bplusplus 0.1.1__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bplusplus might be problematic. Click here for more details.
- bplusplus/__init__.py +5 -3
- bplusplus/{collect_images.py → collect.py} +3 -3
- bplusplus/prepare.py +573 -0
- bplusplus/train_validate.py +8 -64
- bplusplus/yolov5detect/__init__.py +1 -0
- bplusplus/yolov5detect/detect.py +444 -0
- bplusplus/yolov5detect/export.py +1530 -0
- bplusplus/yolov5detect/insect.yaml +8 -0
- bplusplus/yolov5detect/models/__init__.py +0 -0
- bplusplus/yolov5detect/models/common.py +1109 -0
- bplusplus/yolov5detect/models/experimental.py +130 -0
- bplusplus/yolov5detect/models/hub/anchors.yaml +56 -0
- bplusplus/yolov5detect/models/hub/yolov3-spp.yaml +52 -0
- bplusplus/yolov5detect/models/hub/yolov3-tiny.yaml +42 -0
- bplusplus/yolov5detect/models/hub/yolov3.yaml +52 -0
- bplusplus/yolov5detect/models/hub/yolov5-bifpn.yaml +49 -0
- bplusplus/yolov5detect/models/hub/yolov5-fpn.yaml +43 -0
- bplusplus/yolov5detect/models/hub/yolov5-p2.yaml +55 -0
- bplusplus/yolov5detect/models/hub/yolov5-p34.yaml +42 -0
- bplusplus/yolov5detect/models/hub/yolov5-p6.yaml +57 -0
- bplusplus/yolov5detect/models/hub/yolov5-p7.yaml +68 -0
- bplusplus/yolov5detect/models/hub/yolov5-panet.yaml +49 -0
- bplusplus/yolov5detect/models/hub/yolov5l6.yaml +61 -0
- bplusplus/yolov5detect/models/hub/yolov5m6.yaml +61 -0
- bplusplus/yolov5detect/models/hub/yolov5n6.yaml +61 -0
- bplusplus/yolov5detect/models/hub/yolov5s-LeakyReLU.yaml +50 -0
- bplusplus/yolov5detect/models/hub/yolov5s-ghost.yaml +49 -0
- bplusplus/yolov5detect/models/hub/yolov5s-transformer.yaml +49 -0
- bplusplus/yolov5detect/models/hub/yolov5s6.yaml +61 -0
- bplusplus/yolov5detect/models/hub/yolov5x6.yaml +61 -0
- bplusplus/yolov5detect/models/segment/yolov5l-seg.yaml +49 -0
- bplusplus/yolov5detect/models/segment/yolov5m-seg.yaml +49 -0
- bplusplus/yolov5detect/models/segment/yolov5n-seg.yaml +49 -0
- bplusplus/yolov5detect/models/segment/yolov5s-seg.yaml +49 -0
- bplusplus/yolov5detect/models/segment/yolov5x-seg.yaml +49 -0
- bplusplus/yolov5detect/models/tf.py +797 -0
- bplusplus/yolov5detect/models/yolo.py +495 -0
- bplusplus/yolov5detect/models/yolov5l.yaml +49 -0
- bplusplus/yolov5detect/models/yolov5m.yaml +49 -0
- bplusplus/yolov5detect/models/yolov5n.yaml +49 -0
- bplusplus/yolov5detect/models/yolov5s.yaml +49 -0
- bplusplus/yolov5detect/models/yolov5x.yaml +49 -0
- bplusplus/yolov5detect/utils/__init__.py +97 -0
- bplusplus/yolov5detect/utils/activations.py +134 -0
- bplusplus/yolov5detect/utils/augmentations.py +448 -0
- bplusplus/yolov5detect/utils/autoanchor.py +175 -0
- bplusplus/yolov5detect/utils/autobatch.py +70 -0
- bplusplus/yolov5detect/utils/aws/__init__.py +0 -0
- bplusplus/yolov5detect/utils/aws/mime.sh +26 -0
- bplusplus/yolov5detect/utils/aws/resume.py +41 -0
- bplusplus/yolov5detect/utils/aws/userdata.sh +27 -0
- bplusplus/yolov5detect/utils/callbacks.py +72 -0
- bplusplus/yolov5detect/utils/dataloaders.py +1385 -0
- bplusplus/yolov5detect/utils/docker/Dockerfile +73 -0
- bplusplus/yolov5detect/utils/docker/Dockerfile-arm64 +40 -0
- bplusplus/yolov5detect/utils/docker/Dockerfile-cpu +42 -0
- bplusplus/yolov5detect/utils/downloads.py +136 -0
- bplusplus/yolov5detect/utils/flask_rest_api/README.md +70 -0
- bplusplus/yolov5detect/utils/flask_rest_api/example_request.py +17 -0
- bplusplus/yolov5detect/utils/flask_rest_api/restapi.py +49 -0
- bplusplus/yolov5detect/utils/general.py +1294 -0
- bplusplus/yolov5detect/utils/google_app_engine/Dockerfile +25 -0
- bplusplus/yolov5detect/utils/google_app_engine/additional_requirements.txt +6 -0
- bplusplus/yolov5detect/utils/google_app_engine/app.yaml +16 -0
- bplusplus/yolov5detect/utils/loggers/__init__.py +476 -0
- bplusplus/yolov5detect/utils/loggers/clearml/README.md +222 -0
- bplusplus/yolov5detect/utils/loggers/clearml/__init__.py +0 -0
- bplusplus/yolov5detect/utils/loggers/clearml/clearml_utils.py +230 -0
- bplusplus/yolov5detect/utils/loggers/clearml/hpo.py +90 -0
- bplusplus/yolov5detect/utils/loggers/comet/README.md +250 -0
- bplusplus/yolov5detect/utils/loggers/comet/__init__.py +551 -0
- bplusplus/yolov5detect/utils/loggers/comet/comet_utils.py +151 -0
- bplusplus/yolov5detect/utils/loggers/comet/hpo.py +126 -0
- bplusplus/yolov5detect/utils/loggers/comet/optimizer_config.json +135 -0
- bplusplus/yolov5detect/utils/loggers/wandb/__init__.py +0 -0
- bplusplus/yolov5detect/utils/loggers/wandb/wandb_utils.py +210 -0
- bplusplus/yolov5detect/utils/loss.py +259 -0
- bplusplus/yolov5detect/utils/metrics.py +381 -0
- bplusplus/yolov5detect/utils/plots.py +517 -0
- bplusplus/yolov5detect/utils/segment/__init__.py +0 -0
- bplusplus/yolov5detect/utils/segment/augmentations.py +100 -0
- bplusplus/yolov5detect/utils/segment/dataloaders.py +366 -0
- bplusplus/yolov5detect/utils/segment/general.py +160 -0
- bplusplus/yolov5detect/utils/segment/loss.py +198 -0
- bplusplus/yolov5detect/utils/segment/metrics.py +225 -0
- bplusplus/yolov5detect/utils/segment/plots.py +152 -0
- bplusplus/yolov5detect/utils/torch_utils.py +482 -0
- bplusplus/yolov5detect/utils/triton.py +90 -0
- bplusplus-1.1.0.dist-info/METADATA +179 -0
- bplusplus-1.1.0.dist-info/RECORD +92 -0
- bplusplus/build_model.py +0 -38
- bplusplus-0.1.1.dist-info/METADATA +0 -97
- bplusplus-0.1.1.dist-info/RECORD +0 -8
- {bplusplus-0.1.1.dist-info → bplusplus-1.1.0.dist-info}/LICENSE +0 -0
- {bplusplus-0.1.1.dist-info → bplusplus-1.1.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,495 @@
|
|
|
1
|
+
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
+
"""
|
|
3
|
+
YOLO-specific modules.
|
|
4
|
+
|
|
5
|
+
Usage:
|
|
6
|
+
$ python models/yolo.py --cfg yolov5s.yaml
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import argparse
|
|
10
|
+
import contextlib
|
|
11
|
+
import math
|
|
12
|
+
import os
|
|
13
|
+
import platform
|
|
14
|
+
import sys
|
|
15
|
+
from copy import deepcopy
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
import torch.nn as nn
|
|
20
|
+
|
|
21
|
+
FILE = Path(__file__).resolve()
|
|
22
|
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
|
23
|
+
if str(ROOT) not in sys.path:
|
|
24
|
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
25
|
+
if platform.system() != "Windows":
|
|
26
|
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
27
|
+
|
|
28
|
+
from models.common import (
|
|
29
|
+
C3,
|
|
30
|
+
C3SPP,
|
|
31
|
+
C3TR,
|
|
32
|
+
SPP,
|
|
33
|
+
SPPF,
|
|
34
|
+
Bottleneck,
|
|
35
|
+
BottleneckCSP,
|
|
36
|
+
C3Ghost,
|
|
37
|
+
C3x,
|
|
38
|
+
Classify,
|
|
39
|
+
Concat,
|
|
40
|
+
Contract,
|
|
41
|
+
Conv,
|
|
42
|
+
CrossConv,
|
|
43
|
+
DetectMultiBackend,
|
|
44
|
+
DWConv,
|
|
45
|
+
DWConvTranspose2d,
|
|
46
|
+
Expand,
|
|
47
|
+
Focus,
|
|
48
|
+
GhostBottleneck,
|
|
49
|
+
GhostConv,
|
|
50
|
+
Proto,
|
|
51
|
+
)
|
|
52
|
+
from models.experimental import MixConv2d
|
|
53
|
+
from utils.autoanchor import check_anchor_order
|
|
54
|
+
from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args
|
|
55
|
+
from utils.plots import feature_visualization
|
|
56
|
+
from utils.torch_utils import (
|
|
57
|
+
fuse_conv_and_bn,
|
|
58
|
+
initialize_weights,
|
|
59
|
+
model_info,
|
|
60
|
+
profile,
|
|
61
|
+
scale_img,
|
|
62
|
+
select_device,
|
|
63
|
+
time_sync,
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
try:
|
|
67
|
+
import thop # for FLOPs computation
|
|
68
|
+
except ImportError:
|
|
69
|
+
thop = None
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class Detect(nn.Module):
|
|
73
|
+
"""YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""
|
|
74
|
+
|
|
75
|
+
stride = None # strides computed during build
|
|
76
|
+
dynamic = False # force grid reconstruction
|
|
77
|
+
export = False # export mode
|
|
78
|
+
|
|
79
|
+
def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
|
|
80
|
+
"""Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""
|
|
81
|
+
super().__init__()
|
|
82
|
+
self.nc = nc # number of classes
|
|
83
|
+
self.no = nc + 5 # number of outputs per anchor
|
|
84
|
+
self.nl = len(anchors) # number of detection layers
|
|
85
|
+
self.na = len(anchors[0]) // 2 # number of anchors
|
|
86
|
+
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
|
|
87
|
+
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid
|
|
88
|
+
self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
|
89
|
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
|
90
|
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
|
91
|
+
|
|
92
|
+
def forward(self, x):
|
|
93
|
+
"""Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
|
|
94
|
+
z = [] # inference output
|
|
95
|
+
for i in range(self.nl):
|
|
96
|
+
x[i] = self.m[i](x[i]) # conv
|
|
97
|
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
|
98
|
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
|
99
|
+
|
|
100
|
+
if not self.training: # inference
|
|
101
|
+
if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
|
102
|
+
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
|
103
|
+
|
|
104
|
+
if isinstance(self, Segment): # (boxes + masks)
|
|
105
|
+
xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
|
|
106
|
+
xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy
|
|
107
|
+
wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh
|
|
108
|
+
y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
|
|
109
|
+
else: # Detect (boxes only)
|
|
110
|
+
xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
|
|
111
|
+
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
|
112
|
+
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
|
113
|
+
y = torch.cat((xy, wh, conf), 4)
|
|
114
|
+
z.append(y.view(bs, self.na * nx * ny, self.no))
|
|
115
|
+
|
|
116
|
+
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
|
117
|
+
|
|
118
|
+
def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):
|
|
119
|
+
"""Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""
|
|
120
|
+
d = self.anchors[i].device
|
|
121
|
+
t = self.anchors[i].dtype
|
|
122
|
+
shape = 1, self.na, ny, nx, 2 # grid shape
|
|
123
|
+
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
|
124
|
+
yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
|
|
125
|
+
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
|
126
|
+
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
|
127
|
+
return grid, anchor_grid
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
class Segment(Detect):
|
|
131
|
+
"""YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""
|
|
132
|
+
|
|
133
|
+
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
|
|
134
|
+
"""Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""
|
|
135
|
+
super().__init__(nc, anchors, ch, inplace)
|
|
136
|
+
self.nm = nm # number of masks
|
|
137
|
+
self.npr = npr # number of protos
|
|
138
|
+
self.no = 5 + nc + self.nm # number of outputs per anchor
|
|
139
|
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
|
140
|
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
|
141
|
+
self.detect = Detect.forward
|
|
142
|
+
|
|
143
|
+
def forward(self, x):
|
|
144
|
+
"""Processes input through the network, returning detections and prototypes; adjusts output based on
|
|
145
|
+
training/export mode.
|
|
146
|
+
"""
|
|
147
|
+
p = self.proto(x[0])
|
|
148
|
+
x = self.detect(self, x)
|
|
149
|
+
return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class BaseModel(nn.Module):
|
|
153
|
+
"""YOLOv5 base model."""
|
|
154
|
+
|
|
155
|
+
def forward(self, x, profile=False, visualize=False):
|
|
156
|
+
"""Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and
|
|
157
|
+
visualization.
|
|
158
|
+
"""
|
|
159
|
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
|
160
|
+
|
|
161
|
+
def _forward_once(self, x, profile=False, visualize=False):
|
|
162
|
+
"""Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""
|
|
163
|
+
y, dt = [], [] # outputs
|
|
164
|
+
for m in self.model:
|
|
165
|
+
if m.f != -1: # if not from previous layer
|
|
166
|
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
|
167
|
+
if profile:
|
|
168
|
+
self._profile_one_layer(m, x, dt)
|
|
169
|
+
x = m(x) # run
|
|
170
|
+
y.append(x if m.i in self.save else None) # save output
|
|
171
|
+
if visualize:
|
|
172
|
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
|
173
|
+
return x
|
|
174
|
+
|
|
175
|
+
def _profile_one_layer(self, m, x, dt):
|
|
176
|
+
"""Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""
|
|
177
|
+
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
|
178
|
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs
|
|
179
|
+
t = time_sync()
|
|
180
|
+
for _ in range(10):
|
|
181
|
+
m(x.copy() if c else x)
|
|
182
|
+
dt.append((time_sync() - t) * 100)
|
|
183
|
+
if m == self.model[0]:
|
|
184
|
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
|
185
|
+
LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}")
|
|
186
|
+
if c:
|
|
187
|
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
|
188
|
+
|
|
189
|
+
def fuse(self):
|
|
190
|
+
"""Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""
|
|
191
|
+
LOGGER.info("Fusing layers... ")
|
|
192
|
+
for m in self.model.modules():
|
|
193
|
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):
|
|
194
|
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
195
|
+
delattr(m, "bn") # remove batchnorm
|
|
196
|
+
m.forward = m.forward_fuse # update forward
|
|
197
|
+
self.info()
|
|
198
|
+
return self
|
|
199
|
+
|
|
200
|
+
def info(self, verbose=False, img_size=640):
|
|
201
|
+
"""Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""
|
|
202
|
+
model_info(self, verbose, img_size)
|
|
203
|
+
|
|
204
|
+
def _apply(self, fn):
|
|
205
|
+
"""Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered
|
|
206
|
+
buffers.
|
|
207
|
+
"""
|
|
208
|
+
self = super()._apply(fn)
|
|
209
|
+
m = self.model[-1] # Detect()
|
|
210
|
+
if isinstance(m, (Detect, Segment)):
|
|
211
|
+
m.stride = fn(m.stride)
|
|
212
|
+
m.grid = list(map(fn, m.grid))
|
|
213
|
+
if isinstance(m.anchor_grid, list):
|
|
214
|
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
215
|
+
return self
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
class DetectionModel(BaseModel):
|
|
219
|
+
"""YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""
|
|
220
|
+
|
|
221
|
+
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None):
|
|
222
|
+
"""Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""
|
|
223
|
+
super().__init__()
|
|
224
|
+
if isinstance(cfg, dict):
|
|
225
|
+
self.yaml = cfg # model dict
|
|
226
|
+
else: # is *.yaml
|
|
227
|
+
import yaml # for torch hub
|
|
228
|
+
|
|
229
|
+
self.yaml_file = Path(cfg).name
|
|
230
|
+
with open(cfg, encoding="ascii", errors="ignore") as f:
|
|
231
|
+
self.yaml = yaml.safe_load(f) # model dict
|
|
232
|
+
|
|
233
|
+
# Define model
|
|
234
|
+
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
|
|
235
|
+
if nc and nc != self.yaml["nc"]:
|
|
236
|
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
|
237
|
+
self.yaml["nc"] = nc # override yaml value
|
|
238
|
+
if anchors:
|
|
239
|
+
LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")
|
|
240
|
+
self.yaml["anchors"] = round(anchors) # override yaml value
|
|
241
|
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
|
242
|
+
self.names = [str(i) for i in range(self.yaml["nc"])] # default names
|
|
243
|
+
self.inplace = self.yaml.get("inplace", True)
|
|
244
|
+
|
|
245
|
+
# Build strides, anchors
|
|
246
|
+
m = self.model[-1] # Detect()
|
|
247
|
+
if isinstance(m, (Detect, Segment)):
|
|
248
|
+
|
|
249
|
+
def _forward(x):
|
|
250
|
+
"""Passes the input 'x' through the model and returns the processed output."""
|
|
251
|
+
return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
|
252
|
+
|
|
253
|
+
s = 256 # 2x min stride
|
|
254
|
+
m.inplace = self.inplace
|
|
255
|
+
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
|
|
256
|
+
check_anchor_order(m)
|
|
257
|
+
m.anchors /= m.stride.view(-1, 1, 1)
|
|
258
|
+
self.stride = m.stride
|
|
259
|
+
self._initialize_biases() # only run once
|
|
260
|
+
|
|
261
|
+
# Init weights, biases
|
|
262
|
+
initialize_weights(self)
|
|
263
|
+
self.info()
|
|
264
|
+
LOGGER.info("")
|
|
265
|
+
|
|
266
|
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
|
267
|
+
"""Performs single-scale or augmented inference and may include profiling or visualization."""
|
|
268
|
+
if augment:
|
|
269
|
+
return self._forward_augment(x) # augmented inference, None
|
|
270
|
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
|
271
|
+
|
|
272
|
+
def _forward_augment(self, x):
|
|
273
|
+
"""Performs augmented inference across different scales and flips, returning combined detections."""
|
|
274
|
+
img_size = x.shape[-2:] # height, width
|
|
275
|
+
s = [1, 0.83, 0.67] # scales
|
|
276
|
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
|
277
|
+
y = [] # outputs
|
|
278
|
+
for si, fi in zip(s, f):
|
|
279
|
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
|
280
|
+
yi = self._forward_once(xi)[0] # forward
|
|
281
|
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
|
282
|
+
yi = self._descale_pred(yi, fi, si, img_size)
|
|
283
|
+
y.append(yi)
|
|
284
|
+
y = self._clip_augmented(y) # clip augmented tails
|
|
285
|
+
return torch.cat(y, 1), None # augmented inference, train
|
|
286
|
+
|
|
287
|
+
def _descale_pred(self, p, flips, scale, img_size):
|
|
288
|
+
"""De-scales predictions from augmented inference, adjusting for flips and image size."""
|
|
289
|
+
if self.inplace:
|
|
290
|
+
p[..., :4] /= scale # de-scale
|
|
291
|
+
if flips == 2:
|
|
292
|
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
|
293
|
+
elif flips == 3:
|
|
294
|
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
|
295
|
+
else:
|
|
296
|
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
|
297
|
+
if flips == 2:
|
|
298
|
+
y = img_size[0] - y # de-flip ud
|
|
299
|
+
elif flips == 3:
|
|
300
|
+
x = img_size[1] - x # de-flip lr
|
|
301
|
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
|
302
|
+
return p
|
|
303
|
+
|
|
304
|
+
def _clip_augmented(self, y):
|
|
305
|
+
"""Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and
|
|
306
|
+
layer counts.
|
|
307
|
+
"""
|
|
308
|
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
|
309
|
+
g = sum(4**x for x in range(nl)) # grid points
|
|
310
|
+
e = 1 # exclude layer count
|
|
311
|
+
i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices
|
|
312
|
+
y[0] = y[0][:, :-i] # large
|
|
313
|
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
|
314
|
+
y[-1] = y[-1][:, i:] # small
|
|
315
|
+
return y
|
|
316
|
+
|
|
317
|
+
def _initialize_biases(self, cf=None):
|
|
318
|
+
"""
|
|
319
|
+
Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).
|
|
320
|
+
|
|
321
|
+
For details see https://arxiv.org/abs/1708.02002 section 3.3.
|
|
322
|
+
"""
|
|
323
|
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
|
324
|
+
m = self.model[-1] # Detect() module
|
|
325
|
+
for mi, s in zip(m.m, m.stride): # from
|
|
326
|
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
|
327
|
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
|
328
|
+
b.data[:, 5 : 5 + m.nc] += (
|
|
329
|
+
math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
|
|
330
|
+
) # cls
|
|
331
|
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
class SegmentationModel(DetectionModel):
|
|
338
|
+
"""YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""
|
|
339
|
+
|
|
340
|
+
def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):
|
|
341
|
+
"""Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""
|
|
342
|
+
super().__init__(cfg, ch, nc, anchors)
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
class ClassificationModel(BaseModel):
|
|
346
|
+
"""YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""
|
|
347
|
+
|
|
348
|
+
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
|
|
349
|
+
"""Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`
|
|
350
|
+
index.
|
|
351
|
+
"""
|
|
352
|
+
super().__init__()
|
|
353
|
+
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
|
354
|
+
|
|
355
|
+
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
|
356
|
+
"""Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification
|
|
357
|
+
layer.
|
|
358
|
+
"""
|
|
359
|
+
if isinstance(model, DetectMultiBackend):
|
|
360
|
+
model = model.model # unwrap DetectMultiBackend
|
|
361
|
+
model.model = model.model[:cutoff] # backbone
|
|
362
|
+
m = model.model[-1] # last layer
|
|
363
|
+
ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module
|
|
364
|
+
c = Classify(ch, nc) # Classify()
|
|
365
|
+
c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type
|
|
366
|
+
model.model[-1] = c # replace
|
|
367
|
+
self.model = model.model
|
|
368
|
+
self.stride = model.stride
|
|
369
|
+
self.save = []
|
|
370
|
+
self.nc = nc
|
|
371
|
+
|
|
372
|
+
def _from_yaml(self, cfg):
|
|
373
|
+
"""Creates a YOLOv5 classification model from a specified *.yaml configuration file."""
|
|
374
|
+
self.model = None
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
def parse_model(d, ch):
|
|
378
|
+
"""Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""
|
|
379
|
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
|
380
|
+
anchors, nc, gd, gw, act, ch_mul = (
|
|
381
|
+
d["anchors"],
|
|
382
|
+
d["nc"],
|
|
383
|
+
d["depth_multiple"],
|
|
384
|
+
d["width_multiple"],
|
|
385
|
+
d.get("activation"),
|
|
386
|
+
d.get("channel_multiple"),
|
|
387
|
+
)
|
|
388
|
+
if act:
|
|
389
|
+
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
|
390
|
+
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
|
391
|
+
if not ch_mul:
|
|
392
|
+
ch_mul = 8
|
|
393
|
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
|
394
|
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
|
395
|
+
|
|
396
|
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
|
397
|
+
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
|
|
398
|
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
|
399
|
+
for j, a in enumerate(args):
|
|
400
|
+
with contextlib.suppress(NameError):
|
|
401
|
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
|
402
|
+
|
|
403
|
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
|
404
|
+
if m in {
|
|
405
|
+
Conv,
|
|
406
|
+
GhostConv,
|
|
407
|
+
Bottleneck,
|
|
408
|
+
GhostBottleneck,
|
|
409
|
+
SPP,
|
|
410
|
+
SPPF,
|
|
411
|
+
DWConv,
|
|
412
|
+
MixConv2d,
|
|
413
|
+
Focus,
|
|
414
|
+
CrossConv,
|
|
415
|
+
BottleneckCSP,
|
|
416
|
+
C3,
|
|
417
|
+
C3TR,
|
|
418
|
+
C3SPP,
|
|
419
|
+
C3Ghost,
|
|
420
|
+
nn.ConvTranspose2d,
|
|
421
|
+
DWConvTranspose2d,
|
|
422
|
+
C3x,
|
|
423
|
+
}:
|
|
424
|
+
c1, c2 = ch[f], args[0]
|
|
425
|
+
if c2 != no: # if not output
|
|
426
|
+
c2 = make_divisible(c2 * gw, ch_mul)
|
|
427
|
+
|
|
428
|
+
args = [c1, c2, *args[1:]]
|
|
429
|
+
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
|
430
|
+
args.insert(2, n) # number of repeats
|
|
431
|
+
n = 1
|
|
432
|
+
elif m is nn.BatchNorm2d:
|
|
433
|
+
args = [ch[f]]
|
|
434
|
+
elif m is Concat:
|
|
435
|
+
c2 = sum(ch[x] for x in f)
|
|
436
|
+
# TODO: channel, gw, gd
|
|
437
|
+
elif m in {Detect, Segment}:
|
|
438
|
+
args.append([ch[x] for x in f])
|
|
439
|
+
if isinstance(args[1], int): # number of anchors
|
|
440
|
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
|
441
|
+
if m is Segment:
|
|
442
|
+
args[3] = make_divisible(args[3] * gw, ch_mul)
|
|
443
|
+
elif m is Contract:
|
|
444
|
+
c2 = ch[f] * args[0] ** 2
|
|
445
|
+
elif m is Expand:
|
|
446
|
+
c2 = ch[f] // args[0] ** 2
|
|
447
|
+
else:
|
|
448
|
+
c2 = ch[f]
|
|
449
|
+
|
|
450
|
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
|
451
|
+
t = str(m)[8:-2].replace("__main__.", "") # module type
|
|
452
|
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
|
453
|
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
|
454
|
+
LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print
|
|
455
|
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
|
456
|
+
layers.append(m_)
|
|
457
|
+
if i == 0:
|
|
458
|
+
ch = []
|
|
459
|
+
ch.append(c2)
|
|
460
|
+
return nn.Sequential(*layers), sorted(save)
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
if __name__ == "__main__":
|
|
464
|
+
parser = argparse.ArgumentParser()
|
|
465
|
+
parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml")
|
|
466
|
+
parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")
|
|
467
|
+
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
|
468
|
+
parser.add_argument("--profile", action="store_true", help="profile model speed")
|
|
469
|
+
parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")
|
|
470
|
+
parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")
|
|
471
|
+
opt = parser.parse_args()
|
|
472
|
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
|
473
|
+
print_args(vars(opt))
|
|
474
|
+
device = select_device(opt.device)
|
|
475
|
+
|
|
476
|
+
# Create model
|
|
477
|
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
|
478
|
+
model = Model(opt.cfg).to(device)
|
|
479
|
+
|
|
480
|
+
# Options
|
|
481
|
+
if opt.line_profile: # profile layer by layer
|
|
482
|
+
model(im, profile=True)
|
|
483
|
+
|
|
484
|
+
elif opt.profile: # profile forward-backward
|
|
485
|
+
results = profile(input=im, ops=[model], n=3)
|
|
486
|
+
|
|
487
|
+
elif opt.test: # test all models
|
|
488
|
+
for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):
|
|
489
|
+
try:
|
|
490
|
+
_ = Model(cfg)
|
|
491
|
+
except Exception as e:
|
|
492
|
+
print(f"Error in {cfg}: {e}")
|
|
493
|
+
|
|
494
|
+
else: # report fused model summary
|
|
495
|
+
model.fuse()
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
# Parameters
|
|
4
|
+
nc: 80 # number of classes
|
|
5
|
+
depth_multiple: 1.0 # model depth multiple
|
|
6
|
+
width_multiple: 1.0 # layer channel multiple
|
|
7
|
+
anchors:
|
|
8
|
+
- [10, 13, 16, 30, 33, 23] # P3/8
|
|
9
|
+
- [30, 61, 62, 45, 59, 119] # P4/16
|
|
10
|
+
- [116, 90, 156, 198, 373, 326] # P5/32
|
|
11
|
+
|
|
12
|
+
# YOLOv5 v6.0 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
[
|
|
16
|
+
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
|
17
|
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
|
18
|
+
[-1, 3, C3, [128]],
|
|
19
|
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
|
20
|
+
[-1, 6, C3, [256]],
|
|
21
|
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
|
22
|
+
[-1, 9, C3, [512]],
|
|
23
|
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
|
24
|
+
[-1, 3, C3, [1024]],
|
|
25
|
+
[-1, 1, SPPF, [1024, 5]], # 9
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
# YOLOv5 v6.0 head
|
|
29
|
+
head: [
|
|
30
|
+
[-1, 1, Conv, [512, 1, 1]],
|
|
31
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
32
|
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
|
33
|
+
[-1, 3, C3, [512, False]], # 13
|
|
34
|
+
|
|
35
|
+
[-1, 1, Conv, [256, 1, 1]],
|
|
36
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
37
|
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
|
38
|
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
[-1, 1, Conv, [256, 3, 2]],
|
|
41
|
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
|
42
|
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
[-1, 1, Conv, [512, 3, 2]],
|
|
45
|
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
|
46
|
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
|
49
|
+
]
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
# Parameters
|
|
4
|
+
nc: 80 # number of classes
|
|
5
|
+
depth_multiple: 0.67 # model depth multiple
|
|
6
|
+
width_multiple: 0.75 # layer channel multiple
|
|
7
|
+
anchors:
|
|
8
|
+
- [10, 13, 16, 30, 33, 23] # P3/8
|
|
9
|
+
- [30, 61, 62, 45, 59, 119] # P4/16
|
|
10
|
+
- [116, 90, 156, 198, 373, 326] # P5/32
|
|
11
|
+
|
|
12
|
+
# YOLOv5 v6.0 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
[
|
|
16
|
+
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
|
17
|
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
|
18
|
+
[-1, 3, C3, [128]],
|
|
19
|
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
|
20
|
+
[-1, 6, C3, [256]],
|
|
21
|
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
|
22
|
+
[-1, 9, C3, [512]],
|
|
23
|
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
|
24
|
+
[-1, 3, C3, [1024]],
|
|
25
|
+
[-1, 1, SPPF, [1024, 5]], # 9
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
# YOLOv5 v6.0 head
|
|
29
|
+
head: [
|
|
30
|
+
[-1, 1, Conv, [512, 1, 1]],
|
|
31
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
32
|
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
|
33
|
+
[-1, 3, C3, [512, False]], # 13
|
|
34
|
+
|
|
35
|
+
[-1, 1, Conv, [256, 1, 1]],
|
|
36
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
37
|
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
|
38
|
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
[-1, 1, Conv, [256, 3, 2]],
|
|
41
|
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
|
42
|
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
[-1, 1, Conv, [512, 3, 2]],
|
|
45
|
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
|
46
|
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
|
49
|
+
]
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
# Parameters
|
|
4
|
+
nc: 80 # number of classes
|
|
5
|
+
depth_multiple: 0.33 # model depth multiple
|
|
6
|
+
width_multiple: 0.25 # layer channel multiple
|
|
7
|
+
anchors:
|
|
8
|
+
- [10, 13, 16, 30, 33, 23] # P3/8
|
|
9
|
+
- [30, 61, 62, 45, 59, 119] # P4/16
|
|
10
|
+
- [116, 90, 156, 198, 373, 326] # P5/32
|
|
11
|
+
|
|
12
|
+
# YOLOv5 v6.0 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
[
|
|
16
|
+
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
|
17
|
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
|
18
|
+
[-1, 3, C3, [128]],
|
|
19
|
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
|
20
|
+
[-1, 6, C3, [256]],
|
|
21
|
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
|
22
|
+
[-1, 9, C3, [512]],
|
|
23
|
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
|
24
|
+
[-1, 3, C3, [1024]],
|
|
25
|
+
[-1, 1, SPPF, [1024, 5]], # 9
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
# YOLOv5 v6.0 head
|
|
29
|
+
head: [
|
|
30
|
+
[-1, 1, Conv, [512, 1, 1]],
|
|
31
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
32
|
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
|
33
|
+
[-1, 3, C3, [512, False]], # 13
|
|
34
|
+
|
|
35
|
+
[-1, 1, Conv, [256, 1, 1]],
|
|
36
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
37
|
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
|
38
|
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
[-1, 1, Conv, [256, 3, 2]],
|
|
41
|
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
|
42
|
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
[-1, 1, Conv, [512, 3, 2]],
|
|
45
|
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
|
46
|
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
|
49
|
+
]
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
# Parameters
|
|
4
|
+
nc: 80 # number of classes
|
|
5
|
+
depth_multiple: 0.33 # model depth multiple
|
|
6
|
+
width_multiple: 0.50 # layer channel multiple
|
|
7
|
+
anchors:
|
|
8
|
+
- [10, 13, 16, 30, 33, 23] # P3/8
|
|
9
|
+
- [30, 61, 62, 45, 59, 119] # P4/16
|
|
10
|
+
- [116, 90, 156, 198, 373, 326] # P5/32
|
|
11
|
+
|
|
12
|
+
# YOLOv5 v6.0 backbone
|
|
13
|
+
backbone:
|
|
14
|
+
# [from, number, module, args]
|
|
15
|
+
[
|
|
16
|
+
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
|
17
|
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
|
18
|
+
[-1, 3, C3, [128]],
|
|
19
|
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
|
20
|
+
[-1, 6, C3, [256]],
|
|
21
|
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
|
22
|
+
[-1, 9, C3, [512]],
|
|
23
|
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
|
24
|
+
[-1, 3, C3, [1024]],
|
|
25
|
+
[-1, 1, SPPF, [1024, 5]], # 9
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
# YOLOv5 v6.0 head
|
|
29
|
+
head: [
|
|
30
|
+
[-1, 1, Conv, [512, 1, 1]],
|
|
31
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
32
|
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
|
33
|
+
[-1, 3, C3, [512, False]], # 13
|
|
34
|
+
|
|
35
|
+
[-1, 1, Conv, [256, 1, 1]],
|
|
36
|
+
[-1, 1, nn.Upsample, [None, 2, "nearest"]],
|
|
37
|
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
|
38
|
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
|
39
|
+
|
|
40
|
+
[-1, 1, Conv, [256, 3, 2]],
|
|
41
|
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
|
42
|
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
|
43
|
+
|
|
44
|
+
[-1, 1, Conv, [512, 3, 2]],
|
|
45
|
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
|
46
|
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
|
47
|
+
|
|
48
|
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
|
49
|
+
]
|