC-rU,6002
60
- braindecode/models/sleep_stager_chambon_2018.py,sha256=62x2Rdjd5UZDX8YlnfAtdRCrjLsPvPpnUweGElZLdkw,5213
61
- braindecode/models/sleep_stager_eldele_2021.py,sha256=-4ISuznykDy9ZFzUM-OeiGCwmgM3U-LuyoDSrhPbRDw,17555
62
- braindecode/models/sparcnet.py,sha256=eZMoJOxlcIyHPdQiX7KXUKuUBlAWkTwsXNWmNma_KAI,13941
63
- braindecode/models/summary.csv,sha256=l7HYYwv3Z69JRPVIhVq-wr_nC1J1KIz6IGw_zeRSk58,6110
60
+ braindecode/models/sleep_stager_blanco_2020.py,sha256=vXulnDYutEFLM0UPXyAI0YIj5QImUMVEmYZb78j34H8,6034
61
+ braindecode/models/sleep_stager_chambon_2018.py,sha256=8w8IR2PsfG0jSc3o0YVopgHpOvCHNIuMi7-QRJOYEW4,5245
62
+ braindecode/models/sparcnet.py,sha256=MG1OB91guI7ssKRk8GvWlzUvaxo_otaYnbEGzNUZVyg,13973
63
+ braindecode/models/summary.csv,sha256=NfrmnjyfDmWVe2zyNqgczEQcLI910BOS4sICtcKS3gc,6765
64
64
  braindecode/models/syncnet.py,sha256=nrWJC5ijCSWKVZyRn-dmOuc1t5vk2C6tx8U3U4j5d5Y,8362
65
65
  braindecode/models/tcn.py,sha256=SQu56H9zdbcbbDIXZVgZtJg7es8CRAJ7z-IBnmf4UWM,8158
66
- braindecode/models/tidnet.py,sha256=k7Q0yAnEBmq1sqhsvoV4-g8wfYSUQ-C3iYxfLp5m8xQ,11805
67
- braindecode/models/tsinception.py,sha256=EcfLDDJXZloh_vrKRuxAHYRZ1EVWlEKHNXqybTRrTbQ,10116
68
- braindecode/models/usleep.py,sha256=dFh3KiZITu13gMxcbPGoK4hq2ySDWzVSCQXkj1006w0,11605
69
- braindecode/models/util.py,sha256=VrhwG1YBGwKohCej6TmhrNAIoleQHRu3YdiBPuHFY_E,5302
66
+ braindecode/models/tidnet.py,sha256=HSUL1al6gaRbJ-BRYAAs4KDvLuKEvh0NnBfAsPeWMpM,11837
67
+ braindecode/models/tsinception.py,sha256=nnQxzpqRy9FPuN5xgh9fNQ386VbreQ_nZBSFNkSfal0,10356
68
+ braindecode/models/usleep.py,sha256=5uztUHX70T_LurqRob_XmVnKkZDwt74x2Iz181M7s54,17233
69
+ braindecode/models/util.py,sha256=VZGVPhUSsoP47pta0_UhC2-g5n5-EFZAW93ZVccrEHU,5232
70
70
  braindecode/modules/__init__.py,sha256=PD2LpeSHWW_MgEef7-G8ief5gheGObzsIoacchxWuyA,1756
71
71
  braindecode/modules/activation.py,sha256=lTO2IjZWBDeXZ4ZVDgLmTDmxHdqyAny3Fsy07HY9tmQ,1466
72
- braindecode/modules/attention.py,sha256=fsjruzqMdtPbcS6jbU5ux8xtHl0BVrKt4agyf2yNe_E,23966
72
+ braindecode/modules/attention.py,sha256=ISE11jXAvMqKpawZilg8i7lDX5mkuvpEplrh_CtGEkk,24102
73
73
  braindecode/modules/blocks.py,sha256=QE34HBg7kmEj0z-8dQZ1jJErLRPcniGIorMTeIArpv4,3621
74
- braindecode/modules/convolution.py,sha256=VAqJXj1Xfb7qlnjRAhH_fJT8qPcaAqy5FHu_sNEbkWw,8291
75
- braindecode/modules/filter.py,sha256=tj3zFQf40kt605yKE3bGpmnxtf91FTY7cWqxwAIIGPc,25050
74
+ braindecode/modules/convolution.py,sha256=gZMMOa-2gy1nfduA_j2ezgdIdq5Bi2PtonNomWA4D8k,8481
75
+ braindecode/modules/filter.py,sha256=iCz0HiGKrBS09m3aGiNnZEt8jpYOOrmn6SpPCUcuHfU,25291
76
76
  braindecode/modules/layers.py,sha256=w_tAGcm8BDFiyMdAYM4DNLx46zIUted8B6my8_jtpps,3724
77
77
  braindecode/modules/linear.py,sha256=pNhSUU0u-IGEUCjAfEDq_TJWnIJMWuOk7Y5L-7I8Meg,1702
78
78
  braindecode/modules/parametrization.py,sha256=sTvV21-sdpqpiY2PzwDebi7SeEvkFw8yDgA6OqJDo34,1310
@@ -89,13 +89,13 @@ braindecode/samplers/ssl.py,sha256=C-FKopnbncN_-spQPCrgljY5Qds4fgTLr2TG3s_-QqU,9
89
89
  braindecode/training/__init__.py,sha256=sxtfI6MgxX3aP03EFc0wJYA37uULoL9SQyUao1Oxyn0,523
90
90
  braindecode/training/callbacks.py,sha256=LqXqzJd6s3w0pvAKy9TEVTxWwVRyWNEu2uyWVsvb9RQ,839
91
91
  braindecode/training/losses.py,sha256=EyVVZE_028G6WwrAtzLbrRfDLgsoKwLLhqIkOYBXNL4,3551
92
- braindecode/training/scoring.py,sha256=tG7uCojIG3KIQZq3AymrdwlIJLlzbgsS0nBLUXQ-A8s,19062
92
+ braindecode/training/scoring.py,sha256=WRkwqbitA3m_dzRnGp2ZIZPge5Nhx9gAEQhIHzeH4eU,18716
93
93
  braindecode/visualization/__init__.py,sha256=4EER_xHqZIDzEvmgUEm7K1bgNKpyZAIClR9ZCkMuY4M,240
94
94
  braindecode/visualization/confusion_matrices.py,sha256=qIWMLEHow5CJ7PhGggD8mnD55Le6xhma9HSzt4R33fc,9509
95
- braindecode/visualization/gradients.py,sha256=qAtXmuXkCDsWs8RMxvE6T9dz3uv_BhwTqhzkFFsEUDI,1948
96
- braindecode-1.2.0.dev169062562.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
- braindecode-1.2.0.dev169062562.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
- braindecode-1.2.0.dev169062562.dist-info/METADATA,sha256=-76DvxesVFpEyLE_1OeR6BFkmbyz5Hij3w-epsTsM3w,6883
99
- braindecode-1.2.0.dev169062562.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- braindecode-1.2.0.dev169062562.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
- braindecode-1.2.0.dev169062562.dist-info/RECORD,,
95
+ braindecode/visualization/gradients.py,sha256=KZo-GA0uwiwty2_94j2IjmCR2SKcfPb1Bi3sQq7vpTk,2170
96
+ braindecode-1.2.0.dev175267687.dist-info/licenses/LICENSE.txt,sha256=7rg7k6hyj8m9whQ7dpKbqnCssoOEx_Mbtqb4uSOjljE,1525
97
+ braindecode-1.2.0.dev175267687.dist-info/licenses/NOTICE.txt,sha256=sOxuTbalPxTM8H6VqtvGbXCt_BoOF7JevEYG_knqbm4,620
98
+ braindecode-1.2.0.dev175267687.dist-info/METADATA,sha256=oQss190zuseCAh-RsSLYE_Ak5oLrSIQzh0G2PrdZwNA,7129
99
+ braindecode-1.2.0.dev175267687.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
+ braindecode-1.2.0.dev175267687.dist-info/top_level.txt,sha256=pHsWQmSy0uhIez62-HA9j0iaXKvSbUL39ifFRkFnChA,12
101
+ braindecode-1.2.0.dev175267687.dist-info/RECORD,,