boltz-vsynthes 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- boltz/__init__.py +7 -0
- boltz/data/__init__.py +0 -0
- boltz/data/const.py +1184 -0
- boltz/data/crop/__init__.py +0 -0
- boltz/data/crop/affinity.py +164 -0
- boltz/data/crop/boltz.py +296 -0
- boltz/data/crop/cropper.py +45 -0
- boltz/data/feature/__init__.py +0 -0
- boltz/data/feature/featurizer.py +1230 -0
- boltz/data/feature/featurizerv2.py +2208 -0
- boltz/data/feature/symmetry.py +602 -0
- boltz/data/filter/__init__.py +0 -0
- boltz/data/filter/dynamic/__init__.py +0 -0
- boltz/data/filter/dynamic/date.py +76 -0
- boltz/data/filter/dynamic/filter.py +24 -0
- boltz/data/filter/dynamic/max_residues.py +37 -0
- boltz/data/filter/dynamic/resolution.py +34 -0
- boltz/data/filter/dynamic/size.py +38 -0
- boltz/data/filter/dynamic/subset.py +42 -0
- boltz/data/filter/static/__init__.py +0 -0
- boltz/data/filter/static/filter.py +26 -0
- boltz/data/filter/static/ligand.py +37 -0
- boltz/data/filter/static/polymer.py +299 -0
- boltz/data/module/__init__.py +0 -0
- boltz/data/module/inference.py +307 -0
- boltz/data/module/inferencev2.py +429 -0
- boltz/data/module/training.py +684 -0
- boltz/data/module/trainingv2.py +660 -0
- boltz/data/mol.py +900 -0
- boltz/data/msa/__init__.py +0 -0
- boltz/data/msa/mmseqs2.py +235 -0
- boltz/data/pad.py +84 -0
- boltz/data/parse/__init__.py +0 -0
- boltz/data/parse/a3m.py +134 -0
- boltz/data/parse/csv.py +100 -0
- boltz/data/parse/fasta.py +138 -0
- boltz/data/parse/mmcif.py +1239 -0
- boltz/data/parse/mmcif_with_constraints.py +1607 -0
- boltz/data/parse/schema.py +1851 -0
- boltz/data/parse/yaml.py +68 -0
- boltz/data/sample/__init__.py +0 -0
- boltz/data/sample/cluster.py +283 -0
- boltz/data/sample/distillation.py +57 -0
- boltz/data/sample/random.py +39 -0
- boltz/data/sample/sampler.py +49 -0
- boltz/data/tokenize/__init__.py +0 -0
- boltz/data/tokenize/boltz.py +195 -0
- boltz/data/tokenize/boltz2.py +396 -0
- boltz/data/tokenize/tokenizer.py +24 -0
- boltz/data/types.py +777 -0
- boltz/data/write/__init__.py +0 -0
- boltz/data/write/mmcif.py +305 -0
- boltz/data/write/pdb.py +171 -0
- boltz/data/write/utils.py +23 -0
- boltz/data/write/writer.py +330 -0
- boltz/main.py +1292 -0
- boltz/model/__init__.py +0 -0
- boltz/model/layers/__init__.py +0 -0
- boltz/model/layers/attention.py +132 -0
- boltz/model/layers/attentionv2.py +111 -0
- boltz/model/layers/confidence_utils.py +231 -0
- boltz/model/layers/dropout.py +34 -0
- boltz/model/layers/initialize.py +100 -0
- boltz/model/layers/outer_product_mean.py +98 -0
- boltz/model/layers/pair_averaging.py +135 -0
- boltz/model/layers/pairformer.py +337 -0
- boltz/model/layers/relative.py +58 -0
- boltz/model/layers/transition.py +78 -0
- boltz/model/layers/triangular_attention/__init__.py +0 -0
- boltz/model/layers/triangular_attention/attention.py +189 -0
- boltz/model/layers/triangular_attention/primitives.py +409 -0
- boltz/model/layers/triangular_attention/utils.py +380 -0
- boltz/model/layers/triangular_mult.py +212 -0
- boltz/model/loss/__init__.py +0 -0
- boltz/model/loss/bfactor.py +49 -0
- boltz/model/loss/confidence.py +590 -0
- boltz/model/loss/confidencev2.py +621 -0
- boltz/model/loss/diffusion.py +171 -0
- boltz/model/loss/diffusionv2.py +134 -0
- boltz/model/loss/distogram.py +48 -0
- boltz/model/loss/distogramv2.py +105 -0
- boltz/model/loss/validation.py +1025 -0
- boltz/model/models/__init__.py +0 -0
- boltz/model/models/boltz1.py +1286 -0
- boltz/model/models/boltz2.py +1249 -0
- boltz/model/modules/__init__.py +0 -0
- boltz/model/modules/affinity.py +223 -0
- boltz/model/modules/confidence.py +481 -0
- boltz/model/modules/confidence_utils.py +181 -0
- boltz/model/modules/confidencev2.py +495 -0
- boltz/model/modules/diffusion.py +844 -0
- boltz/model/modules/diffusion_conditioning.py +116 -0
- boltz/model/modules/diffusionv2.py +677 -0
- boltz/model/modules/encoders.py +639 -0
- boltz/model/modules/encodersv2.py +565 -0
- boltz/model/modules/transformers.py +322 -0
- boltz/model/modules/transformersv2.py +261 -0
- boltz/model/modules/trunk.py +688 -0
- boltz/model/modules/trunkv2.py +828 -0
- boltz/model/modules/utils.py +303 -0
- boltz/model/optim/__init__.py +0 -0
- boltz/model/optim/ema.py +389 -0
- boltz/model/optim/scheduler.py +99 -0
- boltz/model/potentials/__init__.py +0 -0
- boltz/model/potentials/potentials.py +497 -0
- boltz/model/potentials/schedules.py +32 -0
- boltz_vsynthes-1.0.0.dist-info/METADATA +151 -0
- boltz_vsynthes-1.0.0.dist-info/RECORD +112 -0
- boltz_vsynthes-1.0.0.dist-info/WHEEL +5 -0
- boltz_vsynthes-1.0.0.dist-info/entry_points.txt +2 -0
- boltz_vsynthes-1.0.0.dist-info/licenses/LICENSE +21 -0
- boltz_vsynthes-1.0.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,380 @@
|
|
1
|
+
# Copyright 2021 AlQuraishi Laboratory
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from functools import partial
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
|
20
|
+
|
21
|
+
def add(m1, m2, inplace):
|
22
|
+
# The first operation in a checkpoint can't be in-place, but it's
|
23
|
+
# nice to have in-place addition during inference. Thus...
|
24
|
+
if not inplace:
|
25
|
+
m1 = m1 + m2
|
26
|
+
else:
|
27
|
+
m1 += m2
|
28
|
+
|
29
|
+
return m1
|
30
|
+
|
31
|
+
|
32
|
+
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
|
33
|
+
zero_index = -1 * len(inds)
|
34
|
+
first_inds = list(range(len(tensor.shape[:zero_index])))
|
35
|
+
return tensor.permute(first_inds + [zero_index + i for i in inds])
|
36
|
+
|
37
|
+
|
38
|
+
def is_fp16_enabled():
|
39
|
+
# Autocast world
|
40
|
+
fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16
|
41
|
+
fp16_enabled = fp16_enabled and torch.is_autocast_enabled()
|
42
|
+
|
43
|
+
return fp16_enabled
|
44
|
+
|
45
|
+
|
46
|
+
# With tree_map, a poor man's JAX tree_map
|
47
|
+
def dict_map(fn, dic, leaf_type):
|
48
|
+
new_dict = {}
|
49
|
+
for k, v in dic.items():
|
50
|
+
if type(v) is dict:
|
51
|
+
new_dict[k] = dict_map(fn, v, leaf_type)
|
52
|
+
else:
|
53
|
+
new_dict[k] = tree_map(fn, v, leaf_type)
|
54
|
+
|
55
|
+
return new_dict
|
56
|
+
|
57
|
+
|
58
|
+
def tree_map(fn, tree, leaf_type):
|
59
|
+
if isinstance(tree, dict):
|
60
|
+
return dict_map(fn, tree, leaf_type)
|
61
|
+
elif isinstance(tree, list):
|
62
|
+
return [tree_map(fn, x, leaf_type) for x in tree]
|
63
|
+
elif isinstance(tree, tuple):
|
64
|
+
return tuple([tree_map(fn, x, leaf_type) for x in tree])
|
65
|
+
elif isinstance(tree, leaf_type):
|
66
|
+
return fn(tree)
|
67
|
+
else:
|
68
|
+
raise ValueError(f"Tree of type {type(tree)} not supported")
|
69
|
+
|
70
|
+
|
71
|
+
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
|
72
|
+
|
73
|
+
|
74
|
+
def flatten_final_dims(t: torch.Tensor, no_dims: int):
|
75
|
+
return t.reshape(t.shape[:-no_dims] + (-1,))
|
76
|
+
|
77
|
+
|
78
|
+
def _fetch_dims(tree):
|
79
|
+
shapes = []
|
80
|
+
tree_type = type(tree)
|
81
|
+
if tree_type is dict:
|
82
|
+
for v in tree.values():
|
83
|
+
shapes.extend(_fetch_dims(v))
|
84
|
+
elif tree_type is list or tree_type is tuple:
|
85
|
+
for t in tree:
|
86
|
+
shapes.extend(_fetch_dims(t))
|
87
|
+
elif tree_type is torch.Tensor:
|
88
|
+
shapes.append(tree.shape)
|
89
|
+
else:
|
90
|
+
raise ValueError("Not supported")
|
91
|
+
|
92
|
+
return shapes
|
93
|
+
|
94
|
+
|
95
|
+
@torch.jit.ignore
|
96
|
+
def _flat_idx_to_idx(
|
97
|
+
flat_idx: int,
|
98
|
+
dims: Tuple[int],
|
99
|
+
) -> Tuple[int]:
|
100
|
+
idx = []
|
101
|
+
for d in reversed(dims):
|
102
|
+
idx.append(flat_idx % d)
|
103
|
+
flat_idx = flat_idx // d
|
104
|
+
|
105
|
+
return tuple(reversed(idx))
|
106
|
+
|
107
|
+
|
108
|
+
@torch.jit.ignore
|
109
|
+
def _get_minimal_slice_set(
|
110
|
+
start: Sequence[int],
|
111
|
+
end: Sequence[int],
|
112
|
+
dims: int,
|
113
|
+
start_edges: Optional[Sequence[bool]] = None,
|
114
|
+
end_edges: Optional[Sequence[bool]] = None,
|
115
|
+
) -> Sequence[Tuple[int]]:
|
116
|
+
"""
|
117
|
+
Produces an ordered sequence of tensor slices that, when used in
|
118
|
+
sequence on a tensor with shape dims, yields tensors that contain every
|
119
|
+
leaf in the contiguous range [start, end]. Care is taken to yield a
|
120
|
+
short sequence of slices, and perhaps even the shortest possible (I'm
|
121
|
+
pretty sure it's the latter).
|
122
|
+
|
123
|
+
end is INCLUSIVE.
|
124
|
+
"""
|
125
|
+
|
126
|
+
# start_edges and end_edges both indicate whether, starting from any given
|
127
|
+
# dimension, the start/end index is at the top/bottom edge of the
|
128
|
+
# corresponding tensor, modeled as a tree
|
129
|
+
def reduce_edge_list(l):
|
130
|
+
tally = 1
|
131
|
+
for i in range(len(l)):
|
132
|
+
reversed_idx = -1 * (i + 1)
|
133
|
+
l[reversed_idx] *= tally
|
134
|
+
tally = l[reversed_idx]
|
135
|
+
|
136
|
+
if start_edges is None:
|
137
|
+
start_edges = [s == 0 for s in start]
|
138
|
+
reduce_edge_list(start_edges)
|
139
|
+
if end_edges is None:
|
140
|
+
end_edges = [e == (d - 1) for e, d in zip(end, dims)]
|
141
|
+
reduce_edge_list(end_edges)
|
142
|
+
|
143
|
+
# Base cases. Either start/end are empty and we're done, or the final,
|
144
|
+
# one-dimensional tensor can be simply sliced
|
145
|
+
if len(start) == 0:
|
146
|
+
return [tuple()]
|
147
|
+
elif len(start) == 1:
|
148
|
+
return [(slice(start[0], end[0] + 1),)]
|
149
|
+
|
150
|
+
slices = []
|
151
|
+
path = []
|
152
|
+
|
153
|
+
# Dimensions common to start and end can be selected directly
|
154
|
+
for s, e in zip(start, end):
|
155
|
+
if s == e:
|
156
|
+
path.append(slice(s, s + 1))
|
157
|
+
else:
|
158
|
+
break
|
159
|
+
|
160
|
+
path = tuple(path)
|
161
|
+
divergence_idx = len(path)
|
162
|
+
|
163
|
+
# start == end, and we're done
|
164
|
+
if divergence_idx == len(dims):
|
165
|
+
return [tuple(path)]
|
166
|
+
|
167
|
+
def upper():
|
168
|
+
sdi = start[divergence_idx]
|
169
|
+
return [
|
170
|
+
path + (slice(sdi, sdi + 1),) + s
|
171
|
+
for s in _get_minimal_slice_set(
|
172
|
+
start[divergence_idx + 1 :],
|
173
|
+
[d - 1 for d in dims[divergence_idx + 1 :]],
|
174
|
+
dims[divergence_idx + 1 :],
|
175
|
+
start_edges=start_edges[divergence_idx + 1 :],
|
176
|
+
end_edges=[1 for _ in end_edges[divergence_idx + 1 :]],
|
177
|
+
)
|
178
|
+
]
|
179
|
+
|
180
|
+
def lower():
|
181
|
+
edi = end[divergence_idx]
|
182
|
+
return [
|
183
|
+
path + (slice(edi, edi + 1),) + s
|
184
|
+
for s in _get_minimal_slice_set(
|
185
|
+
[0 for _ in start[divergence_idx + 1 :]],
|
186
|
+
end[divergence_idx + 1 :],
|
187
|
+
dims[divergence_idx + 1 :],
|
188
|
+
start_edges=[1 for _ in start_edges[divergence_idx + 1 :]],
|
189
|
+
end_edges=end_edges[divergence_idx + 1 :],
|
190
|
+
)
|
191
|
+
]
|
192
|
+
|
193
|
+
# If both start and end are at the edges of the subtree rooted at
|
194
|
+
# divergence_idx, we can just select the whole subtree at once
|
195
|
+
if start_edges[divergence_idx] and end_edges[divergence_idx]:
|
196
|
+
slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1),))
|
197
|
+
# If just start is at the edge, we can grab almost all of the subtree,
|
198
|
+
# treating only the ragged bottom edge as an edge case
|
199
|
+
elif start_edges[divergence_idx]:
|
200
|
+
slices.append(path + (slice(start[divergence_idx], end[divergence_idx]),))
|
201
|
+
slices.extend(lower())
|
202
|
+
# Analogous to the previous case, but the top is ragged this time
|
203
|
+
elif end_edges[divergence_idx]:
|
204
|
+
slices.extend(upper())
|
205
|
+
slices.append(
|
206
|
+
path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1),)
|
207
|
+
)
|
208
|
+
# If both sides of the range are ragged, we need to handle both sides
|
209
|
+
# separately. If there's contiguous meat in between them, we can index it
|
210
|
+
# in one big chunk
|
211
|
+
else:
|
212
|
+
slices.extend(upper())
|
213
|
+
middle_ground = end[divergence_idx] - start[divergence_idx]
|
214
|
+
if middle_ground > 1:
|
215
|
+
slices.append(
|
216
|
+
path + (slice(start[divergence_idx] + 1, end[divergence_idx]),)
|
217
|
+
)
|
218
|
+
slices.extend(lower())
|
219
|
+
|
220
|
+
return [tuple(s) for s in slices]
|
221
|
+
|
222
|
+
|
223
|
+
@torch.jit.ignore
|
224
|
+
def _chunk_slice(
|
225
|
+
t: torch.Tensor,
|
226
|
+
flat_start: int,
|
227
|
+
flat_end: int,
|
228
|
+
no_batch_dims: int,
|
229
|
+
) -> torch.Tensor:
|
230
|
+
"""
|
231
|
+
Equivalent to
|
232
|
+
|
233
|
+
t.reshape((-1,) + t.shape[no_batch_dims:])[flat_start:flat_end]
|
234
|
+
|
235
|
+
but without the need for the initial reshape call, which can be
|
236
|
+
memory-intensive in certain situations. The only reshape operations
|
237
|
+
in this function are performed on sub-tensors that scale with
|
238
|
+
(flat_end - flat_start), the chunk size.
|
239
|
+
"""
|
240
|
+
|
241
|
+
batch_dims = t.shape[:no_batch_dims]
|
242
|
+
start_idx = list(_flat_idx_to_idx(flat_start, batch_dims))
|
243
|
+
# _get_minimal_slice_set is inclusive
|
244
|
+
end_idx = list(_flat_idx_to_idx(flat_end - 1, batch_dims))
|
245
|
+
|
246
|
+
# Get an ordered list of slices to perform
|
247
|
+
slices = _get_minimal_slice_set(
|
248
|
+
start_idx,
|
249
|
+
end_idx,
|
250
|
+
batch_dims,
|
251
|
+
)
|
252
|
+
|
253
|
+
sliced_tensors = [t[s] for s in slices]
|
254
|
+
|
255
|
+
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
|
256
|
+
|
257
|
+
|
258
|
+
def chunk_layer(
|
259
|
+
layer: Callable,
|
260
|
+
inputs: Dict[str, Any],
|
261
|
+
chunk_size: int,
|
262
|
+
no_batch_dims: int,
|
263
|
+
low_mem: bool = False,
|
264
|
+
_out: Any = None,
|
265
|
+
_add_into_out: bool = False,
|
266
|
+
) -> Any:
|
267
|
+
"""
|
268
|
+
Implements the "chunking" procedure described in section 1.11.8.
|
269
|
+
|
270
|
+
Layer outputs and inputs are assumed to be simple "pytrees,"
|
271
|
+
consisting only of (arbitrarily nested) lists, tuples, and dicts with
|
272
|
+
torch.Tensor leaves.
|
273
|
+
|
274
|
+
Args:
|
275
|
+
layer:
|
276
|
+
The layer to be applied chunk-wise
|
277
|
+
inputs:
|
278
|
+
A (non-nested) dictionary of keyworded inputs. All leaves must
|
279
|
+
be tensors and must share the same batch dimensions.
|
280
|
+
chunk_size:
|
281
|
+
The number of sub-batches per chunk. If multiple batch
|
282
|
+
dimensions are specified, a "sub-batch" is defined as a single
|
283
|
+
indexing of all batch dimensions simultaneously (s.t. the
|
284
|
+
number of sub-batches is the product of the batch dimensions).
|
285
|
+
no_batch_dims:
|
286
|
+
How many of the initial dimensions of each input tensor can
|
287
|
+
be considered batch dimensions.
|
288
|
+
low_mem:
|
289
|
+
Avoids flattening potentially large input tensors. Unnecessary
|
290
|
+
in most cases, and is ever so slightly slower than the default
|
291
|
+
setting.
|
292
|
+
Returns:
|
293
|
+
The reassembled output of the layer on the inputs.
|
294
|
+
"""
|
295
|
+
if not (len(inputs) > 0):
|
296
|
+
raise ValueError("Must provide at least one input")
|
297
|
+
|
298
|
+
initial_dims = [shape[:no_batch_dims] for shape in _fetch_dims(inputs)]
|
299
|
+
orig_batch_dims = tuple([max(s) for s in zip(*initial_dims)])
|
300
|
+
|
301
|
+
def _prep_inputs(t):
|
302
|
+
if not low_mem:
|
303
|
+
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
|
304
|
+
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
|
305
|
+
t = t.reshape(-1, *t.shape[no_batch_dims:])
|
306
|
+
else:
|
307
|
+
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
|
308
|
+
return t
|
309
|
+
|
310
|
+
prepped_inputs = tensor_tree_map(_prep_inputs, inputs)
|
311
|
+
prepped_outputs = None
|
312
|
+
if _out is not None:
|
313
|
+
reshape_fn = lambda t: t.view([-1] + list(t.shape[no_batch_dims:]))
|
314
|
+
prepped_outputs = tensor_tree_map(reshape_fn, _out)
|
315
|
+
|
316
|
+
flat_batch_dim = 1
|
317
|
+
for d in orig_batch_dims:
|
318
|
+
flat_batch_dim *= d
|
319
|
+
|
320
|
+
no_chunks = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
|
321
|
+
|
322
|
+
i = 0
|
323
|
+
out = prepped_outputs
|
324
|
+
for _ in range(no_chunks):
|
325
|
+
# Chunk the input
|
326
|
+
if not low_mem:
|
327
|
+
select_chunk = lambda t: t[i : i + chunk_size] if t.shape[0] != 1 else t
|
328
|
+
else:
|
329
|
+
select_chunk = partial(
|
330
|
+
_chunk_slice,
|
331
|
+
flat_start=i,
|
332
|
+
flat_end=min(flat_batch_dim, i + chunk_size),
|
333
|
+
no_batch_dims=len(orig_batch_dims),
|
334
|
+
)
|
335
|
+
|
336
|
+
chunks = tensor_tree_map(select_chunk, prepped_inputs)
|
337
|
+
|
338
|
+
# Run the layer on the chunk
|
339
|
+
output_chunk = layer(**chunks)
|
340
|
+
|
341
|
+
# Allocate space for the output
|
342
|
+
if out is None:
|
343
|
+
allocate = lambda t: t.new_zeros((flat_batch_dim,) + t.shape[1:])
|
344
|
+
out = tensor_tree_map(allocate, output_chunk)
|
345
|
+
|
346
|
+
# Put the chunk in its pre-allocated space
|
347
|
+
out_type = type(output_chunk)
|
348
|
+
if out_type is dict:
|
349
|
+
|
350
|
+
def assign(d1, d2):
|
351
|
+
for k, v in d1.items():
|
352
|
+
if type(v) is dict:
|
353
|
+
assign(v, d2[k])
|
354
|
+
else:
|
355
|
+
if _add_into_out:
|
356
|
+
v[i : i + chunk_size] += d2[k]
|
357
|
+
else:
|
358
|
+
v[i : i + chunk_size] = d2[k]
|
359
|
+
|
360
|
+
assign(out, output_chunk)
|
361
|
+
elif out_type is tuple:
|
362
|
+
for x1, x2 in zip(out, output_chunk):
|
363
|
+
if _add_into_out:
|
364
|
+
x1[i : i + chunk_size] += x2
|
365
|
+
else:
|
366
|
+
x1[i : i + chunk_size] = x2
|
367
|
+
elif out_type is torch.Tensor:
|
368
|
+
if _add_into_out:
|
369
|
+
out[i : i + chunk_size] += output_chunk
|
370
|
+
else:
|
371
|
+
out[i : i + chunk_size] = output_chunk
|
372
|
+
else:
|
373
|
+
raise ValueError("Not supported")
|
374
|
+
|
375
|
+
i += chunk_size
|
376
|
+
|
377
|
+
reshape = lambda t: t.view(orig_batch_dims + t.shape[1:])
|
378
|
+
out = tensor_tree_map(reshape, out)
|
379
|
+
|
380
|
+
return out
|
@@ -0,0 +1,212 @@
|
|
1
|
+
import torch
|
2
|
+
from cuequivariance_torch.primitives.triangle import triangle_multiplicative_update
|
3
|
+
from torch import Tensor, nn
|
4
|
+
|
5
|
+
from boltz.model.layers import initialize as init
|
6
|
+
|
7
|
+
|
8
|
+
@torch.compiler.disable
|
9
|
+
def kernel_triangular_mult(
|
10
|
+
x,
|
11
|
+
direction,
|
12
|
+
mask,
|
13
|
+
norm_in_weight,
|
14
|
+
norm_in_bias,
|
15
|
+
p_in_weight,
|
16
|
+
g_in_weight,
|
17
|
+
norm_out_weight,
|
18
|
+
norm_out_bias,
|
19
|
+
p_out_weight,
|
20
|
+
g_out_weight,
|
21
|
+
eps,
|
22
|
+
):
|
23
|
+
return triangle_multiplicative_update(
|
24
|
+
x,
|
25
|
+
direction=direction,
|
26
|
+
mask=mask,
|
27
|
+
norm_in_weight=norm_in_weight,
|
28
|
+
norm_in_bias=norm_in_bias,
|
29
|
+
p_in_weight=p_in_weight,
|
30
|
+
g_in_weight=g_in_weight,
|
31
|
+
norm_out_weight=norm_out_weight,
|
32
|
+
norm_out_bias=norm_out_bias,
|
33
|
+
p_out_weight=p_out_weight,
|
34
|
+
g_out_weight=g_out_weight,
|
35
|
+
eps=eps,
|
36
|
+
)
|
37
|
+
|
38
|
+
|
39
|
+
class TriangleMultiplicationOutgoing(nn.Module):
|
40
|
+
"""TriangleMultiplicationOutgoing."""
|
41
|
+
|
42
|
+
def __init__(self, dim: int = 128) -> None:
|
43
|
+
"""Initialize the TriangularUpdate module.
|
44
|
+
|
45
|
+
Parameters
|
46
|
+
----------
|
47
|
+
dim: int
|
48
|
+
The dimension of the input, default 128
|
49
|
+
|
50
|
+
"""
|
51
|
+
super().__init__()
|
52
|
+
|
53
|
+
self.norm_in = nn.LayerNorm(dim, eps=1e-5)
|
54
|
+
self.p_in = nn.Linear(dim, 2 * dim, bias=False)
|
55
|
+
self.g_in = nn.Linear(dim, 2 * dim, bias=False)
|
56
|
+
|
57
|
+
self.norm_out = nn.LayerNorm(dim)
|
58
|
+
self.p_out = nn.Linear(dim, dim, bias=False)
|
59
|
+
self.g_out = nn.Linear(dim, dim, bias=False)
|
60
|
+
|
61
|
+
init.bias_init_one_(self.norm_in.weight)
|
62
|
+
init.bias_init_zero_(self.norm_in.bias)
|
63
|
+
|
64
|
+
init.lecun_normal_init_(self.p_in.weight)
|
65
|
+
init.gating_init_(self.g_in.weight)
|
66
|
+
|
67
|
+
init.bias_init_one_(self.norm_out.weight)
|
68
|
+
init.bias_init_zero_(self.norm_out.bias)
|
69
|
+
|
70
|
+
init.final_init_(self.p_out.weight)
|
71
|
+
init.gating_init_(self.g_out.weight)
|
72
|
+
|
73
|
+
def forward(self, x: Tensor, mask: Tensor, use_kernels: bool = False) -> Tensor:
|
74
|
+
"""Perform a forward pass.
|
75
|
+
|
76
|
+
Parameters
|
77
|
+
----------
|
78
|
+
x: torch.Tensor
|
79
|
+
The input data of shape (B, N, N, D)
|
80
|
+
mask: torch.Tensor
|
81
|
+
The input mask of shape (B, N, N)
|
82
|
+
use_kernels: bool
|
83
|
+
Whether to use the kernel
|
84
|
+
|
85
|
+
Returns
|
86
|
+
-------
|
87
|
+
x: torch.Tensor
|
88
|
+
The output data of shape (B, N, N, D)
|
89
|
+
|
90
|
+
"""
|
91
|
+
if use_kernels:
|
92
|
+
return kernel_triangular_mult(
|
93
|
+
x,
|
94
|
+
direction="outgoing",
|
95
|
+
mask=mask,
|
96
|
+
norm_in_weight=self.norm_in.weight,
|
97
|
+
norm_in_bias=self.norm_in.bias,
|
98
|
+
p_in_weight=self.p_in.weight,
|
99
|
+
g_in_weight=self.g_in.weight,
|
100
|
+
norm_out_weight=self.norm_out.weight,
|
101
|
+
norm_out_bias=self.norm_out.bias,
|
102
|
+
p_out_weight=self.p_out.weight,
|
103
|
+
g_out_weight=self.g_out.weight,
|
104
|
+
eps=1e-5,
|
105
|
+
)
|
106
|
+
|
107
|
+
# Input gating: D -> D
|
108
|
+
x = self.norm_in(x)
|
109
|
+
x_in = x
|
110
|
+
x = self.p_in(x) * self.g_in(x).sigmoid()
|
111
|
+
|
112
|
+
# Apply mask
|
113
|
+
x = x * mask.unsqueeze(-1)
|
114
|
+
|
115
|
+
# Split input and cast to float
|
116
|
+
a, b = torch.chunk(x.float(), 2, dim=-1)
|
117
|
+
|
118
|
+
# Triangular projection
|
119
|
+
x = torch.einsum("bikd,bjkd->bijd", a, b)
|
120
|
+
|
121
|
+
# Output gating
|
122
|
+
x = self.p_out(self.norm_out(x)) * self.g_out(x_in).sigmoid()
|
123
|
+
|
124
|
+
return x
|
125
|
+
|
126
|
+
|
127
|
+
class TriangleMultiplicationIncoming(nn.Module):
|
128
|
+
"""TriangleMultiplicationIncoming."""
|
129
|
+
|
130
|
+
def __init__(self, dim: int = 128) -> None:
|
131
|
+
"""Initialize the TriangularUpdate module.
|
132
|
+
|
133
|
+
Parameters
|
134
|
+
----------
|
135
|
+
dim: int
|
136
|
+
The dimension of the input, default 128
|
137
|
+
|
138
|
+
"""
|
139
|
+
super().__init__()
|
140
|
+
|
141
|
+
self.norm_in = nn.LayerNorm(dim, eps=1e-5)
|
142
|
+
self.p_in = nn.Linear(dim, 2 * dim, bias=False)
|
143
|
+
self.g_in = nn.Linear(dim, 2 * dim, bias=False)
|
144
|
+
|
145
|
+
self.norm_out = nn.LayerNorm(dim)
|
146
|
+
self.p_out = nn.Linear(dim, dim, bias=False)
|
147
|
+
self.g_out = nn.Linear(dim, dim, bias=False)
|
148
|
+
|
149
|
+
init.bias_init_one_(self.norm_in.weight)
|
150
|
+
init.bias_init_zero_(self.norm_in.bias)
|
151
|
+
|
152
|
+
init.lecun_normal_init_(self.p_in.weight)
|
153
|
+
init.gating_init_(self.g_in.weight)
|
154
|
+
|
155
|
+
init.bias_init_one_(self.norm_out.weight)
|
156
|
+
init.bias_init_zero_(self.norm_out.bias)
|
157
|
+
|
158
|
+
init.final_init_(self.p_out.weight)
|
159
|
+
init.gating_init_(self.g_out.weight)
|
160
|
+
|
161
|
+
def forward(self, x: Tensor, mask: Tensor, use_kernels: bool = False) -> Tensor:
|
162
|
+
"""Perform a forward pass.
|
163
|
+
|
164
|
+
Parameters
|
165
|
+
----------
|
166
|
+
x: torch.Tensor
|
167
|
+
The input data of shape (B, N, N, D)
|
168
|
+
mask: torch.Tensor
|
169
|
+
The input mask of shape (B, N, N)
|
170
|
+
use_kernels: bool
|
171
|
+
Whether to use the kernel
|
172
|
+
|
173
|
+
Returns
|
174
|
+
-------
|
175
|
+
x: torch.Tensor
|
176
|
+
The output data of shape (B, N, N, D)
|
177
|
+
|
178
|
+
"""
|
179
|
+
if use_kernels:
|
180
|
+
return kernel_triangular_mult(
|
181
|
+
x,
|
182
|
+
direction="incoming",
|
183
|
+
mask=mask,
|
184
|
+
norm_in_weight=self.norm_in.weight,
|
185
|
+
norm_in_bias=self.norm_in.bias,
|
186
|
+
p_in_weight=self.p_in.weight,
|
187
|
+
g_in_weight=self.g_in.weight,
|
188
|
+
norm_out_weight=self.norm_out.weight,
|
189
|
+
norm_out_bias=self.norm_out.bias,
|
190
|
+
p_out_weight=self.p_out.weight,
|
191
|
+
g_out_weight=self.g_out.weight,
|
192
|
+
eps=1e-5,
|
193
|
+
)
|
194
|
+
|
195
|
+
# Input gating: D -> D
|
196
|
+
x = self.norm_in(x)
|
197
|
+
x_in = x
|
198
|
+
x = self.p_in(x) * self.g_in(x).sigmoid()
|
199
|
+
|
200
|
+
# Apply mask
|
201
|
+
x = x * mask.unsqueeze(-1)
|
202
|
+
|
203
|
+
# Split input and cast to float
|
204
|
+
a, b = torch.chunk(x.float(), 2, dim=-1)
|
205
|
+
|
206
|
+
# Triangular projection
|
207
|
+
x = torch.einsum("bkid,bkjd->bijd", a, b)
|
208
|
+
|
209
|
+
# Output gating
|
210
|
+
x = self.p_out(self.norm_out(x)) * self.g_out(x_in).sigmoid()
|
211
|
+
|
212
|
+
return x
|
File without changes
|
@@ -0,0 +1,49 @@
|
|
1
|
+
import torch
|
2
|
+
from torch import Tensor
|
3
|
+
|
4
|
+
|
5
|
+
def bfactor_loss_fn(
|
6
|
+
output: dict[str, Tensor],
|
7
|
+
feats: dict[str, Tensor],
|
8
|
+
) -> Tensor:
|
9
|
+
"""Compute the bfactor loss.
|
10
|
+
|
11
|
+
Parameters
|
12
|
+
----------
|
13
|
+
output : dict[str, Tensor]
|
14
|
+
Output of the model
|
15
|
+
feats : dict[str, Tensor]
|
16
|
+
Input features
|
17
|
+
|
18
|
+
Returns
|
19
|
+
-------
|
20
|
+
Tensor
|
21
|
+
The globally averaged loss.
|
22
|
+
|
23
|
+
"""
|
24
|
+
with torch.autocast("cuda", enabled=False):
|
25
|
+
# Get predicted distograms
|
26
|
+
pred = output["pbfactor"].float() # (B, L, bins)
|
27
|
+
bins = pred.shape[2] # num_bins
|
28
|
+
token_to_rep_atom = feats["token_to_rep_atom"]
|
29
|
+
|
30
|
+
# Compute target histogram
|
31
|
+
bfactor_atom = feats["bfactor"].unsqueeze(-1) # (B, L)
|
32
|
+
bfactor_token = torch.bmm(token_to_rep_atom.float(), bfactor_atom)
|
33
|
+
|
34
|
+
boundaries = torch.linspace(0, 100, bins - 1, device=bfactor_token.device)
|
35
|
+
bfactor_token_bin = (bfactor_token > boundaries).sum(dim=-1).long()
|
36
|
+
bfactor_target = torch.nn.functional.one_hot(
|
37
|
+
bfactor_token_bin, num_classes=bins
|
38
|
+
)
|
39
|
+
|
40
|
+
# Combine target mask and padding mask
|
41
|
+
token_mask = (bfactor_token > 1e-5).squeeze(-1).float()
|
42
|
+
|
43
|
+
# Compute the bfactor loss
|
44
|
+
errors = -1 * torch.sum(
|
45
|
+
bfactor_target * torch.nn.functional.log_softmax(pred, dim=-1),
|
46
|
+
dim=-1,
|
47
|
+
)
|
48
|
+
loss = torch.sum(errors * token_mask) / (torch.sum(token_mask) + 1e-5)
|
49
|
+
return loss
|