bplusplus 1.1.0__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bplusplus might be problematic. Click here for more details.

Files changed (97) hide show
  1. bplusplus/__init__.py +4 -2
  2. bplusplus/collect.py +72 -3
  3. bplusplus/hierarchical/test.py +670 -0
  4. bplusplus/hierarchical/train.py +676 -0
  5. bplusplus/prepare.py +236 -71
  6. bplusplus/resnet/test.py +473 -0
  7. bplusplus/resnet/train.py +329 -0
  8. bplusplus-1.2.1.dist-info/METADATA +252 -0
  9. bplusplus-1.2.1.dist-info/RECORD +12 -0
  10. bplusplus/yolov5detect/__init__.py +0 -1
  11. bplusplus/yolov5detect/detect.py +0 -444
  12. bplusplus/yolov5detect/export.py +0 -1530
  13. bplusplus/yolov5detect/insect.yaml +0 -8
  14. bplusplus/yolov5detect/models/__init__.py +0 -0
  15. bplusplus/yolov5detect/models/common.py +0 -1109
  16. bplusplus/yolov5detect/models/experimental.py +0 -130
  17. bplusplus/yolov5detect/models/hub/anchors.yaml +0 -56
  18. bplusplus/yolov5detect/models/hub/yolov3-spp.yaml +0 -52
  19. bplusplus/yolov5detect/models/hub/yolov3-tiny.yaml +0 -42
  20. bplusplus/yolov5detect/models/hub/yolov3.yaml +0 -52
  21. bplusplus/yolov5detect/models/hub/yolov5-bifpn.yaml +0 -49
  22. bplusplus/yolov5detect/models/hub/yolov5-fpn.yaml +0 -43
  23. bplusplus/yolov5detect/models/hub/yolov5-p2.yaml +0 -55
  24. bplusplus/yolov5detect/models/hub/yolov5-p34.yaml +0 -42
  25. bplusplus/yolov5detect/models/hub/yolov5-p6.yaml +0 -57
  26. bplusplus/yolov5detect/models/hub/yolov5-p7.yaml +0 -68
  27. bplusplus/yolov5detect/models/hub/yolov5-panet.yaml +0 -49
  28. bplusplus/yolov5detect/models/hub/yolov5l6.yaml +0 -61
  29. bplusplus/yolov5detect/models/hub/yolov5m6.yaml +0 -61
  30. bplusplus/yolov5detect/models/hub/yolov5n6.yaml +0 -61
  31. bplusplus/yolov5detect/models/hub/yolov5s-LeakyReLU.yaml +0 -50
  32. bplusplus/yolov5detect/models/hub/yolov5s-ghost.yaml +0 -49
  33. bplusplus/yolov5detect/models/hub/yolov5s-transformer.yaml +0 -49
  34. bplusplus/yolov5detect/models/hub/yolov5s6.yaml +0 -61
  35. bplusplus/yolov5detect/models/hub/yolov5x6.yaml +0 -61
  36. bplusplus/yolov5detect/models/segment/yolov5l-seg.yaml +0 -49
  37. bplusplus/yolov5detect/models/segment/yolov5m-seg.yaml +0 -49
  38. bplusplus/yolov5detect/models/segment/yolov5n-seg.yaml +0 -49
  39. bplusplus/yolov5detect/models/segment/yolov5s-seg.yaml +0 -49
  40. bplusplus/yolov5detect/models/segment/yolov5x-seg.yaml +0 -49
  41. bplusplus/yolov5detect/models/tf.py +0 -797
  42. bplusplus/yolov5detect/models/yolo.py +0 -495
  43. bplusplus/yolov5detect/models/yolov5l.yaml +0 -49
  44. bplusplus/yolov5detect/models/yolov5m.yaml +0 -49
  45. bplusplus/yolov5detect/models/yolov5n.yaml +0 -49
  46. bplusplus/yolov5detect/models/yolov5s.yaml +0 -49
  47. bplusplus/yolov5detect/models/yolov5x.yaml +0 -49
  48. bplusplus/yolov5detect/utils/__init__.py +0 -97
  49. bplusplus/yolov5detect/utils/activations.py +0 -134
  50. bplusplus/yolov5detect/utils/augmentations.py +0 -448
  51. bplusplus/yolov5detect/utils/autoanchor.py +0 -175
  52. bplusplus/yolov5detect/utils/autobatch.py +0 -70
  53. bplusplus/yolov5detect/utils/aws/__init__.py +0 -0
  54. bplusplus/yolov5detect/utils/aws/mime.sh +0 -26
  55. bplusplus/yolov5detect/utils/aws/resume.py +0 -41
  56. bplusplus/yolov5detect/utils/aws/userdata.sh +0 -27
  57. bplusplus/yolov5detect/utils/callbacks.py +0 -72
  58. bplusplus/yolov5detect/utils/dataloaders.py +0 -1385
  59. bplusplus/yolov5detect/utils/docker/Dockerfile +0 -73
  60. bplusplus/yolov5detect/utils/docker/Dockerfile-arm64 +0 -40
  61. bplusplus/yolov5detect/utils/docker/Dockerfile-cpu +0 -42
  62. bplusplus/yolov5detect/utils/downloads.py +0 -136
  63. bplusplus/yolov5detect/utils/flask_rest_api/README.md +0 -70
  64. bplusplus/yolov5detect/utils/flask_rest_api/example_request.py +0 -17
  65. bplusplus/yolov5detect/utils/flask_rest_api/restapi.py +0 -49
  66. bplusplus/yolov5detect/utils/general.py +0 -1294
  67. bplusplus/yolov5detect/utils/google_app_engine/Dockerfile +0 -25
  68. bplusplus/yolov5detect/utils/google_app_engine/additional_requirements.txt +0 -6
  69. bplusplus/yolov5detect/utils/google_app_engine/app.yaml +0 -16
  70. bplusplus/yolov5detect/utils/loggers/__init__.py +0 -476
  71. bplusplus/yolov5detect/utils/loggers/clearml/README.md +0 -222
  72. bplusplus/yolov5detect/utils/loggers/clearml/__init__.py +0 -0
  73. bplusplus/yolov5detect/utils/loggers/clearml/clearml_utils.py +0 -230
  74. bplusplus/yolov5detect/utils/loggers/clearml/hpo.py +0 -90
  75. bplusplus/yolov5detect/utils/loggers/comet/README.md +0 -250
  76. bplusplus/yolov5detect/utils/loggers/comet/__init__.py +0 -551
  77. bplusplus/yolov5detect/utils/loggers/comet/comet_utils.py +0 -151
  78. bplusplus/yolov5detect/utils/loggers/comet/hpo.py +0 -126
  79. bplusplus/yolov5detect/utils/loggers/comet/optimizer_config.json +0 -135
  80. bplusplus/yolov5detect/utils/loggers/wandb/__init__.py +0 -0
  81. bplusplus/yolov5detect/utils/loggers/wandb/wandb_utils.py +0 -210
  82. bplusplus/yolov5detect/utils/loss.py +0 -259
  83. bplusplus/yolov5detect/utils/metrics.py +0 -381
  84. bplusplus/yolov5detect/utils/plots.py +0 -517
  85. bplusplus/yolov5detect/utils/segment/__init__.py +0 -0
  86. bplusplus/yolov5detect/utils/segment/augmentations.py +0 -100
  87. bplusplus/yolov5detect/utils/segment/dataloaders.py +0 -366
  88. bplusplus/yolov5detect/utils/segment/general.py +0 -160
  89. bplusplus/yolov5detect/utils/segment/loss.py +0 -198
  90. bplusplus/yolov5detect/utils/segment/metrics.py +0 -225
  91. bplusplus/yolov5detect/utils/segment/plots.py +0 -152
  92. bplusplus/yolov5detect/utils/torch_utils.py +0 -482
  93. bplusplus/yolov5detect/utils/triton.py +0 -90
  94. bplusplus-1.1.0.dist-info/METADATA +0 -179
  95. bplusplus-1.1.0.dist-info/RECORD +0 -92
  96. {bplusplus-1.1.0.dist-info → bplusplus-1.2.1.dist-info}/LICENSE +0 -0
  97. {bplusplus-1.1.0.dist-info → bplusplus-1.2.1.dist-info}/WHEEL +0 -0
@@ -1,444 +0,0 @@
1
- # Ultralytics YOLOv5 🚀, AGPL-3.0 license
2
- """
3
- Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
-
5
- Usage - sources:
6
- $ python detect.py --weights yolov5s.pt --source 0 # webcam
7
- img.jpg # image
8
- vid.mp4 # video
9
- screen # screenshot
10
- path/ # directory
11
- list.txt # list of images
12
- list.streams # list of streams
13
- 'path/*.jpg' # glob
14
- 'https://youtu.be/LNwODJXcvt4' # YouTube
15
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
16
-
17
- Usage - formats:
18
- $ python detect.py --weights yolov5s.pt # PyTorch
19
- yolov5s.torchscript # TorchScript
20
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
21
- yolov5s_openvino_model # OpenVINO
22
- yolov5s.engine # TensorRT
23
- yolov5s.mlpackage # CoreML (macOS-only)
24
- yolov5s_saved_model # TensorFlow SavedModel
25
- yolov5s.pb # TensorFlow GraphDef
26
- yolov5s.tflite # TensorFlow Lite
27
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
28
- yolov5s_paddle_model # PaddlePaddle
29
- """
30
-
31
- import argparse
32
- import csv
33
- import os
34
- import platform
35
- import sys
36
- from pathlib import Path
37
-
38
- import torch
39
-
40
- FILE = Path(__file__).resolve()
41
- ROOT = FILE.parents[0] # YOLOv5 root directory
42
- if str(ROOT) not in sys.path:
43
- sys.path.append(str(ROOT)) # add ROOT to PATH
44
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
45
-
46
- from ultralytics.utils.plotting import Annotator, colors, save_one_box
47
-
48
- from models.common import DetectMultiBackend
49
- from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
50
- from utils.general import (
51
- LOGGER,
52
- Profile,
53
- check_file,
54
- check_img_size,
55
- check_imshow,
56
- check_requirements,
57
- colorstr,
58
- cv2,
59
- increment_path,
60
- non_max_suppression,
61
- print_args,
62
- scale_boxes,
63
- strip_optimizer,
64
- xyxy2xywh,
65
- )
66
- from utils.torch_utils import select_device, smart_inference_mode
67
-
68
-
69
- @smart_inference_mode()
70
- def run(
71
- weights=ROOT / "yolov5s.pt", # model path or triton URL
72
- source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
73
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
74
- imgsz=(640, 640), # inference size (height, width)
75
- conf_thres=0.5, # confidence threshold
76
- iou_thres=0.45, # NMS IOU threshold
77
- max_det=1000, # maximum detections per image
78
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
79
- view_img=False, # show results
80
- save_txt=False, # save results to *.txt
81
- save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
82
- save_csv=False, # save results in CSV format
83
- save_conf=False, # save confidences in --save-txt labels
84
- save_crop=False, # save cropped prediction boxes
85
- nosave=False, # do not save images/videos
86
- classes=None, # filter by class: --class 0, or --class 0 2 3
87
- agnostic_nms=False, # class-agnostic NMS
88
- augment=False, # augmented inference
89
- visualize=False, # visualize features
90
- update=False, # update all models
91
- project=ROOT / "runs/detect", # save results to project/name
92
- name="exp", # save results to project/name
93
- exist_ok=False, # existing project/name ok, do not increment
94
- line_thickness=3, # bounding box thickness (pixels)
95
- hide_labels=False, # hide labels
96
- hide_conf=False, # hide confidences
97
- half=False, # use FP16 half-precision inference
98
- dnn=False, # use OpenCV DNN for ONNX inference
99
- vid_stride=1, # video frame-rate stride
100
- ):
101
- """
102
- Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
103
-
104
- Args:
105
- weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
106
- source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
107
- index. Default is 'data/images'.
108
- data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
109
- imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
110
- conf_thres (float): Confidence threshold for detections. Default is 0.25.
111
- iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
112
- max_det (int): Maximum number of detections per image. Default is 1000.
113
- device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
114
- best available device.
115
- view_img (bool): If True, display inference results using OpenCV. Default is False.
116
- save_txt (bool): If True, save results in a text file. Default is False.
117
- save_csv (bool): If True, save results in a CSV file. Default is False.
118
- save_conf (bool): If True, include confidence scores in the saved results. Default is False.
119
- save_crop (bool): If True, save cropped prediction boxes. Default is False.
120
- nosave (bool): If True, do not save inference images or videos. Default is False.
121
- classes (list[int]): List of class indices to filter detections by. Default is None.
122
- agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
123
- augment (bool): If True, use augmented inference. Default is False.
124
- visualize (bool): If True, visualize feature maps. Default is False.
125
- update (bool): If True, update all models' weights. Default is False.
126
- project (str | Path): Directory to save results. Default is 'runs/detect'.
127
- name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
128
- exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
129
- False.
130
- line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
131
- hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
132
- hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
133
- half (bool): If True, use FP16 half-precision inference. Default is False.
134
- dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
135
- vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
136
-
137
- Returns:
138
- None
139
-
140
- Examples:
141
- ```python
142
- from ultralytics import run
143
-
144
- # Run inference on an image
145
- run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
146
-
147
- # Run inference on a video with specific confidence threshold
148
- run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
149
- ```
150
- """
151
- source = str(source)
152
- save_img = not nosave and not source.endswith(".txt") # save inference images
153
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
154
- is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
155
- webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
156
- screenshot = source.lower().startswith("screen")
157
- if is_url and is_file:
158
- source = check_file(source) # download
159
-
160
- # Directories
161
- # save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
162
- # (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
163
-
164
- save_dir = Path(project) / "labels" #static path to make work with yolo_labels.py (EDIT: Orlando Closs)
165
- inference_dir = Path(project) / "inference" #(EDIT: Orlando Closs)
166
-
167
- # Load model
168
- device = select_device(device)
169
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
170
- stride, names, pt = model.stride, model.names, model.pt
171
- imgsz = check_img_size(imgsz, s=stride) # check image size
172
-
173
- # Dataloader
174
- bs = 1 # batch_size
175
- if webcam:
176
- view_img = check_imshow(warn=True)
177
- dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
178
- bs = len(dataset)
179
- elif screenshot:
180
- dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
181
- else:
182
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
183
- vid_path, vid_writer = [None] * bs, [None] * bs
184
-
185
- # Run inference
186
- model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
187
- seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
188
- for path, im, im0s, vid_cap, s in dataset:
189
- try:
190
- with dt[0]:
191
- im = torch.from_numpy(im).to(model.device)
192
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
193
- im /= 255 # 0 - 255 to 0.0 - 1.0
194
- if len(im.shape) == 3:
195
- im = im[None] # expand for batch dim
196
- if model.xml and im.shape[0] > 1:
197
- ims = torch.chunk(im, im.shape[0], 0)
198
-
199
- # Inference
200
- with dt[1]:
201
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
202
- if model.xml and im.shape[0] > 1:
203
- pred = None
204
- for image in ims:
205
- if pred is None:
206
- pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
207
- else:
208
- pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
209
- pred = [pred, None]
210
- else:
211
- pred = model(im, augment=augment, visualize=visualize)
212
- # NMS
213
- with dt[2]:
214
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
215
-
216
- # Second-stage classifier (optional)
217
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
218
-
219
- # Define the path for the CSV file
220
- csv_path = save_dir / "predictions.csv"
221
- except Exception as e:
222
- print(f"Error processing image {path}: {e}")
223
- continue
224
-
225
- # Create or append to the CSV file
226
- def write_to_csv(image_name, prediction, confidence):
227
- """Writes prediction data for an image to a CSV file, appending if the file exists."""
228
- data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
229
- with open(csv_path, mode="a", newline="") as f:
230
- writer = csv.DictWriter(f, fieldnames=data.keys())
231
- if not csv_path.is_file():
232
- writer.writeheader()
233
- writer.writerow(data)
234
-
235
- # Process predictions
236
- for i, det in enumerate(pred): # per image
237
- seen += 1
238
- if webcam: # batch_size >= 1
239
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
240
- s += f"{i}: "
241
- else:
242
- p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
243
-
244
- p = Path(p) # to Path
245
- save_path = str(inference_dir / p.name) # im.jpg EDIT: Orlando Closs
246
- txt_path = str(save_dir / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt EDIT: Orlando Closs
247
- s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
248
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
249
- imc = im0.copy() if save_crop else im0 # for save_crop
250
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
251
- if len(det):
252
- # Rescale boxes from img_size to im0 size
253
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
254
-
255
- # Print results
256
- for c in det[:, 5].unique():
257
- n = (det[:, 5] == c).sum() # detections per class
258
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
259
-
260
- # Write results
261
- for *xyxy, conf, cls in reversed(det):
262
- c = int(cls) # integer class
263
- label = names[c] if hide_conf else f"{names[c]}"
264
- confidence = float(conf)
265
- confidence_str = f"{confidence:.2f}"
266
-
267
- if save_csv:
268
- write_to_csv(p.name, label, confidence_str)
269
-
270
- if save_txt: # Write to file
271
- if save_format == 0:
272
- coords = (
273
- (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
274
- ) # normalized xywh
275
- else:
276
- coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
277
- line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
278
- with open(f"{txt_path}.txt", "a") as f:
279
- f.write(("%g " * len(line)).rstrip() % line + "\n")
280
-
281
- if save_img or save_crop or view_img: # Add bbox to image
282
- c = int(cls) # integer class
283
- label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
284
- annotator.box_label(xyxy, label, color=colors(c, True))
285
- if save_crop:
286
- save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
287
-
288
- # Stream results
289
- im0 = annotator.result()
290
- if view_img:
291
- if platform.system() == "Linux" and p not in windows:
292
- windows.append(p)
293
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
294
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
295
- cv2.imshow(str(p), im0)
296
- cv2.waitKey(1) # 1 millisecond
297
-
298
- # Save results (image with detections)
299
- if save_img:
300
- if dataset.mode == "image":
301
- cv2.imwrite(save_path, im0)
302
- else: # 'video' or 'stream'
303
- if vid_path[i] != save_path: # new video
304
- vid_path[i] = save_path
305
- if isinstance(vid_writer[i], cv2.VideoWriter):
306
- vid_writer[i].release() # release previous video writer
307
- if vid_cap: # video
308
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
309
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
310
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
311
- else: # stream
312
- fps, w, h = 30, im0.shape[1], im0.shape[0]
313
- save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
314
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
315
- vid_writer[i].write(im0)
316
-
317
- # Print time (inference-only)
318
- LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
319
-
320
- # Print results
321
- t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
322
- LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
323
- if save_txt or save_img:
324
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
325
- # LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
326
- if update:
327
- strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
328
-
329
-
330
- def parse_opt():
331
- """
332
- Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
333
-
334
- Args:
335
- --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
336
- --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
337
- --data (str, optional): Dataset YAML path. Provides dataset configuration information.
338
- --imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
339
- --conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
340
- --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
341
- --max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
342
- --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
343
- --view-img (bool, optional): Flag to display results. Defaults to False.
344
- --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
345
- --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
346
- --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
347
- --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
348
- --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
349
- --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
350
- --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
351
- --augment (bool, optional): Flag for augmented inference. Defaults to False.
352
- --visualize (bool, optional): Flag for visualizing features. Defaults to False.
353
- --update (bool, optional): Flag to update all models in the model directory. Defaults to False.
354
- --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
355
- --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
356
- --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
357
- --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
358
- --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
359
- --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
360
- --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
361
- --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
362
- --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
363
- consecutive frames. Defaults to 1.
364
-
365
- Returns:
366
- argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
367
-
368
- Example:
369
- ```python
370
- from ultralytics import YOLOv5
371
- args = YOLOv5.parse_opt()
372
- ```
373
- """
374
- parser = argparse.ArgumentParser()
375
- parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
376
- parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
377
- parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
378
- parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
379
- parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
380
- parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
381
- parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
382
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
383
- parser.add_argument("--view-img", action="store_true", help="show results")
384
- parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
385
- parser.add_argument(
386
- "--save-format",
387
- type=int,
388
- default=0,
389
- help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
390
- )
391
- parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
392
- parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
393
- parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
394
- parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
395
- parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
396
- parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
397
- parser.add_argument("--augment", action="store_true", help="augmented inference")
398
- parser.add_argument("--visualize", action="store_true", help="visualize features")
399
- parser.add_argument("--update", action="store_true", help="update all models")
400
- parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
401
- parser.add_argument("--name", default="exp", help="save results to project/name")
402
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
403
- parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
404
- parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
405
- parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
406
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
407
- parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
408
- parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
409
- opt = parser.parse_args()
410
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
411
- print_args(vars(opt))
412
- return opt
413
-
414
-
415
- def main(opt):
416
- """
417
- Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
418
-
419
- Args:
420
- opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
421
-
422
- Returns:
423
- None
424
-
425
- Note:
426
- This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
427
- options. Refer to the usage guide and examples for more information about different sources and formats at:
428
- https://github.com/ultralytics/ultralytics
429
-
430
- Example usage:
431
-
432
- ```python
433
- if __name__ == "__main__":
434
- opt = parse_opt()
435
- main(opt)
436
- ```
437
- """
438
- check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
439
- run(**vars(opt))
440
-
441
-
442
- if __name__ == "__main__":
443
- opt = parse_opt()
444
- main(opt)