braindecode 1.2.0.dev168908090__py3-none-any.whl → 1.2.0.dev175267687__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of braindecode might be problematic. Click here for more details.

Files changed (33) hide show
  1. braindecode/datasets/experimental.py +218 -0
  2. braindecode/models/__init__.py +6 -8
  3. braindecode/models/atcnet.py +1 -1
  4. braindecode/models/attentionbasenet.py +151 -26
  5. braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
  6. braindecode/models/ctnet.py +1 -1
  7. braindecode/models/deep4.py +6 -2
  8. braindecode/models/deepsleepnet.py +118 -5
  9. braindecode/models/eegconformer.py +15 -12
  10. braindecode/models/eeginception_erp.py +76 -7
  11. braindecode/models/eeginception_mi.py +2 -0
  12. braindecode/models/eegnet.py +25 -189
  13. braindecode/models/eegnex.py +113 -6
  14. braindecode/models/eegsimpleconv.py +2 -0
  15. braindecode/models/eegtcnet.py +1 -1
  16. braindecode/models/sccnet.py +79 -8
  17. braindecode/models/shallow_fbcsp.py +2 -0
  18. braindecode/models/sleep_stager_blanco_2020.py +2 -0
  19. braindecode/models/sleep_stager_chambon_2018.py +2 -0
  20. braindecode/models/sparcnet.py +2 -0
  21. braindecode/models/summary.csv +39 -41
  22. braindecode/models/tidnet.py +2 -0
  23. braindecode/models/tsinception.py +15 -3
  24. braindecode/models/usleep.py +103 -9
  25. braindecode/models/util.py +5 -5
  26. braindecode/version.py +1 -1
  27. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/METADATA +7 -2
  28. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/RECORD +32 -32
  29. braindecode/models/eegresnet.py +0 -362
  30. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/WHEEL +0 -0
  31. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/LICENSE.txt +0 -0
  32. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/NOTICE.txt +0 -0
  33. {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/top_level.txt +0 -0
@@ -16,9 +16,122 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
16
16
  class EEGNeX(EEGModuleMixin, nn.Module):
17
17
  """EEGNeX model from Chen et al. (2024) [eegnex]_.
18
18
 
19
+ :bdg-success:`Convolution`
20
+
19
21
  .. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
20
22
  :align: center
21
23
  :alt: EEGNeX Architecture
24
+ :width: 620px
25
+
26
+ .. rubric:: Architectural Overview
27
+
28
+ EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
29
+ and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
30
+ flow is:
31
+
32
+ - (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
33
+ learned FIR-like *temporal filter bank* (no pooling yet);
34
+ - (ii) **Block-3**: depthwise **spatial** convolution across electrodes
35
+ ``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
36
+ - (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
37
+ to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
38
+ - (iv) **Classifier**: a max-norm–constrained linear layer.
39
+
40
+ The published work positions EEGNeX as a compact, conv-only alternative that consistently
41
+ outperforms prior baselines across MOABB-style benchmarks, with the popular
42
+ “EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
43
+
44
+
45
+ .. rubric:: Macro Components
46
+
47
+ - **Block-1 / Block-2 — Temporal filter (learned).**
48
+
49
+ - *Operations.*
50
+ - :class:`torch.nn.Conv2d` with kernels ``(1, L)``
51
+ - :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
52
+ These layers set up frequency-selective detectors before spatial mixing.
53
+
54
+ - *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
55
+ convs allow longer effective kernels without parameter blow-up.
56
+
57
+ - **Block-3 — Spatial projection + condensation.**
58
+
59
+ - *Operations.*
60
+ - :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
61
+ and ``groups = filter_2`` (depthwise across filters)
62
+ - :class:`torch.nn.BatchNorm2d`
63
+ - :class:`torch.nn.ELU`
64
+ - :class:`torch.nn.AvgPool2d` (time)
65
+ - :class:`torch.nn.Dropout`.
66
+
67
+ **Role**: Learns per-filter spatial patterns over the **full montage** while temporal
68
+ pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
69
+ weights similar to EEGNet practice.
70
+
71
+ - **Block-4 / Block-5 — Dilated temporal integration.**
72
+
73
+ - *Operations.*
74
+ - :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
75
+ (e.g., 2 then 4);
76
+ - :class:`torch.nn.BatchNorm2d`
77
+ - :class:`torch.nn.ELU`
78
+ - :class:`torch.nn.AvgPool2d` (time)
79
+ - :class:`torch.nn.Dropout`
80
+ - :class:`torch.nn.Flatten`.
81
+
82
+ **Role**: Expands the temporal receptive field efficiently to capture rhythms and
83
+ long-range context after condensation.
84
+
85
+ - **Final Classifier — Max-norm linear.**
86
+
87
+ - *Operations.*
88
+ - :class:`braindecode.modules.LinearWithConstraint` maps the flattened
89
+ vector to the target classes; the max-norm constraint regularizes the readout.
90
+
91
+
92
+ .. rubric:: Convolutional Details
93
+
94
+ - **Temporal (where time-domain patterns are learned).**
95
+ Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
96
+ use **dilation** to integrate over longer horizons without extra pooling. The final
97
+ AvgPool in Block-5 sets the output token rate and helps noise suppression.
98
+
99
+ - **Spatial (how electrodes are processed).**
100
+ A *single* depthwise spatial conv (Block-3) spans the entire electrode set
101
+ (kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
102
+ mixing occurs at this stage, aiding interpretability.
103
+
104
+ - **Spectral (how frequency content is captured).**
105
+ Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
106
+ bandwidth coverage by composing multiple scales.
107
+
108
+ .. rubric:: Additional Mechanisms
109
+
110
+ - **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
111
+ reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
112
+ and a deeper conv stack.
113
+ - **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
114
+ regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
115
+ patterns.
116
+
117
+ .. rubric:: Usage and Configuration
118
+
119
+ - **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
120
+ ``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
121
+ the paper's “pure conv” profile.
122
+ - **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
123
+ increase dilations (Blocks 4-5) to widen temporal context when windows are short.
124
+ - **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
125
+ classifier layers; prefer ELU activations for stable training on small EEG datasets.
126
+
127
+
128
+ - The braindecode implementation follows the paper's conv-only design with five blocks
129
+ and reproduces the depthwise spatial step and dilated temporal stack. See the class
130
+ reference for exact kernel sizes, dilations, and pooling defaults. You can check the
131
+ original implementation at [EEGNexCode]_.
132
+
133
+ .. versionadded:: 1.1
134
+
22
135
 
23
136
  Parameters
24
137
  ----------
@@ -45,12 +158,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
45
158
  avg_pool_block5 : tuple[int, int], optional
46
159
  Pooling size for block 5. Default is (1, 8).
47
160
 
48
- Notes
49
- -----
50
- This implementation is not guaranteed to be correct, has not been checked
51
- by original authors, only reimplemented from the paper description and
52
- source code in tensorflow [EEGNexCode]_.
53
-
54
161
  References
55
162
  ----------
56
163
  .. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
@@ -21,6 +21,8 @@ from braindecode.models.base import EEGModuleMixin
21
21
  class EEGSimpleConv(EEGModuleMixin, torch.nn.Module):
22
22
  """EEGSimpleConv from Ouahidi, YE et al. (2023) [Yassine2023]_.
23
23
 
24
+ :bdg-success:`Convolution`
25
+
24
26
  .. figure:: https://raw.githubusercontent.com/elouayas/EEGSimpleConv/refs/heads/main/architecture.png
25
27
  :align: center
26
28
  :alt: EEGSimpleConv Architecture
@@ -157,7 +157,7 @@ class EEGTCNet(EEGModuleMixin, nn.Module):
157
157
  class _EEGNetTC(nn.Module):
158
158
  """EEGNet Temporal Convolutional Network (TCN) block.
159
159
 
160
- The main difference from our EEGNetV4 (braindecode) implementation is the
160
+ The main difference from our :class:`EEGNet` (braindecode) implementation is the
161
161
  kernel and dimensional order. Because of this, we decided to keep this
162
162
  implementation in a future issue; we will re-evaluate if it is necessary
163
163
  to maintain this separate implementation.
@@ -17,13 +17,21 @@ from braindecode.modules import LogActivation
17
17
  class SCCNet(EEGModuleMixin, nn.Module):
18
18
  """SCCNet from Wei, C S (2019) [sccnet]_.
19
19
 
20
+ :bdg-success:`Convolution`
21
+
20
22
  Spatial component-wise convolutional network (SCCNet) for motor-imagery EEG
21
23
  classification.
22
24
 
23
25
  .. figure:: https://dt5vp8kor0orz.cloudfront.net/6e3ec5d729cd51fe8acc5a978db27d02a5df9e05/2-Figure1-1.png
24
26
  :align: center
25
27
  :alt: Spatial component-wise convolutional network
28
+ :width: 680px
29
+
30
+ .. rubric:: Architectural Overview
26
31
 
32
+ SCCNet is a spatial-first convolutional layer that fixes temporal kernels in seconds
33
+ to make its filters correspond to neurophysiologically aligned windows. The model
34
+ comprises four stages:
27
35
 
28
36
  1. **Spatial Component Analysis**: Performs convolution spatial filtering
29
37
  across all EEG channels to extract spatial components, effectively
@@ -35,11 +43,81 @@ class SCCNet(EEGModuleMixin, nn.Module):
35
43
  4. **Classification**: Flattens the features and applies a fully connected
36
44
  layer.
37
45
 
46
+ .. rubric:: Macro Components
47
+
48
+ - `SCCNet.spatial_conv` **(spatial component analysis)**
49
+
50
+ - *Operations.*
51
+ - :class:`~torch.nn.Conv2d` with kernel `(n_chans, N_t)` and stride `(1, 1)` on an input reshaped to `(B, 1, n_chans, T)`; typical choice `N_t=1` yields a pure across-channel projection (montage-wide linear spatial filter).
52
+ - Zero padding to preserve time, :class:`~torch.nn.BatchNorm2d`; output has `N_u` component signals shaped `(B, 1, N_u, T)` after a permute step.
53
+
54
+ *Interpretability/robustness.* Mimics CSP-like spatial filtering: each learned filter is a channel-weighted component, easing inspection and reducing channel noise.
55
+
56
+ - `SCCNet.spatial_filt_conv` **(spatio-temporal filtering)**
57
+
58
+ - *Operations.*
59
+ - :class:`~torch.nn.Conv2d` with kernel `(N_u, 12)` over components and time (12 samples ~ 0.1 s at 125 Hz),
60
+ - :class:`~torch.nn.BatchNorm2d`;
61
+ - Nonlinearity is **power-like**: the original paper uses **square** like :class:`~braindecode.models.ShallowFBCSPNet` with the class :class:`~braindecode.modules.LogActivation` as default.
62
+ - :class:`~torch.nn.Dropout` with rate `p=0.5`.
63
+
64
+ - *Role.* Learns frequency-selective energy features and inter-component interactions within a 0.1 s context (beta/alpha cycle scale).
65
+
66
+ - `SCCNet.temporal_smoothing` **(aggregation + readout)**
67
+
68
+ - *Operations.*
69
+ - :class:`~torch.nn.AvgPool2d` with size `(1, 62)` (~ 0.5 s) for temporal smoothing and downsampling
70
+ - :class:`~torch.nn.Flatten`
71
+ - :class:`~torch.nn.Linear` to `n_outputs`.
72
+
73
+
74
+ .. rubric:: Convolutional Details
75
+
76
+ * **Temporal (where time-domain patterns are learned).**
77
+ The second block's kernel length is fixed to 12 samples (≈ 100 ms) and slides with
78
+ stride 1; average pooling `(1, 62)` (≈ 500 ms) integrates power over longer spans.
79
+ These choices bake in short-cycle detection followed by half-second trend smoothing.
80
+
81
+ * **Spatial (how electrodes are processed).**
82
+ The first block's kernel spans **all electrodes** `(n_chans, N_t)`. With `N_t=1`,
83
+ it reduces to a montage-wide linear projection, mapping channels → `N_u` components.
84
+ The second block mixes **across components** via kernel height `N_u`.
85
+
86
+ * **Spectral (how frequency information is captured).**
87
+ No explicit transform is used; learned **temporal kernels** serve as bandpass-like
88
+ filters, and the **square/log power** nonlinearity plus 0.5 s averaging approximate
89
+ band-power estimation (ERD/ERS-style features).
90
+
91
+ .. rubric:: Attention / Sequential Modules
92
+
93
+ This model contains **no attention** and **no recurrent units**.
94
+
95
+ .. rubric:: Additional Mechanisms
96
+
97
+ - :class:`~torch.nn.BatchNorm2d` and zero-padding are applied to both convolutions;
98
+ L2 weight decay was used in the original paper; dropout `p=0.5` combats overfitting.
99
+ - Contrasting with other compact neural network, in EEGNet performs a temporal depthwise conv
100
+ followed by a **depthwise spatial** conv (separable), learning temporal filters first.
101
+ SCCNet inverts this order: it performs a **full spatial projection first** (CSP-like),
102
+ then a short **spatio-temporal** conv with an explicit 0.1 s kernel, followed by
103
+ **power-like** nonlinearity and longer temporal averaging. EEGNet's ELU and
104
+ separable design favor parameter efficiency; SCCNet's second-scale kernels and
105
+ square/log emphasize interpretable **band-power** features.
106
+
107
+ .. rubric:: Usage and Configuration
108
+
109
+ * **Training from the original authors.**
110
+
111
+ * Match window length so that `T` is comfortably larger than pooling length
112
+ (e.g., > 1.5-2 s for MI).
113
+ * Start with standard MI augmentations (channel dropout/shuffle, time reverse)
114
+ and tune `n_spatial_filters` before deeper changes.
38
115
 
39
116
  Parameters
40
117
  ----------
41
118
  n_spatial_filters : int, optional
42
- Number of spatial filters in the first convolutional layer. Default is 22.
119
+ Number of spatial filters in the first convolutional layer, variable `N_u` from the
120
+ original paper. Default is 22.
43
121
  n_spatial_filters_smooth : int, optional
44
122
  Number of spatial filters used as filter in the second convolutional
45
123
  layer. Default is 20.
@@ -49,13 +127,6 @@ class SCCNet(EEGModuleMixin, nn.Module):
49
127
  Activation function after the second convolutional layer. Default is
50
128
  logarithm activation.
51
129
 
52
- Notes
53
- -----
54
- This implementation is not guaranteed to be correct, has not been checked
55
- by original authors, only reimplemented from the paper description and
56
- the source that have not been tested [sccnetcode]_.
57
-
58
-
59
130
  References
60
131
  ----------
61
132
  .. [sccnet] Wei, C. S., Koike-Akino, T., & Wang, Y. (2019, March). Spatial
@@ -20,6 +20,8 @@ from braindecode.modules import (
20
20
  class ShallowFBCSPNet(EEGModuleMixin, nn.Sequential):
21
21
  """Shallow ConvNet model from Schirrmeister et al (2017) [Schirrmeister2017]_.
22
22
 
23
+ :bdg-success:`Convolution`
24
+
23
25
  .. figure:: https://onlinelibrary.wiley.com/cms/asset/221ea375-6701-40d3-ab3f-e411aad62d9e/hbm23730-fig-0002-m.jpg
24
26
  :align: center
25
27
  :alt: ShallowNet Architecture
@@ -11,6 +11,8 @@ from braindecode.models.base import EEGModuleMixin
11
11
  class SleepStagerBlanco2020(EEGModuleMixin, nn.Module):
12
12
  """Sleep staging architecture from Blanco et al. (2020) from [Blanco2020]_
13
13
 
14
+ :bdg-success:`Convolution`
15
+
14
16
  .. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs00500-019-04174-1/MediaObjects/500_2019_4174_Fig2_HTML.png
15
17
  :align: center
16
18
  :alt: SleepStagerBlanco2020 Architecture
@@ -13,6 +13,8 @@ from braindecode.models.base import EEGModuleMixin
13
13
  class SleepStagerChambon2018(EEGModuleMixin, nn.Module):
14
14
  """Sleep staging architecture from Chambon et al. (2018) [Chambon2018]_.
15
15
 
16
+ :bdg-success:`Convolution`
17
+
16
18
  .. figure:: https://braindecode.org/dev/_static/model/SleepStagerChambon2018.jpg
17
19
  :align: center
18
20
  :alt: SleepStagerChambon2018 Architecture
@@ -13,6 +13,8 @@ from braindecode.models.base import EEGModuleMixin
13
13
  class SPARCNet(EEGModuleMixin, nn.Module):
14
14
  """Seizures, Periodic and Rhythmic pattern Continuum Neural Network (SPaRCNet) from Jing et al. (2023) [jing2023]_.
15
15
 
16
+ :bdg-success:`Convolution`
17
+
16
18
  This is a temporal CNN model for biosignal classification based on the DenseNet
17
19
  architecture.
18
20
 
@@ -1,41 +1,39 @@
1
- Model,Paradigm,Type,Freq(Hz),Hyperparameters,#Parameters,get_#Parameters
2
- ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
3
- AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
4
- BDTCN,Normal/Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)"
5
- BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
6
- ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
7
- CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
8
- Deep4Net,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)"
9
- DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
10
- EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)."
11
- EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
12
- EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
13
- EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
14
- EEGNetv1,General,Classification,128,"n_chans, n_outputs, n_times",3052,"EEGNetv1(n_chans=22, n_outputs=4, n_times=512)"
15
- EEGNetv4,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNetv4(n_chans=22, n_outputs=4, n_times=512)"
16
- EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)"
17
- EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)"
18
- EEGResNet,General,Classification,250,"n_chans, n_outputs, n_times",247484,"EEGResNet(n_chans=22, n_outputs=4, n_times=1000)"
19
- EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)"
20
- EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)"
21
- Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
22
- MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)"
23
- SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)"
24
- SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
25
- SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])"
26
- SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
27
- SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)"
28
- SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
29
- ShallowFBCSPNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
30
- SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
31
- SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)"
32
- SleepStagerEldele2021,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"SleepStagerEldele2021(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
33
- SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)"
34
- SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
35
- TSceptionV1,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSceptionV1(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)"
36
- TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)"
37
- USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)"
38
- FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
39
- FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
40
- FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
41
- IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
1
+ Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
2
+ ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
3
+ AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
4
+ BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
5
+ BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
6
+ ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
7
+ CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
8
+ Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
9
+ DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
10
+ EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
11
+ EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
12
+ EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
13
+ EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
14
+ EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
15
+ EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
16
+ EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
17
+ EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
18
+ EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
19
+ Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
20
+ MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
21
+ SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
22
+ SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
23
+ SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
24
+ SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
25
+ SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
26
+ SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
27
+ ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
28
+ SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
29
+ SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
30
+ AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
31
+ SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
32
+ SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
33
+ TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
34
+ TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
35
+ USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
36
+ FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
37
+ FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
38
+ FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
39
+ IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
13
13
  class TIDNet(EEGModuleMixin, nn.Module):
14
14
  """Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
15
15
 
16
+ :bdg-success:`Convolution`
17
+
16
18
  .. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
17
19
  :align: center
18
20
  :alt: TIDNet Architecture
@@ -7,19 +7,21 @@ from __future__ import annotations
7
7
  import torch
8
8
  import torch.nn as nn
9
9
  from einops.layers.torch import Rearrange
10
- from mne.utils import warn
10
+ from mne.utils import deprecated, warn
11
11
 
12
12
  from braindecode.models.base import EEGModuleMixin
13
13
 
14
14
 
15
- class TSceptionV1(EEGModuleMixin, nn.Module):
15
+ class TSception(EEGModuleMixin, nn.Module):
16
16
  """TSception model from Ding et al. (2020) from [ding2020]_.
17
17
 
18
+ :bdg-success:`Convolution`
19
+
18
20
  TSception: A deep learning framework for emotion detection using EEG.
19
21
 
20
22
  .. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
21
23
  :align: center
22
- :alt: TSceptionV1 Architecture
24
+ :alt: TSception Architecture
23
25
 
24
26
  The model consists of temporal and spatial convolutional layers
25
27
  (Tception and Sception) designed to learn temporal and spatial features
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
281
283
  activation(),
282
284
  nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
283
285
  )
286
+
287
+
288
+ @deprecated(
289
+ "`TSceptionV1` was renamed to `TSception` in v1.12; "
290
+ "this alias will be removed in v1.14."
291
+ )
292
+ class TSceptionV1(TSception):
293
+ """Deprecated alias for TSception."""
294
+
295
+ pass
@@ -15,22 +15,116 @@ class USleep(EEGModuleMixin, nn.Module):
15
15
  """
16
16
  Sleep staging architecture from Perslev et al. (2021) [1]_.
17
17
 
18
+ :bdg-success:`Convolution`
19
+
18
20
  .. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
19
21
  :align: center
20
22
  :alt: USleep Architecture
21
23
 
22
- U-Net (autoencoder with skip connections) feature-extractor for sleep
23
- staging described in [1]_.
24
+ Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
25
+ the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
26
+ classifier (right) which generates sleep stages at a chosen temporal resolution.
27
+
28
+ .. rubric:: Architectural Overview
29
+
30
+ U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
31
+ time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
32
+ per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
33
+ processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
34
+ hypnograms in seconds.
35
+
36
+ - (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
37
+ - (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
38
+ - (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
39
+ per-epoch probabilities. Integrates into the USleep class.
40
+
41
+ .. rubric:: Macro Components
42
+
43
+ - Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
44
+
45
+ - *Operations.*
46
+ - **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
47
+ - **ELU** (:class:`torch.nn.ELU`)
48
+ - **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
49
+ - **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
50
+
51
+ Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
52
+ (pre-pooling activation) to the matching decoder block.
53
+ *Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
54
+ context over minutes—foundational for robust cross-cohort staging.
55
+
56
+ The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
57
+ to the matching decoder block.
58
+
59
+ **Rationale.**
60
+ - Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
61
+
62
+ - Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
63
+
64
+ - *Operations.*
65
+ - **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
66
+ - **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
67
+ - ELU, :class:`torch.nn.ELU`
68
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`
69
+ - **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
70
+ - **Convolution**, :class:`torch.nn.Conv2d`
71
+ - ELU, :class:`torch.nn.ELU`
72
+ - Batch Norm, :class:`torch.nn.BatchNorm2d`.
73
+
74
+ **Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
75
+
76
+ - **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
77
+
78
+ - *Operations.*
79
+ - **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
80
+ - **1x1 conv**, :class:`torch.nn.Conv2d`
81
+ - ELU, :class:`torch.nn.ELU`
82
+ - **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
83
+
84
+ **Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
85
+
86
+ .. rubric:: Convolutional Details
87
+
88
+ - **Temporal (where time-domain patterns are learned).**
89
+ All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
90
+ (reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
91
+ The decoder restores sample-level resolution before epoch aggregation.
92
+
93
+ - **Spatial (how channels are processed).**
94
+ Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
95
+ is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
96
+ supporting robustness to channel placement and hardware differences.
97
+
98
+ - **Spectral (how frequency content is captured).**
99
+ No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
100
+ filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
101
+ retains fine temporal detail for the segment classifier.
102
+
103
+
104
+ .. rubric:: Attention / Sequential Modules
105
+
106
+ U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
107
+ segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
108
+
109
+
110
+ .. rubric:: Additional Mechanisms
111
+
112
+ - **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
113
+ switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
114
+ **two-layer** pointwise head—improving capacity and resilience across datasets.
115
+ - **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
116
+ staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
117
+ limiting long-range context.
118
+ - **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
119
+ and memory (as described in the paper's topology table).
120
+
24
121
 
25
- For the encoder ('down'):
26
- - the temporal dimension shrinks (via maxpooling in the time-domain)
27
- - the spatial dimension expands (via more conv1d filters in the time-domain)
122
+ .. rubric:: Usage and Configuration
28
123
 
29
- For the decoder ('up'):
30
- - the temporal dimension expands (via upsampling in the time-domain)
31
- - the spatial dimension shrinks (via fewer conv1d filters in the time-domain)
124
+ - **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
125
+ length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
126
+ 17.5 min chunks).
32
127
 
33
- Both do so at exponential rates.
34
128
 
35
129
  Parameters
36
130
  ----------
@@ -22,6 +22,8 @@ def _init_models_dict():
22
22
  issubclass(m[1], models.base.EEGModuleMixin)
23
23
  and m[1] != models.base.EEGModuleMixin
24
24
  ):
25
+ if m[1].__name__ == "EEGNetv4":
26
+ continue
25
27
  models_dict[m[0]] = m[1]
26
28
 
27
29
 
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
55
57
  ("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
56
58
  ("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
57
59
  ("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
58
- ("EEGNetv1", ["n_chans", "n_outputs", "n_times"], None),
59
- ("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
60
- ("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
60
+ ("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
61
61
  ("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
62
62
  (
63
63
  "SleepStagerBlanco2020",
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
66
66
  ),
67
67
  ("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
68
68
  (
69
- "SleepStagerEldele2021",
69
+ "AttnSleep",
70
70
  ["n_outputs", "n_times", "sfreq"],
71
71
  dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
72
72
  ), # 1 channel
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
79
79
  ("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
80
80
  ("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
81
81
  ("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
82
- ("TSceptionV1", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
82
+ ("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
83
83
  ("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
84
84
  ("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
85
85
  ("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
braindecode/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.0.dev168908090"
1
+ __version__ = "1.2.0.dev175267687"