braindecode 1.2.0.dev168908090__py3-none-any.whl → 1.2.0.dev175267687__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of braindecode might be problematic. Click here for more details.
- braindecode/datasets/experimental.py +218 -0
- braindecode/models/__init__.py +6 -8
- braindecode/models/atcnet.py +1 -1
- braindecode/models/attentionbasenet.py +151 -26
- braindecode/models/{sleep_stager_eldele_2021.py → attn_sleep.py} +12 -2
- braindecode/models/ctnet.py +1 -1
- braindecode/models/deep4.py +6 -2
- braindecode/models/deepsleepnet.py +118 -5
- braindecode/models/eegconformer.py +15 -12
- braindecode/models/eeginception_erp.py +76 -7
- braindecode/models/eeginception_mi.py +2 -0
- braindecode/models/eegnet.py +25 -189
- braindecode/models/eegnex.py +113 -6
- braindecode/models/eegsimpleconv.py +2 -0
- braindecode/models/eegtcnet.py +1 -1
- braindecode/models/sccnet.py +79 -8
- braindecode/models/shallow_fbcsp.py +2 -0
- braindecode/models/sleep_stager_blanco_2020.py +2 -0
- braindecode/models/sleep_stager_chambon_2018.py +2 -0
- braindecode/models/sparcnet.py +2 -0
- braindecode/models/summary.csv +39 -41
- braindecode/models/tidnet.py +2 -0
- braindecode/models/tsinception.py +15 -3
- braindecode/models/usleep.py +103 -9
- braindecode/models/util.py +5 -5
- braindecode/version.py +1 -1
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/METADATA +7 -2
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/RECORD +32 -32
- braindecode/models/eegresnet.py +0 -362
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/WHEEL +0 -0
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/LICENSE.txt +0 -0
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/licenses/NOTICE.txt +0 -0
- {braindecode-1.2.0.dev168908090.dist-info → braindecode-1.2.0.dev175267687.dist-info}/top_level.txt +0 -0
braindecode/models/eegnex.py
CHANGED
|
@@ -16,9 +16,122 @@ from braindecode.modules import Conv2dWithConstraint, LinearWithConstraint
|
|
|
16
16
|
class EEGNeX(EEGModuleMixin, nn.Module):
|
|
17
17
|
"""EEGNeX model from Chen et al. (2024) [eegnex]_.
|
|
18
18
|
|
|
19
|
+
:bdg-success:`Convolution`
|
|
20
|
+
|
|
19
21
|
.. figure:: https://braindecode.org/dev/_static/model/eegnex.jpg
|
|
20
22
|
:align: center
|
|
21
23
|
:alt: EEGNeX Architecture
|
|
24
|
+
:width: 620px
|
|
25
|
+
|
|
26
|
+
.. rubric:: Architectural Overview
|
|
27
|
+
|
|
28
|
+
EEGNeX is a **purely convolutional** architecture that refines the EEGNet-style stem
|
|
29
|
+
and deepens the temporal stack with **dilated temporal convolutions**. The end-to-end
|
|
30
|
+
flow is:
|
|
31
|
+
|
|
32
|
+
- (i) **Block-1/2**: two temporal convolutions ``(1 x L)`` with BN refine a
|
|
33
|
+
learned FIR-like *temporal filter bank* (no pooling yet);
|
|
34
|
+
- (ii) **Block-3**: depthwise **spatial** convolution across electrodes
|
|
35
|
+
``(n_chans x 1)`` with max-norm constraint, followed by ELU → AvgPool (time) → Dropout;
|
|
36
|
+
- (iii) **Block-4/5**: two additional **temporal** convolutions with increasing **dilation**
|
|
37
|
+
to expand the receptive field; the last block applies ELU → AvgPool → Dropout → Flatten;
|
|
38
|
+
- (iv) **Classifier**: a max-norm–constrained linear layer.
|
|
39
|
+
|
|
40
|
+
The published work positions EEGNeX as a compact, conv-only alternative that consistently
|
|
41
|
+
outperforms prior baselines across MOABB-style benchmarks, with the popular
|
|
42
|
+
“EEGNeX-8,32” shorthand denoting *8 temporal filters* and *kernel length 32*.
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
.. rubric:: Macro Components
|
|
46
|
+
|
|
47
|
+
- **Block-1 / Block-2 — Temporal filter (learned).**
|
|
48
|
+
|
|
49
|
+
- *Operations.*
|
|
50
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, L)``
|
|
51
|
+
- :class:`torch.nn.BatchNorm2d` (no nonlinearity until Block-3, mirroring a linear FIR analysis stage).
|
|
52
|
+
These layers set up frequency-selective detectors before spatial mixing.
|
|
53
|
+
|
|
54
|
+
- *Interpretability.* Kernels can be inspected as FIR filters; two stacked temporal
|
|
55
|
+
convs allow longer effective kernels without parameter blow-up.
|
|
56
|
+
|
|
57
|
+
- **Block-3 — Spatial projection + condensation.**
|
|
58
|
+
|
|
59
|
+
- *Operations.*
|
|
60
|
+
- :class:`braindecode.modules.Conv2dWithConstraint` with kernel``(n_chans, 1)``
|
|
61
|
+
and ``groups = filter_2`` (depthwise across filters)
|
|
62
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
63
|
+
- :class:`torch.nn.ELU`
|
|
64
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
65
|
+
- :class:`torch.nn.Dropout`.
|
|
66
|
+
|
|
67
|
+
**Role**: Learns per-filter spatial patterns over the **full montage** while temporal
|
|
68
|
+
pooling stabilizes and compresses features; max-norm encourages well-behaved spatial
|
|
69
|
+
weights similar to EEGNet practice.
|
|
70
|
+
|
|
71
|
+
- **Block-4 / Block-5 — Dilated temporal integration.**
|
|
72
|
+
|
|
73
|
+
- *Operations.*
|
|
74
|
+
- :class:`torch.nn.Conv2d` with kernels ``(1, k)`` and **dilations**
|
|
75
|
+
(e.g., 2 then 4);
|
|
76
|
+
- :class:`torch.nn.BatchNorm2d`
|
|
77
|
+
- :class:`torch.nn.ELU`
|
|
78
|
+
- :class:`torch.nn.AvgPool2d` (time)
|
|
79
|
+
- :class:`torch.nn.Dropout`
|
|
80
|
+
- :class:`torch.nn.Flatten`.
|
|
81
|
+
|
|
82
|
+
**Role**: Expands the temporal receptive field efficiently to capture rhythms and
|
|
83
|
+
long-range context after condensation.
|
|
84
|
+
|
|
85
|
+
- **Final Classifier — Max-norm linear.**
|
|
86
|
+
|
|
87
|
+
- *Operations.*
|
|
88
|
+
- :class:`braindecode.modules.LinearWithConstraint` maps the flattened
|
|
89
|
+
vector to the target classes; the max-norm constraint regularizes the readout.
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
.. rubric:: Convolutional Details
|
|
93
|
+
|
|
94
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
95
|
+
Blocks 1-2 learn the primary filter bank (oscillations/transients), while Blocks 4-5
|
|
96
|
+
use **dilation** to integrate over longer horizons without extra pooling. The final
|
|
97
|
+
AvgPool in Block-5 sets the output token rate and helps noise suppression.
|
|
98
|
+
|
|
99
|
+
- **Spatial (how electrodes are processed).**
|
|
100
|
+
A *single* depthwise spatial conv (Block-3) spans the entire electrode set
|
|
101
|
+
(kernel ``(n_chans, 1)``), producing per-temporal-filter topographies; no cross-filter
|
|
102
|
+
mixing occurs at this stage, aiding interpretability.
|
|
103
|
+
|
|
104
|
+
- **Spectral (how frequency content is captured).**
|
|
105
|
+
Frequency selectivity emerges from the learned temporal kernels; dilation broadens effective
|
|
106
|
+
bandwidth coverage by composing multiple scales.
|
|
107
|
+
|
|
108
|
+
.. rubric:: Additional Mechanisms
|
|
109
|
+
|
|
110
|
+
- **EEGNeX-8,32 naming.** “8,32” indicates *8 temporal filters* and *kernel length 32*,
|
|
111
|
+
reflecting the paper's ablation path from EEGNet-8,2 toward thicker temporal kernels
|
|
112
|
+
and a deeper conv stack.
|
|
113
|
+
- **Max-norm constraints.** Spatial (Block-3) and final linear layers use max-norm
|
|
114
|
+
regularization—standard in EEG CNNs—to reduce overfitting and encourage stable spatial
|
|
115
|
+
patterns.
|
|
116
|
+
|
|
117
|
+
.. rubric:: Usage and Configuration
|
|
118
|
+
|
|
119
|
+
- **Kernel schedule.** Start with the canonical **EEGNeX-8,32** (``filter_1=8``,
|
|
120
|
+
``kernel_block_1_2=32``) and keep **Block-3** depth multiplier modest (e.g., 2) to match
|
|
121
|
+
the paper's “pure conv” profile.
|
|
122
|
+
- **Pooling vs. dilation.** Use pooling in Blocks 3 and 5 to control compute and variance;
|
|
123
|
+
increase dilations (Blocks 4-5) to widen temporal context when windows are short.
|
|
124
|
+
- **Regularization.** Combine dropout (Blocks 3 & 5) with max-norm on spatial and
|
|
125
|
+
classifier layers; prefer ELU activations for stable training on small EEG datasets.
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
- The braindecode implementation follows the paper's conv-only design with five blocks
|
|
129
|
+
and reproduces the depthwise spatial step and dilated temporal stack. See the class
|
|
130
|
+
reference for exact kernel sizes, dilations, and pooling defaults. You can check the
|
|
131
|
+
original implementation at [EEGNexCode]_.
|
|
132
|
+
|
|
133
|
+
.. versionadded:: 1.1
|
|
134
|
+
|
|
22
135
|
|
|
23
136
|
Parameters
|
|
24
137
|
----------
|
|
@@ -45,12 +158,6 @@ class EEGNeX(EEGModuleMixin, nn.Module):
|
|
|
45
158
|
avg_pool_block5 : tuple[int, int], optional
|
|
46
159
|
Pooling size for block 5. Default is (1, 8).
|
|
47
160
|
|
|
48
|
-
Notes
|
|
49
|
-
-----
|
|
50
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
51
|
-
by original authors, only reimplemented from the paper description and
|
|
52
|
-
source code in tensorflow [EEGNexCode]_.
|
|
53
|
-
|
|
54
161
|
References
|
|
55
162
|
----------
|
|
56
163
|
.. [eegnex] Chen, X., Teng, X., Chen, H., Pan, Y., & Geyer, P. (2024).
|
|
@@ -21,6 +21,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
21
21
|
class EEGSimpleConv(EEGModuleMixin, torch.nn.Module):
|
|
22
22
|
"""EEGSimpleConv from Ouahidi, YE et al. (2023) [Yassine2023]_.
|
|
23
23
|
|
|
24
|
+
:bdg-success:`Convolution`
|
|
25
|
+
|
|
24
26
|
.. figure:: https://raw.githubusercontent.com/elouayas/EEGSimpleConv/refs/heads/main/architecture.png
|
|
25
27
|
:align: center
|
|
26
28
|
:alt: EEGSimpleConv Architecture
|
braindecode/models/eegtcnet.py
CHANGED
|
@@ -157,7 +157,7 @@ class EEGTCNet(EEGModuleMixin, nn.Module):
|
|
|
157
157
|
class _EEGNetTC(nn.Module):
|
|
158
158
|
"""EEGNet Temporal Convolutional Network (TCN) block.
|
|
159
159
|
|
|
160
|
-
The main difference from our
|
|
160
|
+
The main difference from our :class:`EEGNet` (braindecode) implementation is the
|
|
161
161
|
kernel and dimensional order. Because of this, we decided to keep this
|
|
162
162
|
implementation in a future issue; we will re-evaluate if it is necessary
|
|
163
163
|
to maintain this separate implementation.
|
braindecode/models/sccnet.py
CHANGED
|
@@ -17,13 +17,21 @@ from braindecode.modules import LogActivation
|
|
|
17
17
|
class SCCNet(EEGModuleMixin, nn.Module):
|
|
18
18
|
"""SCCNet from Wei, C S (2019) [sccnet]_.
|
|
19
19
|
|
|
20
|
+
:bdg-success:`Convolution`
|
|
21
|
+
|
|
20
22
|
Spatial component-wise convolutional network (SCCNet) for motor-imagery EEG
|
|
21
23
|
classification.
|
|
22
24
|
|
|
23
25
|
.. figure:: https://dt5vp8kor0orz.cloudfront.net/6e3ec5d729cd51fe8acc5a978db27d02a5df9e05/2-Figure1-1.png
|
|
24
26
|
:align: center
|
|
25
27
|
:alt: Spatial component-wise convolutional network
|
|
28
|
+
:width: 680px
|
|
29
|
+
|
|
30
|
+
.. rubric:: Architectural Overview
|
|
26
31
|
|
|
32
|
+
SCCNet is a spatial-first convolutional layer that fixes temporal kernels in seconds
|
|
33
|
+
to make its filters correspond to neurophysiologically aligned windows. The model
|
|
34
|
+
comprises four stages:
|
|
27
35
|
|
|
28
36
|
1. **Spatial Component Analysis**: Performs convolution spatial filtering
|
|
29
37
|
across all EEG channels to extract spatial components, effectively
|
|
@@ -35,11 +43,81 @@ class SCCNet(EEGModuleMixin, nn.Module):
|
|
|
35
43
|
4. **Classification**: Flattens the features and applies a fully connected
|
|
36
44
|
layer.
|
|
37
45
|
|
|
46
|
+
.. rubric:: Macro Components
|
|
47
|
+
|
|
48
|
+
- `SCCNet.spatial_conv` **(spatial component analysis)**
|
|
49
|
+
|
|
50
|
+
- *Operations.*
|
|
51
|
+
- :class:`~torch.nn.Conv2d` with kernel `(n_chans, N_t)` and stride `(1, 1)` on an input reshaped to `(B, 1, n_chans, T)`; typical choice `N_t=1` yields a pure across-channel projection (montage-wide linear spatial filter).
|
|
52
|
+
- Zero padding to preserve time, :class:`~torch.nn.BatchNorm2d`; output has `N_u` component signals shaped `(B, 1, N_u, T)` after a permute step.
|
|
53
|
+
|
|
54
|
+
*Interpretability/robustness.* Mimics CSP-like spatial filtering: each learned filter is a channel-weighted component, easing inspection and reducing channel noise.
|
|
55
|
+
|
|
56
|
+
- `SCCNet.spatial_filt_conv` **(spatio-temporal filtering)**
|
|
57
|
+
|
|
58
|
+
- *Operations.*
|
|
59
|
+
- :class:`~torch.nn.Conv2d` with kernel `(N_u, 12)` over components and time (12 samples ~ 0.1 s at 125 Hz),
|
|
60
|
+
- :class:`~torch.nn.BatchNorm2d`;
|
|
61
|
+
- Nonlinearity is **power-like**: the original paper uses **square** like :class:`~braindecode.models.ShallowFBCSPNet` with the class :class:`~braindecode.modules.LogActivation` as default.
|
|
62
|
+
- :class:`~torch.nn.Dropout` with rate `p=0.5`.
|
|
63
|
+
|
|
64
|
+
- *Role.* Learns frequency-selective energy features and inter-component interactions within a 0.1 s context (beta/alpha cycle scale).
|
|
65
|
+
|
|
66
|
+
- `SCCNet.temporal_smoothing` **(aggregation + readout)**
|
|
67
|
+
|
|
68
|
+
- *Operations.*
|
|
69
|
+
- :class:`~torch.nn.AvgPool2d` with size `(1, 62)` (~ 0.5 s) for temporal smoothing and downsampling
|
|
70
|
+
- :class:`~torch.nn.Flatten`
|
|
71
|
+
- :class:`~torch.nn.Linear` to `n_outputs`.
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
.. rubric:: Convolutional Details
|
|
75
|
+
|
|
76
|
+
* **Temporal (where time-domain patterns are learned).**
|
|
77
|
+
The second block's kernel length is fixed to 12 samples (≈ 100 ms) and slides with
|
|
78
|
+
stride 1; average pooling `(1, 62)` (≈ 500 ms) integrates power over longer spans.
|
|
79
|
+
These choices bake in short-cycle detection followed by half-second trend smoothing.
|
|
80
|
+
|
|
81
|
+
* **Spatial (how electrodes are processed).**
|
|
82
|
+
The first block's kernel spans **all electrodes** `(n_chans, N_t)`. With `N_t=1`,
|
|
83
|
+
it reduces to a montage-wide linear projection, mapping channels → `N_u` components.
|
|
84
|
+
The second block mixes **across components** via kernel height `N_u`.
|
|
85
|
+
|
|
86
|
+
* **Spectral (how frequency information is captured).**
|
|
87
|
+
No explicit transform is used; learned **temporal kernels** serve as bandpass-like
|
|
88
|
+
filters, and the **square/log power** nonlinearity plus 0.5 s averaging approximate
|
|
89
|
+
band-power estimation (ERD/ERS-style features).
|
|
90
|
+
|
|
91
|
+
.. rubric:: Attention / Sequential Modules
|
|
92
|
+
|
|
93
|
+
This model contains **no attention** and **no recurrent units**.
|
|
94
|
+
|
|
95
|
+
.. rubric:: Additional Mechanisms
|
|
96
|
+
|
|
97
|
+
- :class:`~torch.nn.BatchNorm2d` and zero-padding are applied to both convolutions;
|
|
98
|
+
L2 weight decay was used in the original paper; dropout `p=0.5` combats overfitting.
|
|
99
|
+
- Contrasting with other compact neural network, in EEGNet performs a temporal depthwise conv
|
|
100
|
+
followed by a **depthwise spatial** conv (separable), learning temporal filters first.
|
|
101
|
+
SCCNet inverts this order: it performs a **full spatial projection first** (CSP-like),
|
|
102
|
+
then a short **spatio-temporal** conv with an explicit 0.1 s kernel, followed by
|
|
103
|
+
**power-like** nonlinearity and longer temporal averaging. EEGNet's ELU and
|
|
104
|
+
separable design favor parameter efficiency; SCCNet's second-scale kernels and
|
|
105
|
+
square/log emphasize interpretable **band-power** features.
|
|
106
|
+
|
|
107
|
+
.. rubric:: Usage and Configuration
|
|
108
|
+
|
|
109
|
+
* **Training from the original authors.**
|
|
110
|
+
|
|
111
|
+
* Match window length so that `T` is comfortably larger than pooling length
|
|
112
|
+
(e.g., > 1.5-2 s for MI).
|
|
113
|
+
* Start with standard MI augmentations (channel dropout/shuffle, time reverse)
|
|
114
|
+
and tune `n_spatial_filters` before deeper changes.
|
|
38
115
|
|
|
39
116
|
Parameters
|
|
40
117
|
----------
|
|
41
118
|
n_spatial_filters : int, optional
|
|
42
|
-
Number of spatial filters in the first convolutional layer
|
|
119
|
+
Number of spatial filters in the first convolutional layer, variable `N_u` from the
|
|
120
|
+
original paper. Default is 22.
|
|
43
121
|
n_spatial_filters_smooth : int, optional
|
|
44
122
|
Number of spatial filters used as filter in the second convolutional
|
|
45
123
|
layer. Default is 20.
|
|
@@ -49,13 +127,6 @@ class SCCNet(EEGModuleMixin, nn.Module):
|
|
|
49
127
|
Activation function after the second convolutional layer. Default is
|
|
50
128
|
logarithm activation.
|
|
51
129
|
|
|
52
|
-
Notes
|
|
53
|
-
-----
|
|
54
|
-
This implementation is not guaranteed to be correct, has not been checked
|
|
55
|
-
by original authors, only reimplemented from the paper description and
|
|
56
|
-
the source that have not been tested [sccnetcode]_.
|
|
57
|
-
|
|
58
|
-
|
|
59
130
|
References
|
|
60
131
|
----------
|
|
61
132
|
.. [sccnet] Wei, C. S., Koike-Akino, T., & Wang, Y. (2019, March). Spatial
|
|
@@ -20,6 +20,8 @@ from braindecode.modules import (
|
|
|
20
20
|
class ShallowFBCSPNet(EEGModuleMixin, nn.Sequential):
|
|
21
21
|
"""Shallow ConvNet model from Schirrmeister et al (2017) [Schirrmeister2017]_.
|
|
22
22
|
|
|
23
|
+
:bdg-success:`Convolution`
|
|
24
|
+
|
|
23
25
|
.. figure:: https://onlinelibrary.wiley.com/cms/asset/221ea375-6701-40d3-ab3f-e411aad62d9e/hbm23730-fig-0002-m.jpg
|
|
24
26
|
:align: center
|
|
25
27
|
:alt: ShallowNet Architecture
|
|
@@ -11,6 +11,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
11
11
|
class SleepStagerBlanco2020(EEGModuleMixin, nn.Module):
|
|
12
12
|
"""Sleep staging architecture from Blanco et al. (2020) from [Blanco2020]_
|
|
13
13
|
|
|
14
|
+
:bdg-success:`Convolution`
|
|
15
|
+
|
|
14
16
|
.. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs00500-019-04174-1/MediaObjects/500_2019_4174_Fig2_HTML.png
|
|
15
17
|
:align: center
|
|
16
18
|
:alt: SleepStagerBlanco2020 Architecture
|
|
@@ -13,6 +13,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
13
13
|
class SleepStagerChambon2018(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Sleep staging architecture from Chambon et al. (2018) [Chambon2018]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
.. figure:: https://braindecode.org/dev/_static/model/SleepStagerChambon2018.jpg
|
|
17
19
|
:align: center
|
|
18
20
|
:alt: SleepStagerChambon2018 Architecture
|
braindecode/models/sparcnet.py
CHANGED
|
@@ -13,6 +13,8 @@ from braindecode.models.base import EEGModuleMixin
|
|
|
13
13
|
class SPARCNet(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Seizures, Periodic and Rhythmic pattern Continuum Neural Network (SPaRCNet) from Jing et al. (2023) [jing2023]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
This is a temporal CNN model for biosignal classification based on the DenseNet
|
|
17
19
|
architecture.
|
|
18
20
|
|
braindecode/models/summary.csv
CHANGED
|
@@ -1,41 +1,39 @@
|
|
|
1
|
-
Model,
|
|
2
|
-
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
3
|
-
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)"
|
|
4
|
-
BDTCN,Normal
|
|
5
|
-
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)"
|
|
6
|
-
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)"
|
|
7
|
-
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)"
|
|
8
|
-
Deep4Net,
|
|
9
|
-
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)"
|
|
10
|
-
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)
|
|
11
|
-
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)"
|
|
12
|
-
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)"
|
|
13
|
-
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
41
|
-
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)"
|
|
1
|
+
Model,Application,Type,Sampling Frequency (Hz),Hyperparameters,#Parameters,get_#Parameters,Categorization
|
|
2
|
+
ATCNet,General,Classification,250,"n_chans, n_outputs, n_times",113732,"ATCNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
3
|
+
AttentionBaseNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",3692,"AttentionBaseNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
4
|
+
BDTCN,Normal Abnormal,Classification,100,"n_chans, n_outputs, n_times",456502,"BDTCN(n_chans=21, n_outputs=2, n_times=6000, n_blocks=5, n_filters=55, kernel_size=16)","Convolution,Recurrent"
|
|
5
|
+
BIOT,"Sleep Staging, Epilepsy",Classification,200,"n_chans, n_outputs",3183879,"BIOT(n_chans=2, n_outputs=5, n_times=6000)","Large Language Model"
|
|
6
|
+
ContraWR,Sleep Staging,"Classification, Embedding",125,"n_chans, n_outputs, sfreq",1160165,"ContraWR(n_chans=2, n_outputs=5, n_times=3750, emb_size=256, sfreq=125)",Convolution
|
|
7
|
+
CTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",26900,"CTNet(n_chans=22, n_outputs=4, n_times=1000, n_filters_time=8, kernel_size=16, heads=2, emb_size=16)","Convolution,Small Attention"
|
|
8
|
+
Deep4Net,General,Classification,250,"n_chans, n_outputs, n_times",282879,"Deep4Net(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
9
|
+
DeepSleepNet,Sleep Staging,Classification,256,"n_chans, n_outputs",24744837,"DeepSleepNet(n_chans=1, n_outputs=5, n_times=7680, sfreq=256)","Convolution,Recurrent"
|
|
10
|
+
EEGConformer,General,Classification,250,"n_chans, n_outputs, n_times",789572,"EEGConformer(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Small Attention"
|
|
11
|
+
EEGInceptionERP,"ERP, SSVEP",Classification,128,"n_chans, n_outputs",14926,"EEGInceptionERP(n_chans=8, n_outputs=2, n_times=128, sfreq=128)","Convolution"
|
|
12
|
+
EEGInceptionMI,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",558028,"EEGInceptionMI(n_chans=22, n_outputs=4, n_times=1000, n_convs=5, n_filters=12)","Convolution"
|
|
13
|
+
EEGITNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",5212,"EEGITNet(n_chans=22, n_outputs=4, n_times=500)","Convolution,Recurrent"
|
|
14
|
+
EEGNet,General,Classification,128,"n_chans, n_outputs, n_times",2484,"EEGNet(n_chans=22, n_outputs=4, n_times=512)","Convolution"
|
|
15
|
+
EEGNeX,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times",55940,"EEGNeX(n_chans=22, n_outputs=4, n_times=500)","Convolution"
|
|
16
|
+
EEGMiner,Emotion Recognition,Classification,128,"n_chans, n_outputs, n_times, sfreq",7572,"EEGMiner(n_chans=62, n_outputs=2, n_times=2560, sfreq=128)","Convolution,Interpretability"
|
|
17
|
+
EEGSimpleConv,Motor Imagery,Classification,80,"n_chans, n_outputs, sfreq",730404,"EEGSimpleConv(n_chans=22, n_outputs=4, n_times=320, sfreq=80)","Convolution"
|
|
18
|
+
EEGTCNet,Motor Imagery,Classification,250,"n_chans, n_outputs",4516,"EEGTCNet(n_chans=22, n_outputs=4, n_times=1000, kern_length=32)","Convolution,Recurrent"
|
|
19
|
+
Labram,General,"Classification, Embedding",200,"n_chans, n_outputs, n_times",5866180,"Labram(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Large Language Model"
|
|
20
|
+
MSVTNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times",75494," MSVTNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution,Recurrent,Small Attention"
|
|
21
|
+
SCCNet,Motor Imagery,Classification,125,"n_chans, n_outputs, n_times, sfreq",12070,"SCCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=125)","Convolution"
|
|
22
|
+
SignalJEPA,"Motor Imagery, ERP, SSVEP",Embedding,128,"n_times, chs_info",3456882,"SignalJEPA(n_times=512, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
23
|
+
SignalJEPA_Contextual,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",3459184,"SignalJEPA_Contextual(n_outputs=2, input_window_seconds=4.19, sfreq=128, chs_info=Lee2019_MI().get_data(subjects=[1])[1]['0']['1train'].info[""chs""][:62])","Convolution,Channel,Large Language Model"
|
|
24
|
+
SignalJEPA_PostLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_chans, n_outputs, n_times",16142,"SignalJEPA_PostLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
25
|
+
SignalJEPA_PreLocal,"Motor Imagery, ERP, SSVEP",Classification,128,"n_outputs, n_times, chs_info",16142,"SignalJEPA_PreLocal(n_chans=62, n_outputs=2, input_window_seconds=4.19, sfreq=128)","Convolution,Channel,Large Language Model"
|
|
26
|
+
SincShallowNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",21892,"SincShallowNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,Interpretability"
|
|
27
|
+
ShallowFBCSPNet,General,Classification,250,"n_chans, n_outputs, n_times",46084,"ShallowFBCSPNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution"
|
|
28
|
+
SleepStagerBlanco2020,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times",2845,"SleepStagerBlanco2020(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
29
|
+
SleepStagerChambon2018,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",5835,"SleepStagerChambon2018(n_chans=2, n_outputs=5, n_times=3840, sfreq=128)","Convolution"
|
|
30
|
+
AttnSleep,Sleep Staging,Classification,100,"n_chans, n_outputs, n_times, sfreq",719925,"AttnSleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution, Small Attention"
|
|
31
|
+
SPARCNet,Epilepsy,Classification,200,"n_chans, n_outputs, n_times",1141921,"SPARCNet(n_chans=16, n_outputs=6, n_times=2000, sfreq=200)","Convolution"
|
|
32
|
+
SyncNet,"Emotion Recognition, Alcoholism",Classification,256,"n_chans, n_outputs, n_times",554,"SyncNet(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Interpretability"
|
|
33
|
+
TSception,Emotion Recognition,Classification,256,"n_chans, n_outputs, n_times, sfreq",2187206,"TSception(n_chans=62, n_outputs=3, n_times=5120, sfreq=256)","Convolution"
|
|
34
|
+
TIDNet,General,Classification,250,"n_chans, n_outputs, n_times",240404,"TIDNet(n_chans=22, n_outputs=4, n_times=1000)","Convolution"
|
|
35
|
+
USleep,Sleep Staging,Classification,128,"n_chans, n_outputs, n_times, sfreq",2482011,"USleep(n_chans=2, n_outputs=5, n_times=3000, sfreq=100)","Convolution"
|
|
36
|
+
FBCNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",11812,"FCNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
37
|
+
FBMSNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",16231,"FBMSNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
38
|
+
FBLightConvNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",6596,"FBLightConvNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
|
39
|
+
IFNet,Motor Imagery,Classification,250,"n_chans, n_outputs, n_times, sfreq",9860,"IFNet(n_chans=22, n_outputs=4, n_times=1000, sfreq=250)","Convolution,FilterBank"
|
braindecode/models/tidnet.py
CHANGED
|
@@ -13,6 +13,8 @@ from braindecode.modules import Ensure4d
|
|
|
13
13
|
class TIDNet(EEGModuleMixin, nn.Module):
|
|
14
14
|
"""Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet]_.
|
|
15
15
|
|
|
16
|
+
:bdg-success:`Convolution`
|
|
17
|
+
|
|
16
18
|
.. figure:: https://content.cld.iop.org/journals/1741-2552/17/5/056008/revision3/jneabb7a7f1_hr.jpg
|
|
17
19
|
:align: center
|
|
18
20
|
:alt: TIDNet Architecture
|
|
@@ -7,19 +7,21 @@ from __future__ import annotations
|
|
|
7
7
|
import torch
|
|
8
8
|
import torch.nn as nn
|
|
9
9
|
from einops.layers.torch import Rearrange
|
|
10
|
-
from mne.utils import warn
|
|
10
|
+
from mne.utils import deprecated, warn
|
|
11
11
|
|
|
12
12
|
from braindecode.models.base import EEGModuleMixin
|
|
13
13
|
|
|
14
14
|
|
|
15
|
-
class
|
|
15
|
+
class TSception(EEGModuleMixin, nn.Module):
|
|
16
16
|
"""TSception model from Ding et al. (2020) from [ding2020]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
TSception: A deep learning framework for emotion detection using EEG.
|
|
19
21
|
|
|
20
22
|
.. figure:: https://user-images.githubusercontent.com/58539144/74716976-80415e00-526a-11ea-9433-02ab2b753f6b.PNG
|
|
21
23
|
:align: center
|
|
22
|
-
:alt:
|
|
24
|
+
:alt: TSception Architecture
|
|
23
25
|
|
|
24
26
|
The model consists of temporal and spatial convolutional layers
|
|
25
27
|
(Tception and Sception) designed to learn temporal and spatial features
|
|
@@ -281,3 +283,13 @@ class TSceptionV1(EEGModuleMixin, nn.Module):
|
|
|
281
283
|
activation(),
|
|
282
284
|
nn.AvgPool2d(kernel_size=(1, pool_size), stride=(1, pool_size)),
|
|
283
285
|
)
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
@deprecated(
|
|
289
|
+
"`TSceptionV1` was renamed to `TSception` in v1.12; "
|
|
290
|
+
"this alias will be removed in v1.14."
|
|
291
|
+
)
|
|
292
|
+
class TSceptionV1(TSception):
|
|
293
|
+
"""Deprecated alias for TSception."""
|
|
294
|
+
|
|
295
|
+
pass
|
braindecode/models/usleep.py
CHANGED
|
@@ -15,22 +15,116 @@ class USleep(EEGModuleMixin, nn.Module):
|
|
|
15
15
|
"""
|
|
16
16
|
Sleep staging architecture from Perslev et al. (2021) [1]_.
|
|
17
17
|
|
|
18
|
+
:bdg-success:`Convolution`
|
|
19
|
+
|
|
18
20
|
.. figure:: https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41746-021-00440-5/MediaObjects/41746_2021_440_Fig2_HTML.png
|
|
19
21
|
:align: center
|
|
20
22
|
:alt: USleep Architecture
|
|
21
23
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
+
Figure: U-Sleep consists of an encoder (left) which encodes the input signals into dense feature representations, a decoder (middle) which projects
|
|
25
|
+
the learned features into the input space to generate a dense sleep stage representation, and finally a specially designed segment
|
|
26
|
+
classifier (right) which generates sleep stages at a chosen temporal resolution.
|
|
27
|
+
|
|
28
|
+
.. rubric:: Architectural Overview
|
|
29
|
+
|
|
30
|
+
U-Sleep is a **fully convolutional**, feed-forward encoder-decoder with a *segment classifier* head for
|
|
31
|
+
time-series **segmentation** (sleep staging). It maps multi-channel PSG (EEG+EOG) to a *dense, high-frequency*
|
|
32
|
+
per-sample representation, then aggregates it into fixed-length stage labels (e.g., 30 s). The network
|
|
33
|
+
processes arbitrarily long inputs in **one forward pass** (resampling to 128 Hz), allowing whole-night
|
|
34
|
+
hypnograms in seconds.
|
|
35
|
+
|
|
36
|
+
- (i). :class:`_EncoderBlock` extracts progressively deeper temporal features at lower resolution;
|
|
37
|
+
- (ii). :class:`_Decoder` upsamples and fuses encoder features via U-Net-style skips to recover a per-sample stage map;
|
|
38
|
+
- (iii). Segment Classifier mean-pools over the target epoch length and applies two pointwise convs to yield
|
|
39
|
+
per-epoch probabilities. Integrates into the USleep class.
|
|
40
|
+
|
|
41
|
+
.. rubric:: Macro Components
|
|
42
|
+
|
|
43
|
+
- Encoder :class:`_EncoderBlock` **(multi-scale temporal feature extractor; downsampling x2 per block)**
|
|
44
|
+
|
|
45
|
+
- *Operations.*
|
|
46
|
+
- **Conv1d** (:class:`torch.nn.Conv1d`) with kernel ``9`` (stride ``1``, no dilation)
|
|
47
|
+
- **ELU** (:class:`torch.nn.ELU`)
|
|
48
|
+
- **Batch Norm** (:class:`torch.nn.BatchNorm1d`)
|
|
49
|
+
- **Max Pool 1d**, :class:`torch.nn.MaxPool1d` (``kernel=2, stride=2``).
|
|
50
|
+
|
|
51
|
+
Filters grow with depth by a factor of ``sqrt(2)`` (start ``c_1=5``); each block exposes a **skip**
|
|
52
|
+
(pre-pooling activation) to the matching decoder block.
|
|
53
|
+
*Role.* Slow, uniform downsampling preserves early information while expanding the effective temporal
|
|
54
|
+
context over minutes—foundational for robust cross-cohort staging.
|
|
55
|
+
|
|
56
|
+
The number of filters grows with depth (capacity scaling); each block also exposes a **skip** (pre-pool)
|
|
57
|
+
to the matching decoder block.
|
|
58
|
+
|
|
59
|
+
**Rationale.**
|
|
60
|
+
- Slow, uniform downsampling (x2 each level) preserves information in early layers while expanding the temporal receptive field over the minutes.
|
|
61
|
+
|
|
62
|
+
- Decoder :class:`_DecoderBlock` **(progressive upsampling + skip fusion to high-frequency map, 12 blocks; upsampling x2 per block)**
|
|
63
|
+
|
|
64
|
+
- *Operations.*
|
|
65
|
+
- **Nearest-neighbor upsample**, :class:`nn.Upsample` (x2)
|
|
66
|
+
- **Convolution2d** (k=2), :class:`torch.nn.Conv2d`
|
|
67
|
+
- ELU, :class:`torch.nn.ELU`
|
|
68
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`
|
|
69
|
+
- **Concatenate** with the encoder skip at the same temporal scale, :function:`torch.cat`
|
|
70
|
+
- **Convolution**, :class:`torch.nn.Conv2d`
|
|
71
|
+
- ELU, :class:`torch.nn.ELU`
|
|
72
|
+
- Batch Norm, :class:`torch.nn.BatchNorm2d`.
|
|
73
|
+
|
|
74
|
+
**Output**: A multi-class, **high-frequency** per-sample representation aligned to the input rate (128 Hz).
|
|
75
|
+
|
|
76
|
+
- **Segment Classifier incorporate into :class:`braindecode.models.USleep` (aggregation to fixed epochs)**
|
|
77
|
+
|
|
78
|
+
- *Operations.*
|
|
79
|
+
- **Mean-pool**, :class:`torch.nn.AvgPool2d` per class with kernel = epoch length *i* and stride *i*
|
|
80
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d`
|
|
81
|
+
- ELU, :class:`torch.nn.ELU`
|
|
82
|
+
- **1x1 conv**, :class:`torch.nn.Conv2d` with ``(T, K)`` (epochs x stages).
|
|
83
|
+
|
|
84
|
+
**Role**: Learns a **non-linear** weighted combination over each 30-s window (unlike U-Time's linear combiner).
|
|
85
|
+
|
|
86
|
+
.. rubric:: Convolutional Details
|
|
87
|
+
|
|
88
|
+
- **Temporal (where time-domain patterns are learned).**
|
|
89
|
+
All convolutions are **1-D along time**; depth (12 levels) plus pooling yields an extensive receptive field
|
|
90
|
+
(reported sensitivity to ±6.75 min around each epoch; theoretical field ≈ 9.6 min at the deepest layer).
|
|
91
|
+
The decoder restores sample-level resolution before epoch aggregation.
|
|
92
|
+
|
|
93
|
+
- **Spatial (how channels are processed).**
|
|
94
|
+
Convolutions mix across the *channel* dimension jointly with time (no separate spatial operator). The system
|
|
95
|
+
is **montage-agnostic** (any reasonable EEG/EOG pair) and was trained across diverse cohorts/protocols,
|
|
96
|
+
supporting robustness to channel placement and hardware differences.
|
|
97
|
+
|
|
98
|
+
- **Spectral (how frequency content is captured).**
|
|
99
|
+
No explicit Fourier/wavelet transform is used; the **stack of temporal convolutions** acts as a learned
|
|
100
|
+
filter bank whose effective bandwidth grows with depth. The high-frequency decoder output (128 Hz)
|
|
101
|
+
retains fine temporal detail for the segment classifier.
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
.. rubric:: Attention / Sequential Modules
|
|
105
|
+
|
|
106
|
+
U-Sleep contains **no attention or recurrent units**; it is a *pure* feed-forward, fully convolutional
|
|
107
|
+
segmentation network inspired by U-Net/U-Time, favoring training stability and cross-dataset portability.
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
.. rubric:: Additional Mechanisms
|
|
111
|
+
|
|
112
|
+
- **U-Net lineage with task-specific head.** U-Sleep extends U-Time by being **deeper** (12 vs. 4 levels),
|
|
113
|
+
switching ReLU→**ELU**, using uniform pooling (2) at all depths, and replacing the linear combiner with a
|
|
114
|
+
**two-layer** pointwise head—improving capacity and resilience across datasets.
|
|
115
|
+
- **Arbitrary-length inference.** Thanks to full convolutionality and tiling-free design, entire nights can be
|
|
116
|
+
staged in a single pass on commodity hardware. Inputs shorter than ≈ 17.5 min may reduce performance by
|
|
117
|
+
limiting long-range context.
|
|
118
|
+
- **Complexity scaling (alpha).** Filter counts can be adjusted by a global **complexity factor** to trade accuracy
|
|
119
|
+
and memory (as described in the paper's topology table).
|
|
120
|
+
|
|
24
121
|
|
|
25
|
-
|
|
26
|
-
- the temporal dimension shrinks (via maxpooling in the time-domain)
|
|
27
|
-
- the spatial dimension expands (via more conv1d filters in the time-domain)
|
|
122
|
+
.. rubric:: Usage and Configuration
|
|
28
123
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
124
|
+
- **Practice.** Resample PSG to **128 Hz** and provide at least two channels (one EEG, one EOG). Choose epoch
|
|
125
|
+
length *i* (often 30 s); ensure windows long enough to exploit the model's receptive field (e.g., training on
|
|
126
|
+
≥ 17.5 min chunks).
|
|
32
127
|
|
|
33
|
-
Both do so at exponential rates.
|
|
34
128
|
|
|
35
129
|
Parameters
|
|
36
130
|
----------
|
braindecode/models/util.py
CHANGED
|
@@ -22,6 +22,8 @@ def _init_models_dict():
|
|
|
22
22
|
issubclass(m[1], models.base.EEGModuleMixin)
|
|
23
23
|
and m[1] != models.base.EEGModuleMixin
|
|
24
24
|
):
|
|
25
|
+
if m[1].__name__ == "EEGNetv4":
|
|
26
|
+
continue
|
|
25
27
|
models_dict[m[0]] = m[1]
|
|
26
28
|
|
|
27
29
|
|
|
@@ -55,9 +57,7 @@ models_mandatory_parameters = [
|
|
|
55
57
|
("EEGInceptionERP", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
56
58
|
("EEGInceptionMI", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
57
59
|
("EEGITNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
58
|
-
("
|
|
59
|
-
("EEGNetv4", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
-
("EEGResNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
60
|
+
("EEGNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
61
61
|
("ShallowFBCSPNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
62
62
|
(
|
|
63
63
|
"SleepStagerBlanco2020",
|
|
@@ -66,7 +66,7 @@ models_mandatory_parameters = [
|
|
|
66
66
|
),
|
|
67
67
|
("SleepStagerChambon2018", ["n_chans", "n_outputs", "n_times", "sfreq"], None),
|
|
68
68
|
(
|
|
69
|
-
"
|
|
69
|
+
"AttnSleep",
|
|
70
70
|
["n_outputs", "n_times", "sfreq"],
|
|
71
71
|
dict(sfreq=100.0, n_times=3000, chs_info=[dict(ch_name="C1", kind="eeg")]),
|
|
72
72
|
), # 1 channel
|
|
@@ -79,7 +79,7 @@ models_mandatory_parameters = [
|
|
|
79
79
|
("SPARCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
80
80
|
("ContraWR", ["n_chans", "n_outputs", "sfreq", "n_times"], dict(sfreq=200.0)),
|
|
81
81
|
("EEGNeX", ["n_chans", "n_outputs", "n_times"], None),
|
|
82
|
-
("
|
|
82
|
+
("TSception", ["n_chans", "n_outputs", "n_times", "sfreq"], dict(sfreq=200.0)),
|
|
83
83
|
("EEGTCNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
84
84
|
("SyncNet", ["n_chans", "n_outputs", "n_times"], None),
|
|
85
85
|
("MSVTNet", ["n_chans", "n_outputs", "n_times"], None),
|
braindecode/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.2.0.
|
|
1
|
+
__version__ = "1.2.0.dev175267687"
|