bmtool 0.7.3__py3-none-any.whl → 0.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,6 +13,8 @@ import numpy as np
13
13
  import pandas as pd
14
14
  from IPython import get_ipython
15
15
 
16
+ from neuron import h
17
+
16
18
  from ..util import util
17
19
 
18
20
  use_description = """
@@ -981,7 +983,7 @@ def distance_delay_plot(
981
983
  plt.show()
982
984
 
983
985
 
984
- def plot_synapse_location(config: str, source: str, target: str, sids: str, tids: str) -> tuple:
986
+ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids: str, syn_feature: str = 'afferent_section_id') -> tuple:
985
987
  """
986
988
  Generates a connectivity matrix showing synaptic distribution across different cell sections.
987
989
  Note does exclude gap junctions since they dont have an afferent id stored in the h5 file!
@@ -998,6 +1000,8 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
998
1000
  Column name in nodes file containing source population identifiers
999
1001
  tids : str
1000
1002
  Column name in nodes file containing target population identifiers
1003
+ syn_feature : str, default 'afferent_section_id'
1004
+ Synaptic feature to analyze ('afferent_section_id' or 'afferent_section_pos')
1001
1005
 
1002
1006
  Returns
1003
1007
  -------
@@ -1011,22 +1015,22 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
1011
1015
  RuntimeError
1012
1016
  If template loading or cell instantiation fails
1013
1017
  """
1014
- import matplotlib.pyplot as plt
1015
- import numpy as np
1016
- from neuron import h
1017
-
1018
1018
  # Validate inputs
1019
1019
  if not all([config, source, target, sids, tids]):
1020
1020
  raise ValueError(
1021
1021
  "Missing required parameters: config, source, target, sids, and tids must be provided"
1022
1022
  )
1023
1023
 
1024
+ # Fix the validation logic - it was using 'or' instead of 'and'
1025
+ if syn_feature not in ["afferent_section_id", "afferent_section_pos"]:
1026
+ raise ValueError("Currently only syn features supported are afferent_section_id or afferent_section_pos")
1027
+
1024
1028
  try:
1025
1029
  # Load mechanisms and template
1026
1030
  util.load_templates_from_config(config)
1027
1031
  except Exception as e:
1028
1032
  raise RuntimeError(f"Failed to load templates from config: {str(e)}")
1029
-
1033
+
1030
1034
  try:
1031
1035
  # Load node and edge data
1032
1036
  nodes, edges = util.load_nodes_edges_from_config(config)
@@ -1036,17 +1040,17 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
1036
1040
  target_nodes = nodes[target]
1037
1041
  source_nodes = nodes[source]
1038
1042
  edges = edges[f"{source}_to_{target}"]
1039
- # Find edges with NaN afferent_section_id
1040
- nan_edges = edges[edges["afferent_section_id"].isna()]
1043
+
1044
+ # Find edges with NaN values in the specified feature
1045
+ nan_edges = edges[edges[syn_feature].isna()]
1041
1046
  # Print information about removed edges
1042
1047
  if not nan_edges.empty:
1043
1048
  unique_indices = sorted(list(set(nan_edges.index.tolist())))
1044
- print(f"Removing {len(nan_edges)} edges with missing afferent_section_id")
1049
+ print(f"Removing {len(nan_edges)} edges with missing {syn_feature}")
1045
1050
  print(f"Unique indices removed: {unique_indices}")
1046
1051
 
1047
- # Filter out edges with NaN afferent_section_id
1048
- edges = edges[edges["afferent_section_id"].notna()]
1049
-
1052
+ # Filter out edges with NaN values in the specified feature
1053
+ edges = edges[edges[syn_feature].notna()]
1050
1054
 
1051
1055
  except Exception as e:
1052
1056
  raise RuntimeError(f"Failed to load nodes and edges: {str(e)}")
@@ -1116,7 +1120,7 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
1116
1120
  section_mapping = section_mappings[target_model_template]
1117
1121
 
1118
1122
  # Calculate section distribution
1119
- section_counts = filtered_edges["afferent_section_id"].value_counts()
1123
+ section_counts = filtered_edges[syn_feature].value_counts()
1120
1124
  section_percentages = (section_counts / total_connections * 100).round(1)
1121
1125
 
1122
1126
  # Format section distribution text - show all sections
@@ -1125,16 +1129,17 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
1125
1129
  section_name = section_mapping.get(section_id, f"sec_{section_id}")
1126
1130
  section_display.append(f"{section_name}:{percentage}%")
1127
1131
 
1132
+
1128
1133
  num_connections[source_idx, target_idx] = total_connections
1129
1134
  text_data[source_idx, target_idx] = "\n".join(section_display)
1130
1135
 
1131
1136
  except Exception as e:
1132
1137
  print(f"Warning: Error processing {target_model_template}: {str(e)}")
1133
1138
  num_connections[source_idx, target_idx] = total_connections
1134
- text_data[source_idx, target_idx] = "Section info N/A"
1139
+ text_data[source_idx, target_idx] = "Feature info N/A"
1135
1140
 
1136
1141
  # Create the plot
1137
- title = f"Synaptic Distribution by Section: {source} to {target}"
1142
+ title = f"Synaptic Distribution by {syn_feature.replace('_', ' ').title()}: {source} to {target}"
1138
1143
  fig, ax = plot_connection_info(
1139
1144
  text=text_data,
1140
1145
  num=num_connections,
bmtool/bmplot/lfp.py CHANGED
@@ -1,7 +1,6 @@
1
1
  import matplotlib.pyplot as plt
2
2
  import numpy as np
3
-
4
- from bmtool.analysis.lfp import gen_aperiodic
3
+ from fooof.sim.gen import gen_aperiodic
5
4
 
6
5
 
7
6
  def plot_spectrogram(
bmtool/synapses.py CHANGED
@@ -20,68 +20,104 @@ from tqdm.notebook import tqdm
20
20
 
21
21
  from bmtool.util.util import load_templates_from_config
22
22
 
23
+ DEFAULT_GENERAL_SETTINGS = {
24
+ "vclamp": True,
25
+ "rise_interval": (0.1, 0.9),
26
+ "tstart": 500.0,
27
+ "tdur": 100.0,
28
+ "threshold": -15.0,
29
+ "delay": 1.3,
30
+ "weight": 1.0,
31
+ "dt": 0.025,
32
+ "celsius": 20,
33
+ }
34
+
35
+ DEFAULT_GAP_JUNCTION_GENERAL_SETTINGS = {
36
+ "tstart": 500.0,
37
+ "tdur": 500.0,
38
+ "dt": 0.025,
39
+ "celsius": 20,
40
+ }
41
+
23
42
 
24
43
  class SynapseTuner:
25
44
  def __init__(
26
45
  self,
27
- mechanisms_dir: str = None,
28
- templates_dir: str = None,
29
- config: str = None,
30
- conn_type_settings: dict = None,
31
- connection: str = None,
32
- general_settings: dict = None,
33
- json_folder_path: str = None,
46
+ mechanisms_dir: Optional[str] = None,
47
+ templates_dir: Optional[str] = None,
48
+ config: Optional[str] = None,
49
+ conn_type_settings: Optional[dict] = None,
50
+ connection: Optional[str] = None,
51
+ general_settings: Optional[dict] = None,
52
+ json_folder_path: Optional[str] = None,
34
53
  current_name: str = "i",
35
- other_vars_to_record: list = None,
36
- slider_vars: list = None,
54
+ other_vars_to_record: Optional[list] = None,
55
+ slider_vars: Optional[list] = None,
56
+ hoc_cell: Optional[object] = None,
37
57
  ) -> None:
38
58
  """
39
- Initialize the SynapseModule class with connection type settings, mechanisms, and template directories.
59
+ Initialize the SynapseTuner class with connection type settings, mechanisms, and template directories.
40
60
 
41
61
  Parameters:
42
62
  -----------
43
- mechanisms_dir : str
63
+ mechanisms_dir : Optional[str]
44
64
  Directory path containing the compiled mod files needed for NEURON mechanisms.
45
- templates_dir : str
65
+ templates_dir : Optional[str]
46
66
  Directory path containing cell template files (.hoc or .py) loaded into NEURON.
47
- conn_type_settings : dict
67
+ conn_type_settings : Optional[dict]
48
68
  A dictionary containing connection-specific settings, such as synaptic properties and details.
49
- connection : str
69
+ connection : Optional[str]
50
70
  Name of the connection type to be used from the conn_type_settings dictionary.
51
- general_settings : dict
71
+ general_settings : Optional[dict]
52
72
  General settings dictionary including parameters like simulation time step, duration, and temperature.
53
- json_folder_path : str, optional
73
+ json_folder_path : Optional[str]
54
74
  Path to folder containing JSON files with additional synaptic properties to update settings.
55
75
  current_name : str, optional
56
76
  Name of the synaptic current variable to be recorded (default is 'i').
57
- other_vars_to_record : list, optional
77
+ other_vars_to_record : Optional[list]
58
78
  List of additional synaptic variables to record during the simulation (e.g., 'Pr', 'Use').
59
- slider_vars : list, optional
79
+ slider_vars : Optional[list]
60
80
  List of synaptic variables you would like sliders set up for the STP sliders method by default will use all parameters in spec_syn_param.
61
-
81
+ hoc_cell : Optional[object]
82
+ An already loaded NEURON cell object. If provided, template loading and cell setup will be skipped.
62
83
  """
63
- if config is None and (mechanisms_dir is None or templates_dir is None):
64
- raise ValueError(
65
- "Either a config file or both mechanisms_dir and templates_dir must be provided."
66
- )
84
+ self.hoc_cell = hoc_cell
67
85
 
68
- if config is None:
69
- neuron.load_mechanisms(mechanisms_dir)
70
- h.load_file(templates_dir)
71
- else:
72
- # loads both mech and templates
73
- load_templates_from_config(config)
86
+ if hoc_cell is None:
87
+ if config is None and (mechanisms_dir is None or templates_dir is None):
88
+ raise ValueError(
89
+ "Either a config file, both mechanisms_dir and templates_dir, or a hoc_cell must be provided."
90
+ )
74
91
 
75
- self.conn_type_settings = conn_type_settings
92
+ if config is None:
93
+ neuron.load_mechanisms(mechanisms_dir)
94
+ h.load_file(templates_dir)
95
+ else:
96
+ # loads both mech and templates
97
+ load_templates_from_config(config)
98
+
99
+ if conn_type_settings is None:
100
+ raise ValueError("conn_type_settings must be provided.")
101
+ if connection is None:
102
+ raise ValueError("connection must be provided.")
103
+ if connection not in conn_type_settings:
104
+ raise ValueError(f"connection '{connection}' not found in conn_type_settings.")
105
+
106
+ self.conn_type_settings: dict = conn_type_settings
76
107
  if json_folder_path:
77
108
  print(f"updating settings from json path {json_folder_path}")
78
109
  self._update_spec_syn_param(json_folder_path)
79
- self.general_settings = general_settings
110
+ # Use default general settings if not provided
111
+ if general_settings is None:
112
+ self.general_settings: dict = DEFAULT_GENERAL_SETTINGS.copy()
113
+ else:
114
+ # Merge defaults with user-provided
115
+ self.general_settings = {**DEFAULT_GENERAL_SETTINGS, **general_settings}
80
116
  self.conn = self.conn_type_settings[connection]
81
117
  self.synaptic_props = self.conn["spec_syn_param"]
82
- self.vclamp = general_settings["vclamp"]
118
+ self.vclamp = self.general_settings["vclamp"]
83
119
  self.current_name = current_name
84
- self.other_vars_to_record = other_vars_to_record
120
+ self.other_vars_to_record = other_vars_to_record or []
85
121
  self.ispk = None
86
122
 
87
123
  if slider_vars:
@@ -94,25 +130,26 @@ class SynapseTuner:
94
130
  # If the key is missing from synaptic_props, get the value using getattr
95
131
  if key not in self.synaptic_props:
96
132
  try:
97
- # Get the alternative value from getattr dynamically
98
133
  self._set_up_cell()
99
134
  self._set_up_synapse()
100
135
  value = getattr(self.syn, key)
101
- # print(value)
102
136
  self.slider_vars[key] = value
103
137
  except AttributeError as e:
104
138
  print(f"Error accessing '{key}' in syn {self.syn}: {e}")
105
-
106
139
  else:
107
140
  self.slider_vars = self.synaptic_props
108
141
 
109
- h.tstop = general_settings["tstart"] + general_settings["tdur"]
110
- h.dt = general_settings["dt"] # Time step (resolution) of the simulation in ms
142
+ h.tstop = self.general_settings["tstart"] + self.general_settings["tdur"]
143
+ h.dt = self.general_settings["dt"] # Time step (resolution) of the simulation in ms
111
144
  h.steps_per_ms = 1 / h.dt
112
- h.celsius = general_settings["celsius"]
145
+ h.celsius = self.general_settings["celsius"]
113
146
 
114
147
  # get some stuff set up we need for both SingleEvent and Interactive Tuner
115
- self._set_up_cell()
148
+ # Only set up cell if hoc_cell was not provided
149
+ if self.hoc_cell is None:
150
+ self._set_up_cell()
151
+ else:
152
+ self.cell = self.hoc_cell
116
153
  self._set_up_synapse()
117
154
 
118
155
  self.nstim = h.NetStim()
@@ -137,7 +174,7 @@ class SynapseTuner:
137
174
 
138
175
  self._set_up_recorders()
139
176
 
140
- def _update_spec_syn_param(self, json_folder_path):
177
+ def _update_spec_syn_param(self, json_folder_path: str) -> None:
141
178
  """
142
179
  Update specific synaptic parameters using JSON files located in the specified folder.
143
180
 
@@ -146,6 +183,8 @@ class SynapseTuner:
146
183
  json_folder_path : str
147
184
  Path to folder containing JSON files, where each JSON file corresponds to a connection type.
148
185
  """
186
+ if not self.conn_type_settings:
187
+ return
149
188
  for conn_type, settings in self.conn_type_settings.items():
150
189
  json_file_path = os.path.join(json_folder_path, f"{conn_type}.json")
151
190
  if os.path.exists(json_file_path):
@@ -155,13 +194,17 @@ class SynapseTuner:
155
194
  else:
156
195
  print(f"JSON file for {conn_type} not found.")
157
196
 
158
- def _set_up_cell(self):
197
+ def _set_up_cell(self) -> None:
159
198
  """
160
199
  Set up the neuron cell based on the specified connection settings.
200
+ This method is only called when hoc_cell is not provided.
161
201
  """
162
- self.cell = getattr(h, self.conn["spec_settings"]["post_cell"])()
202
+ if self.hoc_cell is None:
203
+ self.cell = getattr(h, self.conn["spec_settings"]["post_cell"])()
204
+ else:
205
+ self.cell = self.hoc_cell
163
206
 
164
- def _set_up_synapse(self):
207
+ def _set_up_synapse(self) -> None:
165
208
  """
166
209
  Set up the synapse on the target cell according to the synaptic parameters in `conn_type_settings`.
167
210
 
@@ -176,7 +219,7 @@ class SynapseTuner:
176
219
  )
177
220
  )
178
221
  for key, value in self.conn["spec_syn_param"].items():
179
- if isinstance(value, (int, float)): # Only create sliders for numeric values
222
+ if isinstance(value, (int, float)):
180
223
  if hasattr(self.syn, key):
181
224
  setattr(self.syn, key, value)
182
225
  else:
@@ -184,7 +227,7 @@ class SynapseTuner:
184
227
  f"Warning: {key} cannot be assigned as it does not exist in the synapse. Check your mod file or spec_syn_param."
185
228
  )
186
229
 
187
- def _set_up_recorders(self):
230
+ def _set_up_recorders(self) -> None:
188
231
  """
189
232
  Set up recording vectors to capture simulation data.
190
233
 
@@ -952,11 +995,12 @@ class SynapseTuner:
952
995
  class GapJunctionTuner:
953
996
  def __init__(
954
997
  self,
955
- mechanisms_dir: str = None,
956
- templates_dir: str = None,
957
- config: str = None,
958
- general_settings: dict = None,
959
- conn_type_settings: dict = None,
998
+ mechanisms_dir: Optional[str] = None,
999
+ templates_dir: Optional[str] = None,
1000
+ config: Optional[str] = None,
1001
+ general_settings: Optional[dict] = None,
1002
+ conn_type_settings: Optional[dict] = None,
1003
+ hoc_cell: Optional[object] = None,
960
1004
  ):
961
1005
  """
962
1006
  Initialize the GapJunctionTuner class.
@@ -973,34 +1017,49 @@ class GapJunctionTuner:
973
1017
  General settings dictionary including parameters like simulation time step, duration, and temperature.
974
1018
  conn_type_settings : dict
975
1019
  A dictionary containing connection-specific settings for gap junctions.
1020
+ hoc_cell : object, optional
1021
+ An already loaded NEURON cell object. If provided, template loading and cell creation will be skipped.
976
1022
  """
977
- if config is None and (mechanisms_dir is None or templates_dir is None):
978
- raise ValueError(
979
- "Either a config file or both mechanisms_dir and templates_dir must be provided."
980
- )
1023
+ self.hoc_cell = hoc_cell
981
1024
 
982
- if config is None:
983
- neuron.load_mechanisms(mechanisms_dir)
984
- h.load_file(templates_dir)
985
- else:
986
- # this will load both mechs and templates
987
- load_templates_from_config(config)
1025
+ if hoc_cell is None:
1026
+ if config is None and (mechanisms_dir is None or templates_dir is None):
1027
+ raise ValueError(
1028
+ "Either a config file, both mechanisms_dir and templates_dir, or a hoc_cell must be provided."
1029
+ )
1030
+
1031
+ if config is None:
1032
+ neuron.load_mechanisms(mechanisms_dir)
1033
+ h.load_file(templates_dir)
1034
+ else:
1035
+ # this will load both mechs and templates
1036
+ load_templates_from_config(config)
988
1037
 
989
- self.general_settings = general_settings
1038
+ # Use default general settings if not provided, merge with user-provided
1039
+ if general_settings is None:
1040
+ self.general_settings: dict = DEFAULT_GAP_JUNCTION_GENERAL_SETTINGS.copy()
1041
+ else:
1042
+ self.general_settings = {**DEFAULT_GAP_JUNCTION_GENERAL_SETTINGS, **general_settings}
990
1043
  self.conn_type_settings = conn_type_settings
991
1044
 
992
- h.tstop = general_settings["tstart"] + general_settings["tdur"] + 100.0
993
- h.dt = general_settings["dt"] # Time step (resolution) of the simulation in ms
1045
+ h.tstop = self.general_settings["tstart"] + self.general_settings["tdur"] + 100.0
1046
+ h.dt = self.general_settings["dt"] # Time step (resolution) of the simulation in ms
994
1047
  h.steps_per_ms = 1 / h.dt
995
- h.celsius = general_settings["celsius"]
996
-
997
- self.cell_name = conn_type_settings["cell"]
1048
+ h.celsius = self.general_settings["celsius"]
998
1049
 
999
1050
  # set up gap junctions
1000
1051
  pc = h.ParallelContext()
1001
1052
 
1002
- self.cell1 = getattr(h, self.cell_name)()
1003
- self.cell2 = getattr(h, self.cell_name)()
1053
+ # Use provided hoc_cell or create new cells
1054
+ if self.hoc_cell is not None:
1055
+ self.cell1 = self.hoc_cell
1056
+ # For gap junctions, we need two cells, so create a second one if using hoc_cell
1057
+ self.cell_name = conn_type_settings["cell"]
1058
+ self.cell2 = getattr(h, self.cell_name)()
1059
+ else:
1060
+ self.cell_name = conn_type_settings["cell"]
1061
+ self.cell1 = getattr(h, self.cell_name)()
1062
+ self.cell2 = getattr(h, self.cell_name)()
1004
1063
 
1005
1064
  self.icl = h.IClamp(self.cell1.soma[0](0.5))
1006
1065
  self.icl.delay = self.general_settings["tstart"]
@@ -1247,6 +1306,10 @@ class SynapseOptimizer:
1247
1306
  - max_amplitude: maximum synaptic response amplitude
1248
1307
  - rise_time: time for synaptic response to rise from 20% to 80% of peak
1249
1308
  - decay_time: time constant of synaptic response decay
1309
+ - latency: synaptic response latency
1310
+ - half_width: synaptic response half-width
1311
+ - baseline: baseline current
1312
+ - amp: peak amplitude from syn_props
1250
1313
  """
1251
1314
  # Set these to 0 for when we return the dict
1252
1315
  induction = 0
@@ -1255,11 +1318,22 @@ class SynapseOptimizer:
1255
1318
  amp = 0
1256
1319
  rise_time = 0
1257
1320
  decay_time = 0
1321
+ latency = 0
1322
+ half_width = 0
1323
+ baseline = 0
1324
+ syn_amp = 0
1258
1325
 
1259
1326
  if self.run_single_event:
1260
1327
  self.tuner.SingleEvent(plot_and_print=False)
1261
- rise_time = self.tuner.rise_time
1262
- decay_time = self.tuner.decay_time
1328
+ # Use the attributes set by SingleEvent method
1329
+ rise_time = getattr(self.tuner, "rise_time", 0)
1330
+ decay_time = getattr(self.tuner, "decay_time", 0)
1331
+ # Get additional syn_props directly
1332
+ syn_props = self.tuner._get_syn_prop()
1333
+ latency = syn_props.get("latency", 0)
1334
+ half_width = syn_props.get("half_width", 0)
1335
+ baseline = syn_props.get("baseline", 0)
1336
+ syn_amp = syn_props.get("amp", 0)
1263
1337
 
1264
1338
  if self.run_train_input:
1265
1339
  self.tuner._simulate_model(self.train_frequency, self.train_delay)
@@ -1276,6 +1350,10 @@ class SynapseOptimizer:
1276
1350
  "max_amplitude": float(amp),
1277
1351
  "rise_time": float(rise_time),
1278
1352
  "decay_time": float(decay_time),
1353
+ "latency": float(latency),
1354
+ "half_width": float(half_width),
1355
+ "baseline": float(baseline),
1356
+ "amp": float(syn_amp),
1279
1357
  }
1280
1358
 
1281
1359
  def _default_cost_function(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: bmtool
3
- Version: 0.7.3
3
+ Version: 0.7.4
4
4
  Summary: BMTool
5
5
  Home-page: https://github.com/cyneuro/bmtool
6
6
  Download-URL:
@@ -36,6 +36,7 @@ Requires-Dist: requests
36
36
  Requires-Dist: pyyaml
37
37
  Requires-Dist: PyWavelets
38
38
  Requires-Dist: numba
39
+ Requires-Dist: tqdm
39
40
  Provides-Extra: dev
40
41
  Requires-Dist: ruff>=0.1.0; extra == "dev"
41
42
  Requires-Dist: pytest>=7.0.0; extra == "dev"
@@ -6,16 +6,16 @@ bmtool/graphs.py,sha256=gBTzI6c2BBK49dWGcfWh9c56TAooyn-KaiEy0Im1HcI,6717
6
6
  bmtool/manage.py,sha256=lsgRejp02P-x6QpA7SXcyXdalPhRmypoviIA2uAitQs,608
7
7
  bmtool/plot_commands.py,sha256=Dxm_RaT4CtHnfsltTtUopJ4KVbfhxtktEB_b7bFEXII,12716
8
8
  bmtool/singlecell.py,sha256=I2yolbAnNC8qpnRkNdnDCLidNW7CktmBuRrcowMZJ3A,45041
9
- bmtool/synapses.py,sha256=y8UJAqO1jpZY-mY9gVVMN8Dj1r9jD2fI1nAaNQeQfz4,66148
9
+ bmtool/synapses.py,sha256=-kg_TJoqXStIgE5iHpJWpXU6VRKT0YyIVpTw8frNbxA,69653
10
10
  bmtool/analysis/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  bmtool/analysis/entrainment.py,sha256=NQloQtVpEWjDzmkZwMWVcm3hSjErHBZfQl1mrBVoIE8,25321
12
12
  bmtool/analysis/lfp.py,sha256=S2JvxkjcK3-EH93wCrhqNSFY6cX7fOq74pz64ibHKrc,26556
13
13
  bmtool/analysis/netcon_reports.py,sha256=VnPZNKPaQA7oh1q9cIatsqQudm4cOtzNtbGPXoiDCD0,2909
14
14
  bmtool/analysis/spikes.py,sha256=3n-xmyEZ7w6CKEND7-aKOAvdDg0lwDuPI5sMdOuPwa0,24637
15
15
  bmtool/bmplot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
- bmtool/bmplot/connections.py,sha256=Tdi-17poEuBBgXcKQ--pcDTDwl029nXg9EConRgZo-k,58928
16
+ bmtool/bmplot/connections.py,sha256=DwnnMp5cUwZC3OqsJqvgTPr4lBzc0sNWYRPmwij0WRk,59337
17
17
  bmtool/bmplot/entrainment.py,sha256=BrBMerqyiG2YWAO_OEFv7OJf3yeFz3l9jUt4NamluLc,32837
18
- bmtool/bmplot/lfp.py,sha256=SNpbWGOUnYEgnkeBw5S--aPN5mIGD22Gw2Pwus0_lvY,2034
18
+ bmtool/bmplot/lfp.py,sha256=7JLozQQJ19ty0ZNyfhkuJAr_K8_pVP9C0flVJd_YXaY,2027
19
19
  bmtool/bmplot/netcon_reports.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  bmtool/bmplot/spikes.py,sha256=odzCSMbFRHp9qthSGQ0WzMWUwNQ7R1Z6gLT6VPF_o5Q,15326
21
21
  bmtool/debug/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -26,9 +26,9 @@ bmtool/util/commands.py,sha256=Nn-R-4e9g8ZhSPZvTkr38xeKRPfEMANB9Lugppj82UI,68564
26
26
  bmtool/util/util.py,sha256=TAWdGd0tDuouS-JiusMs8WwP7kQpWHPr1nu0XG01TBQ,75056
27
27
  bmtool/util/neuron/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
28
  bmtool/util/neuron/celltuner.py,sha256=lokRLUM1rsdSYBYrNbLBBo39j14mm8TBNVNRnSlhHCk,94868
29
- bmtool-0.7.3.dist-info/licenses/LICENSE,sha256=qrXg2jj6kz5d0EnN11hllcQt2fcWVNumx0xNbV05nyM,1068
30
- bmtool-0.7.3.dist-info/METADATA,sha256=uzyKoEDxd3kJQc89-pzf6wSxR7v3BhBHYEvyqCh5aHM,3575
31
- bmtool-0.7.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
- bmtool-0.7.3.dist-info/entry_points.txt,sha256=0-BHZ6nUnh0twWw9SXNTiRmKjDnb1VO2DfG_-oprhAc,45
33
- bmtool-0.7.3.dist-info/top_level.txt,sha256=gpd2Sj-L9tWbuJEd5E8C8S8XkNm5yUE76klUYcM-eWM,7
34
- bmtool-0.7.3.dist-info/RECORD,,
29
+ bmtool-0.7.4.dist-info/licenses/LICENSE,sha256=qrXg2jj6kz5d0EnN11hllcQt2fcWVNumx0xNbV05nyM,1068
30
+ bmtool-0.7.4.dist-info/METADATA,sha256=126Cn17YBt6twoBgMXYXK10kOWUXRhnLnGmPr7z7k_4,3595
31
+ bmtool-0.7.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
+ bmtool-0.7.4.dist-info/entry_points.txt,sha256=0-BHZ6nUnh0twWw9SXNTiRmKjDnb1VO2DfG_-oprhAc,45
33
+ bmtool-0.7.4.dist-info/top_level.txt,sha256=gpd2Sj-L9tWbuJEd5E8C8S8XkNm5yUE76klUYcM-eWM,7
34
+ bmtool-0.7.4.dist-info/RECORD,,
File without changes