bool-hybrid-array 9.5.0__py3-none-any.whl → 9.10.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,393 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: bool-hybrid-array
3
- Version: 9.5.0
4
- Summary: 一个高效的布尔数组(密集+稀疏混合存储,节省内存)
5
- Author: 蔡靖杰
6
- Author-email: 1289270215@qq.com
7
- Keywords: boolean array,compact storage
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.8
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Requires-Dist: numpy>=1.19.0
15
- Dynamic: author
16
- Dynamic: author-email
17
- Dynamic: classifier
18
- Dynamic: description
19
- Dynamic: description-content-type
20
- Dynamic: keywords
21
- Dynamic: license-file
22
- Dynamic: requires-dist
23
- Dynamic: requires-python
24
- Dynamic: summary
25
-
26
- # BoolHybridArray:高效的布尔混合数组库
27
-
28
- 一个专为布尔值优化的数组类,能够根据数据特征自动在密集存储和稀疏存储模式间切换,兼顾性能和内存效率。
29
-
30
- ## ***注:大版本号更新并非不兼容更新,而是重大更新***
31
-
32
- ***注意:目前社区中若存在名称类似(如包含 “bool-hybrid-array”+ 后缀、boolean_array、validate.io-boolean-array)的库,均与本项目(bool-hybrid-array)无关联,本项目的所有功能设计、代码实现均为独立开发;***
33
- ***其他平台里的类似名库绝不是我的库***
34
-
35
- ***注意:若你的原bool-hybrid-array库版本<7.10.9,看到此版本请立即更新到>=7.10.9版本,其他版本的导入都有问题!!!***
36
-
37
- 作者:蔡靖杰(同维护者,PyPI账号Bkshell)
38
-
39
- ## 安装方法
40
-
41
- 使用pip安装:
42
-
43
- ```bash
44
-
45
- pip install bool-hybrid-array
46
-
47
- ```
48
-
49
- ## 更新方法
50
-
51
- ```bash
52
-
53
- pip install -U bool-hybrid-array
54
-
55
- ```
56
-
57
- ## 核心特性
58
-
59
- * **智能存储模式**:数据量小的位置使用密集存储numpy.ndarray数组,
60
- * 数据量大的位置为稀疏存储array.array稀疏数组
61
- * 非稀疏模式:数据大部分为非0(True)索引
62
- * 稀疏模式:数据大部分为0(False)索引
63
- * BoolHybridArr函数会自动切换
64
- * **内存高效**:稀疏数据场景下比普通列表节省50%-80%内存
65
- * **操作便捷**:支持类似列表的索引、切片和赋值操作
66
- * **快速统计**:内置高效的计数和布尔判断方法
67
- * **速度优势**:修改元素的时间还不比list慢
68
- ## 快速开始
69
-
70
- ### 基本用法
71
- ```python
72
-
73
- # 导入类
74
-
75
- from bool_hybrid_array import BoolHybridArr,TruesArray,FalsesArray
76
-
77
- # 创建实例
78
-
79
- arr = BoolHybridArr([True, False, True, False, True])
80
-
81
- arr2 = TruesArray(3)#7.9.0新增
82
-
83
- arr3 = FalsesArray(3)#7.9.0新增
84
-
85
- # 访问元素
86
-
87
- print(arr[0]) # 输出: True;
88
-
89
- print(arr[1:4]) # 输出:  BoolHybridArr([False, True, False]);
90
-
91
- print(arr2)  # 输出:  BoolHybridArr(True, True, True]);
92
-
93
- print(arr3)  # 输出:  BoolHybridArr([False, False, False]);
94
- ```
95
- # 联系方式
96
-
97
- * 若遇到 Bug 或有功能建议,可发送邮件至:1289270215@qq.com(更正规)
98
- * 微信联系:18250730129(注:这是微信绑定的电话号码,优先微信沟通,请勿拨打电话哦)(微信联系回复最快)
99
- * 抖音(绑定电话号码同微信)(有群聊,加入可讨论)
100
-
101
- # 修改元素
102
- ```python
103
-
104
- arr[2] = False
105
-
106
- print(arr) # 输出: BoolHybridArr([True, False, False, False, True])
107
-
108
- ```
109
- ### 存储优化
110
- ```python
111
-
112
- # 创建包含大量布尔值的数组(大部分为False)
113
-
114
- big_arr = BoolHybridArr([i % 100 == 0 for i in range(10000)])
115
-
116
- # 查看存储模式(此时应为稀疏模式)
117
-
118
- print(repr(big_arr)) # 输出: BoolHybridArray(split_index=100,size=10000,is_sparse=True,small_len=100,large_len=)不好意思large\_len我不知道
119
-
120
- # 自动优化存储
121
-
122
- big_arr.optimize()
123
-
124
- ```
125
- ### 其他功能
126
- ```python
127
-
128
- # 统计True的数量
129
-
130
- print(arr.count(True)) # 输出: 2
131
-
132
- # 检查是否至少有一个True
133
-
134
- print(any(arr)) # 输出: True
135
-
136
- # 检查是否全为True
137
-
138
- print(all(arr)) # 输出: False
139
-
140
- # 复制数组(7.9.1新增)
141
-
142
- arr_copy = arr.copy()
143
-
144
- arr_copy[0] = False
145
-
146
- print(arr[0]) # 输出: True(原数组不变)
147
-
148
- print(arr_copy[0]) # 输出: False(拷贝数组已修改)
149
-
150
- #寻找一个元素出现的索引(7.9.2新增)
151
-
152
- arr_find = BoolHybridArr([i % 2 for i in range(10)])
153
-
154
- print(arr_find.find(True))#输出:[1,3,5,7,9]
155
-
156
- print(arr_find.find(False))#输出:[2,4,6,8,10]
157
-
158
- # 查找第一个/最后一个出现的位置(7.10.3新增)
159
-
160
- print(arr_find.index(True)) # 输出:1(第一个True的位置)
161
-
162
- print(arr_find.rindex(True)) # 输出:9(最后一个True的位置)
163
-
164
- #index/rindex的空数组处理(7.10.4新增)
165
-
166
- none_arr = BoolHybridArr([])
167
-
168
- print(none_arr.index(True))#ValueError:无法在空的 BoolHybridArray 中查找元素
169
-
170
- #查看是否需要优化(7.10.7新增,7.10.20+能用)
171
-
172
- print(big_arr.memory_usage(detail=True))
173
- '''样例输出(瞎编,但格式是这样)
174
- {
175
- "总占用(字节)": 210,
176
- "密集区占用": 180,
177
- "稀疏区占用": 30,
178
- "对比原生list节省": "99.5%",
179
- "对比numpy节省": "79.0%",
180
- "是否需要优化": "是",
181
- "优化理由/说明": "稀疏区索引密度过高,优化后可转为密集存储提升速度"
182
- }
183
- '''
184
- big_arr.optimize() # 调用优化方法
185
-
186
- print(big_arr.memory_usage(detail=True)["是否需要优化"])#"否"
187
-
188
- '''当处理动态变化的布尔数组(如频繁增删元素)时,建议在关键操作后调用memory_usage(detail=True)检查状态,通过optimize()保持最优性能。'''
189
-
190
- #将数组转为int类型(7.11.0新增):
191
-
192
- print(int(arr))#输出:17(0b10001)
193
-
194
- #位运算(7.13.0新增)
195
-
196
- arr1 = BoolHybridArr([True, False, True, False]) # 0b1010
197
-
198
- arr2 = BoolHybridArr([True, True, False, False]) # 0b1100
199
-
200
- print(arr1 & arr2) # 输出:BoolHybridArr([True,False,False,False]) # 0b1000
201
-
202
- print(arr1 | arr2) # 输出:BoolHybridArr([True,True,True,False]) # 0b1110
203
-
204
- print([True, False] | arr1[:2]) # 反向运算:[True,False] | [True,False] → [True,False]
205
-
206
- print(arr1 ^ arr2) # 输出:BoolHybridArr([False,True,True,False]) # 0b0110
207
-
208
- print(~arr1) # 输出:BoolHybridArr([False,True,False,True]) # 0b0101(对应整数 ~10 = -11 的二进制布尔逻辑)
209
-
210
- arr = BoolHybridArr([True, False, True]) # 0b101
211
-
212
- arr <<= 2 # 左移2位:尾部补2个False → [True,False,True,False,False](0b10100)
213
-
214
- print(arr)
215
-
216
- arr >>= 3 # 右移3位:尾部删3个元素 → [True,False](0b10)
217
-
218
- print(arr)
219
-
220
- print(arr << -1) # 负数左移:等价于右移1位 → [True]
221
-
222
- #兼容numpy数组(8.0.0版本新增)
223
-
224
- arr_BoolHybridArray = BoolHybridArr([])
225
- arr_BoolHybridArray <<= 10
226
- arr_BoolHybridArray <<= 10000
227
- arr_BoolHybridArray <<= 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000
228
- array_numpy = np.array([arr_BoolHybridArray,arr_BoolHybridArray])
229
-
230
- #支持哈希(8.2.0版本新增)
231
-
232
- set_ = {arr_BoolHybridArray}#不会报错呦
233
-
234
- ```
235
- # ***v9.0.0重大更新***
236
-
237
- ```python
238
- import numpy as np
239
- import bool_hybrid_array
240
-
241
- _2darr = BHA_List([BoolHybridArr([1,0,0,0,1],Type = BHA_Bool),TruesArray(5,Type = bool),FalsesArray(5,Type = np.bool_)])
242
-
243
- print(_2darr)'''输出:
244
-
245
- BHA_List([
246
- BoolHybridArr([True,False,False,False,True]),
247
- BoolHybridArr([True,True,True,True,True]),
248
- BoolHybridArr([False,False,False,False,False]),
249
- ])
250
- '''
251
-
252
- #BoolHybridArray是布尔数组,那是什么布尔数组呢?numpy.bool_?原生bool?其他库的布尔类型?还是本库的BHA_Bool?Type参数,支持指定!
253
-
254
- #还更新了用BHA_List的排版模拟二维布尔数组!
255
-
256
-
257
- ```
258
-
259
- # 其他
260
-
261
- ```python
262
-
263
- #二维数组的optimize与memory_usage(9.1.0新增):
264
-
265
- _2darr.optimize()
266
-
267
- _2darr.memory_usage(detail=T)
268
-
269
- 输出格式:
270
- {
271
- "占用(字节)": 【占用内存(字节)】,
272
- "对比原生list节省": 【6位百分比】,
273
- "对比numpy节省": 【6位百分比】}
274
-
275
- #注:BoolHybridArray的memory_usage的百分比也变成了六位小数
276
-
277
- #关闭哈希复用(9.4.0新增)
278
-
279
- _2darr2 = BHA_List(BoolHybridArr((i%100 for i in range(1000)),hash_ = F) for i in range(1000))
280
-
281
- #关闭哈希复用可以增快创建速度
282
-
283
- #ResurrectMeta元类(9.5.0新增)
284
-
285
- class MyClass(metaclass=ResurrectMeta):
286
- pass
287
-
288
- ```
289
-
290
- ## 性能优势
291
-
292
- 在包含100万个布尔值且只有10%为True的场景下
293
- 或在包含100万个布尔值且只有10%为False的场景下:
294
-
295
- * ###### 普通Python列表:约占用1MB内存
296
- * BoolHybridArray:约占用100KB内存(节省90%)
297
- * 随机访问速度基本保持一致
298
-
299
- ## 版本历史
300
-
301
- * **7.8.13**:PyPI上的初始版本,支持基本功能和自动存储优化
302
- * **7.9.0**:添加TruesArray和FalsesArray
303
- * **7.9.1**:修复介绍的bug,增加copy功能
304
- * **7.9.2**:新增find()方法
305
- * **7.10.0**:优化内部存储,重构密集部分(但使用还是一样)
306
- * **7.10.1**:与运算和或运算增加异常提醒
307
- * **7.10.2**:修复了之前所有版本的index错误
308
- * **7.10.3**:新增rindex
309
- * **7.10.4**:修正样例代码中的错误,增加index/rindex的空数组处理
310
- * **7.10.5**:修复7.10.4版本index/rindex中size没加self的错误
311
- * **7.10.6**:比7.10.0进一步优化内部储存
312
- * **7.10.7**:新增arr.memory_usage方法查看是否优化,支持查看内存占用详情及优化建议,配合arr.optimize()实现存储自动调优
313
- * **7.10.8**:增加cython加速
314
- * **7.10.9**:修复之前所有版本的导入问题
315
- * **7.10.10**:修复unit8溢出问题
316
- * **7.10.11**:尝试修复memory_usage方法的错误
317
- * **7.10.12**:尝试修复memory_usage方法的错误×2
318
- * **7.10.13**:尝试修复memory_usage方法的错误×3
319
- * **7.10.14**:尝试修复unit8溢出问题×2
320
- * **7.10.15**:尝试修复unit8溢出问题×3
321
- * **7.10.16**:修复unit8溢出问题×4+尝试修复memory_usage方法的错误×4
322
- * **7.10.17**:尝试修复memory_usage方法的错误×4
323
- * **7.10.18**:尝试修复memory_usage方法的错误×5
324
- * **7.10.19**:尝试修复memory_usage方法的错误×6
325
- * **7.10.20**:尝试修复memory_usage方法的错误×7
326
- * **7.11.0**:新增int功能,把布尔数组转为int类型
327
- * **7.12.0**:在优化函数中新增应对超级稀疏/超级密集情况的方案
328
- * **7.13.0**:新增多种位运算功能
329
- * **7.13.1**:修复普通左移参数为负数时结果错误
330
- * **7.13.2**:修复左移时的sqrt问题,优化左移
331
- * **7.13.3**:修复左移的问题
332
- * **7.13.4**:优化左移
333
- * **7.13.5**:优化sqrt
334
- * **7.13.6**:修复7.13.5版本的SyntaxError
335
- * **7.13.7**:优化__int__方法
336
- * **7.14.0**:优化密集部分的运算速度
337
- * **7.14.1**:优化多种位运算方法
338
- * **7.14.2**:修复7.14.1版本的in的错误
339
- * **7.14.3**:修复in的错误×2
340
- * **7.14.4**:修复in的错误×3
341
- * **7.14.5**:修复in的错误×4
342
- * **7.14.6**:优化arr.large的类型
343
- * **8.0.0**:兼容numpy数组
344
- * **8.0.1**:修复8.0.0兼容numpy数组时没有形状参数的问题
345
- * **8.0.2**:移除bool_hybrid_dtype,改用object
346
- * **8.1.0**:利用ctypes加速密集部分的一些方法
347
- * **8.1.1**:修复8.1.0版本中的“AttributeError: '_CompactBoolArray' object has no attribute 'small'”问题
348
- * **8.1.2**:修复8.1.1版本中的“TypeError”
349
- * **8.1.3**:修复8.1.2版本中的“NameError”问题
350
- * **8.1.4**:修复8.1.3版本中的“TypeError”问题
351
- * **8.1.5**:修复8.1.4版本中的“AttributeError”问题
352
- * **8.2.0**:支持哈希
353
- * **8.2.1**:修复8.2.0版本中的NameError
354
- * **8.2.2**:修复8.2.1版本中的IndexError
355
- * **9.0.0**:详情见上
356
- * **9.0.1**:小更新,优化optimize方法
357
- * **9.1.0**:新增二维数组的optimize与memory_usage,优化二维数组的位运算,给BHA_Bool新增__rand__、__ror__、__rxor__等等
358
- * **9.1.1**:修复9.1.0版本中的TypeError: unsupported operand type(s) for +: 'int' and 'method'错误
359
- * **9.1.2**:修复9.1.1版本中的NameError: name 'equivalent_numpy_mem' is not defined错误
360
- * **9.1.3**:修复9.1.2版本中的NameError: name 'need_optimize' is not defined错误
361
- * **9.2.0**:详情自己发现,提示:看看iter(arr)的返回值类型、调用一下二维数组的optimize、看看BHA_Bool是不是一个类
362
- * **9.3.0**:将find()返回值改为BHA_List,将BHA_Iterator变为可复用迭代器
363
- * **9.4.0**:新增关闭哈希复用功能
364
- * **9.4.1**:修复了被修改保护和被删除保护的bug
365
- * **9.4.2**:修复被修改保护和被删除保护的bug×2
366
- * **9.4.3**:移除只读辅类
367
- * **9.4.4**:修复9.4.3版本中的NameError: name 'ReadOnlyAttribute' is not defined错误
368
- * **9.4.5**:修复9.4.0~9.4.4数组索引访问重点TypeError: 'NoneType' object is not subscriptable
369
- * **9.4.6**:让切片、位运算的哈希复用状态和self一致
370
- * **9.5.0**:新增ResurrectMeta元类
371
-
372
-
373
- ## **彩蛋:**
374
-
375
- - Q:为什么要“密集+稀疏?”
376
- - A:因为在做线性筛的时候遇到了个问题:密集数组太占内存,稀疏数组跑起来卡,所以就做了这个
377
- - Q:为什么要“密集numpy.ndarray,稀疏array.array”?
378
- - A:因为他本来只做线性筛,只修改数组,不insert、pop、remove;稀疏区长度变化平凡,要numpy.ndarray的“**修改就创建新实例**”的话那炸了,所以用array.array,密集区长度不变;所以可以用更高效的numpy.ndarray
379
- - Q:为什么要有TruesArray/FalsesArray?直接用BoolHybridArr(\[True]\*n)/BoolHybridArr(\[False]\*n)不行吗?
380
- - A:因为BoolHybridArr(\[True]\*n)在计算\[True]\*n时如果n太大,那么列表的内存会溢出
381
- - Q:**BoolHybridArr**和**BoolHybridArray**有什么区别?
382
- - A:BoolHybridArray是本库中的**核心类**,所有函数都是围绕他进行的,但需要split\_index,size,is\_sparse;
383
- BoolHybridArr是一个**函数**,用于把一个可迭代对象转为BoolHybridArray类
384
- - Q:为什么不建议把太大的本类型数组打印?
385
- - A:虽然本类型数组省内存,但字符串不省内存,一个True要4字节,一个False要5字节,连逗号都要占1字节(numpy.ndarray:我都比字符串省内存)
386
-
387
- ## 源代码和原理
388
-
389
- 请见https://code.xdf.cn/freecode/editor?no=80cd07aa023fb2448069e6d8dd50bb5d&type=2&org=code
390
-
391
- ## 许可证
392
-
393
- 本项目采用**MIT许可证**,详情参见**LICENSE文件**。
@@ -1,7 +0,0 @@
1
- bool_hybrid_array/__init__.py,sha256=UxFehuQ5qjIEsIoUYs1frEFZE8abDRkX-o5UmkZMOdQ,460
2
- bool_hybrid_array/core.py,sha256=dIBkPuuZ-DH8OHtdZlraB8EIeY8DdtAF857Fij_wNqA,26229
3
- bool_hybrid_array-9.5.0.dist-info/licenses/LICENSE,sha256=Sg4rnGXkBDYkwJCWyxdWp5H60rhVAxpNvFh_l3JWZdY,1070
4
- bool_hybrid_array-9.5.0.dist-info/METADATA,sha256=OQW4DPc6drD-EGdKKPJJTdTUS8OPGFHMqdTuR6aLYec,14530
5
- bool_hybrid_array-9.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
6
- bool_hybrid_array-9.5.0.dist-info/top_level.txt,sha256=vk-TD77wuVQsN1rJ6uVWZX4sC_wya_WplRDwQKJoBZM,18
7
- bool_hybrid_array-9.5.0.dist-info/RECORD,,