bplusplus 0.1.0__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of bplusplus might be problematic. Click here for more details.

Files changed (95) hide show
  1. bplusplus/__init__.py +5 -3
  2. bplusplus/{collect_images.py → collect.py} +3 -3
  3. bplusplus/prepare.py +573 -0
  4. bplusplus/train_validate.py +8 -64
  5. bplusplus/yolov5detect/__init__.py +1 -0
  6. bplusplus/yolov5detect/detect.py +444 -0
  7. bplusplus/yolov5detect/export.py +1530 -0
  8. bplusplus/yolov5detect/insect.yaml +8 -0
  9. bplusplus/yolov5detect/models/__init__.py +0 -0
  10. bplusplus/yolov5detect/models/common.py +1109 -0
  11. bplusplus/yolov5detect/models/experimental.py +130 -0
  12. bplusplus/yolov5detect/models/hub/anchors.yaml +56 -0
  13. bplusplus/yolov5detect/models/hub/yolov3-spp.yaml +52 -0
  14. bplusplus/yolov5detect/models/hub/yolov3-tiny.yaml +42 -0
  15. bplusplus/yolov5detect/models/hub/yolov3.yaml +52 -0
  16. bplusplus/yolov5detect/models/hub/yolov5-bifpn.yaml +49 -0
  17. bplusplus/yolov5detect/models/hub/yolov5-fpn.yaml +43 -0
  18. bplusplus/yolov5detect/models/hub/yolov5-p2.yaml +55 -0
  19. bplusplus/yolov5detect/models/hub/yolov5-p34.yaml +42 -0
  20. bplusplus/yolov5detect/models/hub/yolov5-p6.yaml +57 -0
  21. bplusplus/yolov5detect/models/hub/yolov5-p7.yaml +68 -0
  22. bplusplus/yolov5detect/models/hub/yolov5-panet.yaml +49 -0
  23. bplusplus/yolov5detect/models/hub/yolov5l6.yaml +61 -0
  24. bplusplus/yolov5detect/models/hub/yolov5m6.yaml +61 -0
  25. bplusplus/yolov5detect/models/hub/yolov5n6.yaml +61 -0
  26. bplusplus/yolov5detect/models/hub/yolov5s-LeakyReLU.yaml +50 -0
  27. bplusplus/yolov5detect/models/hub/yolov5s-ghost.yaml +49 -0
  28. bplusplus/yolov5detect/models/hub/yolov5s-transformer.yaml +49 -0
  29. bplusplus/yolov5detect/models/hub/yolov5s6.yaml +61 -0
  30. bplusplus/yolov5detect/models/hub/yolov5x6.yaml +61 -0
  31. bplusplus/yolov5detect/models/segment/yolov5l-seg.yaml +49 -0
  32. bplusplus/yolov5detect/models/segment/yolov5m-seg.yaml +49 -0
  33. bplusplus/yolov5detect/models/segment/yolov5n-seg.yaml +49 -0
  34. bplusplus/yolov5detect/models/segment/yolov5s-seg.yaml +49 -0
  35. bplusplus/yolov5detect/models/segment/yolov5x-seg.yaml +49 -0
  36. bplusplus/yolov5detect/models/tf.py +797 -0
  37. bplusplus/yolov5detect/models/yolo.py +495 -0
  38. bplusplus/yolov5detect/models/yolov5l.yaml +49 -0
  39. bplusplus/yolov5detect/models/yolov5m.yaml +49 -0
  40. bplusplus/yolov5detect/models/yolov5n.yaml +49 -0
  41. bplusplus/yolov5detect/models/yolov5s.yaml +49 -0
  42. bplusplus/yolov5detect/models/yolov5x.yaml +49 -0
  43. bplusplus/yolov5detect/utils/__init__.py +97 -0
  44. bplusplus/yolov5detect/utils/activations.py +134 -0
  45. bplusplus/yolov5detect/utils/augmentations.py +448 -0
  46. bplusplus/yolov5detect/utils/autoanchor.py +175 -0
  47. bplusplus/yolov5detect/utils/autobatch.py +70 -0
  48. bplusplus/yolov5detect/utils/aws/__init__.py +0 -0
  49. bplusplus/yolov5detect/utils/aws/mime.sh +26 -0
  50. bplusplus/yolov5detect/utils/aws/resume.py +41 -0
  51. bplusplus/yolov5detect/utils/aws/userdata.sh +27 -0
  52. bplusplus/yolov5detect/utils/callbacks.py +72 -0
  53. bplusplus/yolov5detect/utils/dataloaders.py +1385 -0
  54. bplusplus/yolov5detect/utils/docker/Dockerfile +73 -0
  55. bplusplus/yolov5detect/utils/docker/Dockerfile-arm64 +40 -0
  56. bplusplus/yolov5detect/utils/docker/Dockerfile-cpu +42 -0
  57. bplusplus/yolov5detect/utils/downloads.py +136 -0
  58. bplusplus/yolov5detect/utils/flask_rest_api/README.md +70 -0
  59. bplusplus/yolov5detect/utils/flask_rest_api/example_request.py +17 -0
  60. bplusplus/yolov5detect/utils/flask_rest_api/restapi.py +49 -0
  61. bplusplus/yolov5detect/utils/general.py +1294 -0
  62. bplusplus/yolov5detect/utils/google_app_engine/Dockerfile +25 -0
  63. bplusplus/yolov5detect/utils/google_app_engine/additional_requirements.txt +6 -0
  64. bplusplus/yolov5detect/utils/google_app_engine/app.yaml +16 -0
  65. bplusplus/yolov5detect/utils/loggers/__init__.py +476 -0
  66. bplusplus/yolov5detect/utils/loggers/clearml/README.md +222 -0
  67. bplusplus/yolov5detect/utils/loggers/clearml/__init__.py +0 -0
  68. bplusplus/yolov5detect/utils/loggers/clearml/clearml_utils.py +230 -0
  69. bplusplus/yolov5detect/utils/loggers/clearml/hpo.py +90 -0
  70. bplusplus/yolov5detect/utils/loggers/comet/README.md +250 -0
  71. bplusplus/yolov5detect/utils/loggers/comet/__init__.py +551 -0
  72. bplusplus/yolov5detect/utils/loggers/comet/comet_utils.py +151 -0
  73. bplusplus/yolov5detect/utils/loggers/comet/hpo.py +126 -0
  74. bplusplus/yolov5detect/utils/loggers/comet/optimizer_config.json +135 -0
  75. bplusplus/yolov5detect/utils/loggers/wandb/__init__.py +0 -0
  76. bplusplus/yolov5detect/utils/loggers/wandb/wandb_utils.py +210 -0
  77. bplusplus/yolov5detect/utils/loss.py +259 -0
  78. bplusplus/yolov5detect/utils/metrics.py +381 -0
  79. bplusplus/yolov5detect/utils/plots.py +517 -0
  80. bplusplus/yolov5detect/utils/segment/__init__.py +0 -0
  81. bplusplus/yolov5detect/utils/segment/augmentations.py +100 -0
  82. bplusplus/yolov5detect/utils/segment/dataloaders.py +366 -0
  83. bplusplus/yolov5detect/utils/segment/general.py +160 -0
  84. bplusplus/yolov5detect/utils/segment/loss.py +198 -0
  85. bplusplus/yolov5detect/utils/segment/metrics.py +225 -0
  86. bplusplus/yolov5detect/utils/segment/plots.py +152 -0
  87. bplusplus/yolov5detect/utils/torch_utils.py +482 -0
  88. bplusplus/yolov5detect/utils/triton.py +90 -0
  89. bplusplus-1.1.0.dist-info/METADATA +179 -0
  90. bplusplus-1.1.0.dist-info/RECORD +92 -0
  91. bplusplus/build_model.py +0 -38
  92. bplusplus-0.1.0.dist-info/METADATA +0 -91
  93. bplusplus-0.1.0.dist-info/RECORD +0 -8
  94. {bplusplus-0.1.0.dist-info → bplusplus-1.1.0.dist-info}/LICENSE +0 -0
  95. {bplusplus-0.1.0.dist-info → bplusplus-1.1.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,179 @@
1
+ Metadata-Version: 2.1
2
+ Name: bplusplus
3
+ Version: 1.1.0
4
+ Summary: A simple method to create AI models for biodiversity, with collect and prepare pipeline
5
+ License: MIT
6
+ Author: Titus Venverloo
7
+ Author-email: tvenver@mit.edu
8
+ Requires-Python: >=3.9.0,<4.0.0
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.9
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Requires-Dist: prettytable (==3.7.0)
16
+ Requires-Dist: pygbif (>=0.6.4,<0.7.0)
17
+ Requires-Dist: requests (==2.25.1)
18
+ Requires-Dist: ultralytics (==8.0.195)
19
+ Requires-Dist: validators (>=0.33.0,<0.34.0)
20
+ Description-Content-Type: text/markdown
21
+
22
+ # B++ repository
23
+
24
+ [![DOI](https://zenodo.org/badge/765250194.svg)](https://zenodo.org/badge/latestdoi/765250194)
25
+ [![PyPi version](https://img.shields.io/pypi/v/bplusplus.svg)](https://pypi.org/project/bplusplus/)
26
+ [![Python versions](https://img.shields.io/pypi/pyversions/bplusplus.svg)](https://pypi.org/project/bplusplus/)
27
+ [![License](https://img.shields.io/pypi/l/bplusplus.svg)](https://pypi.org/project/bplusplus/)
28
+ [![Downloads](https://static.pepy.tech/badge/bplusplus)](https://pepy.tech/project/bplusplus)
29
+ [![Downloads](https://static.pepy.tech/badge/bplusplus/month)](https://pepy.tech/project/bplusplus)
30
+ [![Downloads](https://static.pepy.tech/badge/bplusplus/week)](https://pepy.tech/project/bplusplus)
31
+
32
+ This repo can be used to quickly generate YOLOv8 models for biodiversity monitoring, relying on Ultralytics and a GBIF dataset.
33
+
34
+ All code is tested on macOS and Python 3.12, without GPU. GPU would obviously accelerate the below steps, Ultralytics should automatically select the available GPU if there is any.
35
+
36
+ # How does it work?
37
+
38
+ To use the bplusplus package to train your own insect detection model, we provide four functions: `collect()`, `prepare()`, `train()`, `validate()`. When training an object detection model, you need a dataset with labeled data of insect species. For this package in the `collect()` function, we use images from the GBIF database (https://doi.org/10.15468/dl.dk9czq) and run them through a pretrained *insect detection model*, defining the bounding boxes for the insects, and add the scientific name from the file path. In that way, we are able to prepare a full dataset of labeled and classified insect data for training.
39
+
40
+ ![Bplusplus overview](./bplusplus2-overview.png)
41
+
42
+ ### Install package
43
+
44
+ ```python
45
+ pip install bplusplus
46
+ ```
47
+
48
+ ### bplusplus.collect()
49
+
50
+ This function takes three arguments:
51
+ - **search_parameters: dict[str, Any]** - List of scientific names of the species you want to collect from the GBIF database
52
+ - **images_per_group: int** - Number of images per species collected for training
53
+ - **output_directory: str** - Directory to store collected images
54
+
55
+ Example run:
56
+ ```python
57
+ species_list=[ "Vanessa atalanta", "Gonepteryx rhamni", "Bombus hortorum"]
58
+ images_per_group=20
59
+ output_directory="/dataset/selected-species"
60
+
61
+ # Collect data from GBIF
62
+ bplusplus.collect(
63
+ search_parameters=species_list,
64
+ images_per_group=images_per_group,
65
+ output_directory=output_directory
66
+ )
67
+ ```
68
+
69
+ ### bplusplus.prepare()
70
+
71
+ Prepares the dataset for training by performing the following steps:
72
+ 1. Copies images from the input directory to a temporary directory.
73
+ 2. Deletes corrupted images.
74
+ 3. Downloads YOLOv5 weights for *insect detection* if not already present.
75
+ 4. Runs YOLOv5 inference to generate labels for the images.
76
+ 5. Deletes orphaned images and inferences.
77
+ 6. Updates labels based on class mapping.
78
+ 7. Splits the data into train, test, and validation sets.
79
+ 8. Counts the total number of images across all splits.
80
+ 9. Makes a YAML configuration file for YOLOv8.
81
+
82
+ This function takes three arguments:
83
+ - **input_directory: str** - The path to the input directory containing the images.
84
+ - **output_directory: str** - The path to the output directory where the prepared dataset will be saved.
85
+ - **with_background: bool = False** - Set to False if you don't want to include/download background images
86
+
87
+ ```python
88
+ # Prepare data
89
+ bplusplus.prepare(
90
+ input_directory='/dataset/selected-species',
91
+ output_directory='/dataset/prepared-data',
92
+ with_background=False
93
+ )
94
+ ```
95
+
96
+ ### bplusplus.train()
97
+
98
+ This function takes five arguments:
99
+ - **input_yaml: str** - yaml file created to train the model
100
+ - **output_directory: str**
101
+ - **epochs: int = 30** - Number of epochs to train the model
102
+ - **imgsz: int = 640** - Image size
103
+ - **batch: int = 16** - Batch size for training
104
+
105
+ ```python
106
+ # Train model
107
+ model = bplusplus.train(
108
+ input_yaml="/dataset/prepared-data/dataset.yaml", # Make sure to add the correct path
109
+ output_directory="trained-model",
110
+ epochs=30,
111
+ batch=16
112
+ )
113
+ ```
114
+
115
+ ### bplusplus.validate()
116
+
117
+ This function takes two arguments:
118
+ - **model** - The trained YOLO model
119
+ - **Path to yaml file**
120
+
121
+ ```python
122
+ metrics = bplusplus.validate(model, '/dataset/prepared-data/dataset.yaml')
123
+ print(metrics)
124
+ ```
125
+
126
+
127
+
128
+ ## Full example
129
+ ```python
130
+ import bplusplus
131
+
132
+ species_list=[ "Vanessa atalanta", "Gonepteryx rhamni", "Bombus hortorum"]
133
+ images_per_group=20
134
+ output_directory="/dataset/selected-species"
135
+
136
+ # Collect data from GBIF
137
+ bplusplus.collect(
138
+ search_parameters=species_list,
139
+ images_per_group=images_per_group,
140
+ output_directory=output_directory
141
+ )
142
+
143
+ # Prepare data
144
+ bplusplus.prepare(
145
+ input_directory='/dataset/selected-species',
146
+ output_directory='/dataset/prepared-data',
147
+ with_background=False
148
+ )
149
+
150
+ # Train model
151
+ model = bplusplus.train(
152
+ input_yaml="/dataset/prepared-data/dataset.yaml", # Make sure to add the correct path
153
+ output_directory="trained-model",
154
+ epochs=30,
155
+ batch=16
156
+ )
157
+
158
+ # Validate model
159
+ metrics = bplusplus.validate(model, '/dataset/prepared-data/dataset.yaml')
160
+ print(metrics)
161
+
162
+ ```
163
+
164
+ You have created a YOLOv8 model for insect detection.
165
+
166
+ # Earlier releases
167
+
168
+ There is also a pretrained YOLOv8 classification model, containing 2584 species, from an earlier release and paper.
169
+ The CV model as presented in the paper can be downloaded from: https://drive.google.com/file/d/1wxAIdSzx5nhTOk4izc0RIycoecSdug_Q/view?usp=sharing
170
+
171
+ To run/use the model, please consult the Ultralytics documentation.
172
+
173
+
174
+ # Citation
175
+
176
+ All information in this GitHub is available under MIT license, as long as credit is given to the authors.
177
+
178
+ **Venverloo, T., Duarte, F., B++: Towards Real-Time Monitoring of Insect Species. MIT Senseable City Laboratory, AMS Institute.**
179
+
@@ -0,0 +1,92 @@
1
+ bplusplus/__init__.py,sha256=Vri3TWLHiH03K70S3tpoF_O5wt57Fclt6ihiCzBaQcI,147
2
+ bplusplus/collect.py,sha256=r9_9DJV_xGBV3HTgxXuBtX6GflyHvEHdqqa80Y3Xrx4,4440
3
+ bplusplus/prepare.py,sha256=NkurFo-Lde0SUTWUFwy_eqKVq6qWn9f5N6fQko-YNi0,23261
4
+ bplusplus/train_validate.py,sha256=uqWPXyknoAYXkFIg_YOynd1UnBraibI1fliFOK5vWwE,533
5
+ bplusplus/yolov5detect/__init__.py,sha256=cJHh6ghuMGuFRqbgzTEEBN7suDZ6bhR_eLu0N1oR9Yc,23
6
+ bplusplus/yolov5detect/detect.py,sha256=bq-3n4hIXUlIHlU88H0NR2COTWWMELBVxtfzWTyChdI,24144
7
+ bplusplus/yolov5detect/export.py,sha256=kQ7hqgXu0XRbQ7K2JeX9wYvfJ0hDsaDl3JNA6k8ckVQ,67724
8
+ bplusplus/yolov5detect/insect.yaml,sha256=dtB4vQaXJMgJC0THlO50i9Nh0k5OVnJcNiCuurAo3RU,282
9
+ bplusplus/yolov5detect/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ bplusplus/yolov5detect/models/common.py,sha256=iq36pAtfS8rEY6qTy8PmmWA2EDjsohaE0G0usD7WzLM,52109
11
+ bplusplus/yolov5detect/models/experimental.py,sha256=oltm9OcZzF10FEjNAXaxw2aXQCxQLankfjq3eR_9XI4,5153
12
+ bplusplus/yolov5detect/models/hub/anchors.yaml,sha256=ESDqp-9NhgRq9Vq1eBIKTCIFD241i3mK_4F0bojke_w,3336
13
+ bplusplus/yolov5detect/models/hub/yolov3-spp.yaml,sha256=A-ZN_7C5Lxh2ZO7QxQravaG3W6Ch2RtYS_qsHeqHjf8,1589
14
+ bplusplus/yolov5detect/models/hub/yolov3-tiny.yaml,sha256=en1bqwy99njDAj2ouuDe-UjXXfv-3iXsjJBNgtl_5v4,1246
15
+ bplusplus/yolov5detect/models/hub/yolov3.yaml,sha256=6Pe5alcTTq5Fe7nhvxT2yfUTZ0-W758nuDJRpr74Ado,1580
16
+ bplusplus/yolov5detect/models/hub/yolov5-bifpn.yaml,sha256=K4J1SAcosvHALJSsqNibMEVpEBPXyLrn0HZ8hqJZNLU,1440
17
+ bplusplus/yolov5detect/models/hub/yolov5-fpn.yaml,sha256=dPRbYpYj0kAR7b2PfCsHcAqu1w0NpCFSR7LK9gvh7PI,1229
18
+ bplusplus/yolov5detect/models/hub/yolov5-p2.yaml,sha256=98ibVnKl_dS5WvJUJWWy159raUf8YwXEMOu3WhWUSv0,1700
19
+ bplusplus/yolov5detect/models/hub/yolov5-p34.yaml,sha256=3bfwTGKUOiJd9Z4poaYnL7DSH5WcW_voTdJB1wJNlpc,1240
20
+ bplusplus/yolov5detect/models/hub/yolov5-p6.yaml,sha256=Ln-kluVwT-vSDnoM4FVoV1KVOwev9cy7QmfICXNy-CM,1755
21
+ bplusplus/yolov5detect/models/hub/yolov5-p7.yaml,sha256=XC2GP5OwWWrkMUsDR6vWtQ7ai77tavHLEsUuEpL-_Ss,2140
22
+ bplusplus/yolov5detect/models/hub/yolov5-panet.yaml,sha256=PAOm98M0_r9EMX_gD5p2cC2scKdhXTmMoi0IfGOlMvM,1424
23
+ bplusplus/yolov5detect/models/hub/yolov5l6.yaml,sha256=I6FdTD7qLJfmYl_3HDmWlCyD2qOxS53AruKop3Xjle8,1835
24
+ bplusplus/yolov5detect/models/hub/yolov5m6.yaml,sha256=NrBOky5yUDZM5J11BNmb7AO8jmx4JCHC57UuZsjCkRw,1837
25
+ bplusplus/yolov5detect/models/hub/yolov5n6.yaml,sha256=ywcoHlw6Wik0_aLbkea5dtLBNWuJ7YH3IgUAvvW_BvM,1837
26
+ bplusplus/yolov5detect/models/hub/yolov5s-LeakyReLU.yaml,sha256=cXLSFid5hJglWxuLlYBQrpMVAO0fzWCuciOdzHQXnpg,1513
27
+ bplusplus/yolov5detect/models/hub/yolov5s-ghost.yaml,sha256=RWSAZyZ9d8T7ezoHnj6BNg7TmpkDYIG7lkj1zZCNcv8,1500
28
+ bplusplus/yolov5detect/models/hub/yolov5s-transformer.yaml,sha256=sKWZphAw6EwBMap31Nqvshu5Bs-Bjw3n_MHCs8-fHDY,1457
29
+ bplusplus/yolov5detect/models/hub/yolov5s6.yaml,sha256=mUXkTz_QWJCeI8_n-2FTmTpYDQAtONy_SVPcSYgK8vE,1837
30
+ bplusplus/yolov5detect/models/hub/yolov5x6.yaml,sha256=mw-e-nbGugoSfen3Xz_KYqg_6ppC-p5YgYAYvO-J6jM,1837
31
+ bplusplus/yolov5detect/models/segment/yolov5l-seg.yaml,sha256=QMhzNskkiVd-LJqoUVofiPCJM-OpuPUOZYX4hgbdgrw,1428
32
+ bplusplus/yolov5detect/models/segment/yolov5m-seg.yaml,sha256=ffhiN9v5eKp2r9gQR9hOUVstFGOOysnCOokccwKdUcs,1430
33
+ bplusplus/yolov5detect/models/segment/yolov5n-seg.yaml,sha256=eMth48MKq6dntb8dXVBo5E_O2lvWeEZuwcSCyEAiO3s,1430
34
+ bplusplus/yolov5detect/models/segment/yolov5s-seg.yaml,sha256=CTqKqW0tJZ-jN49oZu-vHXOTVvDFqH6g5PP1AUrzbfc,1429
35
+ bplusplus/yolov5detect/models/segment/yolov5x-seg.yaml,sha256=6Fy0TLHWKE9ZjGpGaVPGPh2DUaqHJyE8ORb-r3j47KE,1430
36
+ bplusplus/yolov5detect/models/tf.py,sha256=Iq75_h87YcwB0qwWPKgX7Z4UbAwG5m-IXRCEy2sYvCo,33764
37
+ bplusplus/yolov5detect/models/yolo.py,sha256=p5fUsJBnGt-h48roctkJWyu-ZcljAFvlTAd7N2NdK5M,21030
38
+ bplusplus/yolov5detect/models/yolov5l.yaml,sha256=8Dstr_e5u1f_MWjnba4C4UDlxsGAn64FnucsEUI8x5Q,1418
39
+ bplusplus/yolov5detect/models/yolov5m.yaml,sha256=bWyz6UsR5TjW0b5f5p-GVweTB1PuQyoNFw-JYshLg3Y,1420
40
+ bplusplus/yolov5detect/models/yolov5n.yaml,sha256=3NcopGrlLGsgK9KBjSMHHtFEI8L3PH5sX_yrsP97J48,1420
41
+ bplusplus/yolov5detect/models/yolov5s.yaml,sha256=ug2QCQafPOlSwNuFyjuTfG4ernml4QZ4vZSNky0FCYo,1420
42
+ bplusplus/yolov5detect/models/yolov5x.yaml,sha256=4Hh7_sz5AtDdZjqVhlNZMr5ip7IESuK7DNNkZi7rR_k,1420
43
+ bplusplus/yolov5detect/utils/__init__.py,sha256=whZYqDx1j45ZySXEiW8i67g3cn6ziJPXdLmLhJB3VXk,3246
44
+ bplusplus/yolov5detect/utils/activations.py,sha256=ugtxjjSHtJBJvXDHqNHiVO9aO85btahwtsJCG_5ZOUs,5012
45
+ bplusplus/yolov5detect/utils/augmentations.py,sha256=tm0EOs9i7c8RqQed8VaFvZf1XTYKIeEjhYkf0l2-PXA,18950
46
+ bplusplus/yolov5detect/utils/autoanchor.py,sha256=FyXwW3h2OTXDRCOlefE0jCXepCdIXYF8y1fODpXGc1Q,7935
47
+ bplusplus/yolov5detect/utils/autobatch.py,sha256=qo0V3aq7RsJpJZME5pUT-AP4fhlWuro73wyoj189hXc,3042
48
+ bplusplus/yolov5detect/utils/aws/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
+ bplusplus/yolov5detect/utils/aws/mime.sh,sha256=Qztt2vj_k3wMNZzkoqeBTPcYJ9MEOA6c7zJ0hmi9kI4,780
50
+ bplusplus/yolov5detect/utils/aws/resume.py,sha256=k4quzE49csIhdAFCli8OkWfzAvZ6i1y8tN1qiIeUFCE,1242
51
+ bplusplus/yolov5detect/utils/aws/userdata.sh,sha256=KQsrt0FlLrISiu0Vu5qoVU1FIda4sjWFC-2nbL1ju64,1247
52
+ bplusplus/yolov5detect/utils/callbacks.py,sha256=2q2Re8B_lQfMuj361UYFNFx1F8fZEsKuTw_1wtmItN0,2712
53
+ bplusplus/yolov5detect/utils/dataloaders.py,sha256=_D_CLJLpCsicL1c7ohBr_3QaYOxLGDKAo1iS0VBybww,60697
54
+ bplusplus/yolov5detect/utils/docker/Dockerfile,sha256=aQBkVTr0ECdDcWdjm4bAUVE0FpJxW1bTgnp4pFVvFKI,2560
55
+ bplusplus/yolov5detect/utils/docker/Dockerfile-arm64,sha256=_NTKf7T__WU5I0Tk-Fy5OR-5yu_cGkxdws8IDIVCXt8,1571
56
+ bplusplus/yolov5detect/utils/docker/Dockerfile-cpu,sha256=rs00ow8o8qBE5LQjMHuCjAS6de4xFMBv5HTDN26plj8,1824
57
+ bplusplus/yolov5detect/utils/downloads.py,sha256=682ubZkVQOwqyqPqJ5ZN9FisM8DB6JNSQfWsF9iJjpQ,5236
58
+ bplusplus/yolov5detect/utils/flask_rest_api/README.md,sha256=-2pB1cFZfEhI03NkiwHvviwBlff5AvGAoFxQYu6vpuI,1716
59
+ bplusplus/yolov5detect/utils/flask_rest_api/example_request.py,sha256=BAszyMyXM5o_HrBmJ61NAiWWyVsuhVL943tmGF1UTdU,365
60
+ bplusplus/yolov5detect/utils/flask_rest_api/restapi.py,sha256=HlVG4Rh2lAnEHYHHQsgUpDk5j1oSs3rbnNk-M5uKphU,1572
61
+ bplusplus/yolov5detect/utils/general.py,sha256=TWDXtn_XBaRiqvPIXXvAdHgZtP20teWIuqSdc6zhibA,51444
62
+ bplusplus/yolov5detect/utils/google_app_engine/Dockerfile,sha256=ECIBf0A_QholO7O81pTdbVLbD75uwQGMMSKpR5_sC8g,821
63
+ bplusplus/yolov5detect/utils/google_app_engine/additional_requirements.txt,sha256=QReVSIo3mm1jwDWIE405-2bg0WaaLKhzqGcgNsKr5d0,264
64
+ bplusplus/yolov5detect/utils/google_app_engine/app.yaml,sha256=6iiO1VFb19BvrqP3eEbu6GFWJXAQ2H5pO46IMt9b8-0,219
65
+ bplusplus/yolov5detect/utils/loggers/__init__.py,sha256=Lix_vDbg7ePlRpZmlALuNOcQr0fko9AChQihPHPnxJk,20257
66
+ bplusplus/yolov5detect/utils/loggers/clearml/README.md,sha256=B9OOmaKLRZPej4GdiSHb4npBmcgoWA3KTdQotNacmDM,10832
67
+ bplusplus/yolov5detect/utils/loggers/clearml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
+ bplusplus/yolov5detect/utils/loggers/clearml/clearml_utils.py,sha256=nS8GdG7SFUPv7peHTjwzuyJgccgfehJC76E3HDYP8aY,9695
69
+ bplusplus/yolov5detect/utils/loggers/clearml/hpo.py,sha256=hJEhL-wMJEZtTHJd66d3NtGLKd6LdhrY9cSoA8RsKcA,5289
70
+ bplusplus/yolov5detect/utils/loggers/comet/README.md,sha256=S0eEjzIPOcg0IjXI5_F1MyZjuSddlle5yVrMms_7s88,10810
71
+ bplusplus/yolov5detect/utils/loggers/comet/__init__.py,sha256=bgJxrYzxlspaOEBGO0-8NXnI_HtY8QxO_sZC_H0Qf_U,21596
72
+ bplusplus/yolov5detect/utils/loggers/comet/comet_utils.py,sha256=Z6bBtPBW82bDPrTSIPfwDnDnJYHi5VFIHYjGpoqYdPY,4823
73
+ bplusplus/yolov5detect/utils/loggers/comet/hpo.py,sha256=uS8q5yAo_tu8MNA14pvhpPJtGSVZBgIC703NphdT958,6930
74
+ bplusplus/yolov5detect/utils/loggers/comet/optimizer_config.json,sha256=7BpxMOX6356nzl_MiSMQqmPK9j2oo5N1MEceFAf8J-U,2427
75
+ bplusplus/yolov5detect/utils/loggers/wandb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
76
+ bplusplus/yolov5detect/utils/loggers/wandb/wandb_utils.py,sha256=yqyKxKjqZwrqPICgC1yEgwrj7Bu08fYdrkKFMR8tnes,8144
77
+ bplusplus/yolov5detect/utils/loss.py,sha256=CwOoU7JF7mmHtKIXNqkGBi1X8QBycnGyK24lHbyg5zg,11377
78
+ bplusplus/yolov5detect/utils/metrics.py,sha256=sKdiYQ7-yo5FkxWuLk0XPt4QmYKpyCpUNK6bM5fGehQ,15495
79
+ bplusplus/yolov5detect/utils/plots.py,sha256=VbHf6t5nFBav6C529ZqLQhGCqI4KvHQvKDTyVkca6BU,20691
80
+ bplusplus/yolov5detect/utils/segment/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
81
+ bplusplus/yolov5detect/utils/segment/augmentations.py,sha256=HBUI9sVL7rKHV05gbZvkHcHG1V1g1NID9imVtGgbK9w,3773
82
+ bplusplus/yolov5detect/utils/segment/dataloaders.py,sha256=SNgbvyyuxsrGQ2MIPLQnh7EiqzsEAsWsGlKhYnU9U3E,13680
83
+ bplusplus/yolov5detect/utils/segment/general.py,sha256=RR3scKYXyxZsEQfTYyMMQAj95vU0Jy7AxMtqKYxuzMk,5944
84
+ bplusplus/yolov5detect/utils/segment/loss.py,sha256=fFsU_uWIfF9vrL_5CzowWemNFCIW5Gm6im8qBQFSqkU,9220
85
+ bplusplus/yolov5detect/utils/segment/metrics.py,sha256=OhRBEtkBeNcSKxOrc4WifQ1YBkOYLFSAWmLCcq2AoeA,6021
86
+ bplusplus/yolov5detect/utils/segment/plots.py,sha256=opFz72_0Q61SeoNAlBmkdSc5iL8VAQ4gDNrsDP7vQlY,6686
87
+ bplusplus/yolov5detect/utils/torch_utils.py,sha256=e-XIiSsKp6DqgxMm1Ddrqf9hQht0z9Jdx3CBQjHusTM,21658
88
+ bplusplus/yolov5detect/utils/triton.py,sha256=hltLB5G74eCnMHsGYP3b4MWV4SEHVq-rubjo_8FP3to,3790
89
+ bplusplus-1.1.0.dist-info/LICENSE,sha256=rRkeHptDnlmviR0_WWgNT9t696eys_cjfVUU8FEO4k4,1071
90
+ bplusplus-1.1.0.dist-info/METADATA,sha256=CIxpgbyi0QxL_eGKd7WkuwTniJB-jsB-uwGJGlZE1Mw,6532
91
+ bplusplus-1.1.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
92
+ bplusplus-1.1.0.dist-info/RECORD,,
bplusplus/build_model.py DELETED
@@ -1,38 +0,0 @@
1
- import os
2
- import shutil
3
- import tempfile
4
- from typing import Any
5
-
6
- from .collect_images import Group, collect_images
7
- from .train_validate import train_validate
8
-
9
-
10
- def build_model(group_by_key: Group, search_parameters: dict[str, Any], images_per_group: int, model_output_folder: str):
11
- try:
12
- # Create a temporary directory
13
- temp_dir = tempfile.mkdtemp()
14
- # Do more work...
15
- print(f"Temporary directory path: {temp_dir}")
16
-
17
- groups = search_parameters.get(group_by_key.value, list[str])
18
-
19
- collect_images (
20
- group_by_key=group_by_key,
21
- search_parameters=search_parameters,
22
- images_per_group=images_per_group,
23
- output_directory=temp_dir
24
- )
25
-
26
- train_validate(
27
- groups=groups,
28
- dataset_path=temp_dir,
29
- output_directory=model_output_folder
30
- )
31
-
32
- finally:
33
- # Clean up the temporary directory
34
- if temp_dir and os.path.exists(temp_dir):
35
- shutil. rmtree (temp_dir)
36
- print(f"Cleaned up temporary directory: {temp_dir}")
37
-
38
- temp_dir = None
@@ -1,91 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: bplusplus
3
- Version: 0.1.0
4
- Summary: A simple method to create AI models for biodiversity
5
- License: MIT
6
- Author: Titus Venverloo
7
- Author-email: tvenver@mit.edu
8
- Requires-Python: >=3.9.0,<4.0.0
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.9
12
- Classifier: Programming Language :: Python :: 3.10
13
- Classifier: Programming Language :: Python :: 3.11
14
- Classifier: Programming Language :: Python :: 3.12
15
- Requires-Dist: pygbif (>=0.6.4,<0.7.0)
16
- Requires-Dist: requests (==2.25.1)
17
- Requires-Dist: ultralytics (==8.0.195)
18
- Requires-Dist: validators (>=0.33.0,<0.34.0)
19
- Description-Content-Type: text/markdown
20
-
21
- # B++ repository
22
-
23
- This repo can be used to quickly generate YOLOv8 models for biodiversity monitoring, relying on Ultralytics and a GBIF dataset.
24
-
25
- All code is tested on macOS and Python 3.12, without GPU. GPU would obviously accelerate the below steps, Ultralytics should automatically select the available GPU if there is any.
26
-
27
-
28
- # How does it work?
29
-
30
- ![Figure 9](https://github.com/user-attachments/assets/a01f513b-0609-412d-a633-3aee1e5dded6)
31
-
32
- 1. Select scientific names you want to train your model on. For now, only scientific names are supported as training categories.
33
- 2. Select the parameters you want to use to filter your dataset (using the [parameters available in the GBIF Occurrence Search API](https://techdocs.gbif.org/en/openapi/v1/occurrence)).
34
- 3. Decide how many images you want to use for training and validation per category.
35
- 4. Select a directory to output the model information.
36
- 5. Pass the above information to the `build_model` function.
37
-
38
- You have created a YOLOv8 model for bug classification.
39
-
40
- The training and validation is done using Ultralytics. Please visit the Ultralytics YOLOv8 documentation for more information.
41
-
42
- # Pretrained Model
43
-
44
- There is also a pretrained YOLOv8 classification model, containing 2584 species, included in this repo under B++ CV Model. The included species are listed in a separate file.
45
- 1. Download the pretrained model from the Google Drive link listed in the folder B++ CV Model
46
- 2. Take the notebooks/run_model.py script, specify the path to the downloaded .pt file, and run the model.
47
-
48
- # Example Usage
49
- ## Using search options
50
- ```python
51
- import os
52
- import bplusplus
53
- from typing import Any
54
-
55
- names = [
56
- "Nabis rugosus",
57
- "Forficula auricularia",
58
- "Calosoma inquisitor",
59
- "Bombus veteranus",
60
- "Glyphotaelius pellucidus",
61
- "Notoxus monoceros",
62
- "Cacoxenus indagator",
63
- "Chorthippus mollis",
64
- "Trioza remota"
65
- ]
66
-
67
- search: dict[str, Any] = {
68
- "scientificName": names,
69
- "country": ["US", "NL"]
70
- }
71
-
72
- bplusplus.build_model(
73
- group_by_key=bplusplus.Group.scientificName,
74
- search_parameters=search,
75
- images_per_group=150,
76
- model_output_folder=os.path.join('model')
77
- )
78
- ```
79
-
80
- # Pending Improvements
81
-
82
- * The Ultralytics parameters should be surfaced to the user of the package so they have more control over the training process.
83
- * The GBIF API documentation claims that you can filter on a dataset in your search, however it does not work in my current testing. This would be nice to allow users to create datasets on the GBIF website then pass that DOI directly here, so may warrant a closer look.
84
-
85
-
86
- # Citation
87
-
88
- All information in this GitHub is available under MIT license, as long as credit is given to the authors.
89
-
90
- **Venverloo, T., Duarte, F., B++: Towards Real-Time Monitoring of Insect Species. MIT Senseable City Laboratory, AMS Institute.**
91
-
@@ -1,8 +0,0 @@
1
- bplusplus/__init__.py,sha256=KGjVcdr4nYu-_RUM-zTfkU9hIAHbJJSA1kj5jfhCzqw,130
2
- bplusplus/build_model.py,sha256=ATPnW5p5UZr_hMBa3iu1990lAfZ9q53Hhrepk-2pSv4,1121
3
- bplusplus/collect_images.py,sha256=lRYOxIFu1Cb6faAlXBiddQUmvgnksqR3nY1EFTMqyM8,4443
4
- bplusplus/train_validate.py,sha256=6_G3F5Sbl86LnRnXV6ClZfzbnTv9FZzDMIDhHVdDz6M,2604
5
- bplusplus-0.1.0.dist-info/LICENSE,sha256=rRkeHptDnlmviR0_WWgNT9t696eys_cjfVUU8FEO4k4,1071
6
- bplusplus-0.1.0.dist-info/METADATA,sha256=8AJ7iMs27KeamEzY1QTvk-rdu3YkJn0r7cG9-AvVCYE,3547
7
- bplusplus-0.1.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
8
- bplusplus-0.1.0.dist-info/RECORD,,