bmtool 0.7.2.1__py3-none-any.whl → 0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -132,6 +132,7 @@ def total_connection_matrix(
132
132
  title = "All Synapse .mod Files Used"
133
133
  if synaptic_info == "3":
134
134
  title = "All Synapse .json Files Used"
135
+
135
136
  plot_connection_info(
136
137
  text, num, source_labels, target_labels, title, syn_info=synaptic_info, save_file=save_file
137
138
  )
@@ -983,6 +984,7 @@ def distance_delay_plot(
983
984
  def plot_synapse_location(config: str, source: str, target: str, sids: str, tids: str) -> tuple:
984
985
  """
985
986
  Generates a connectivity matrix showing synaptic distribution across different cell sections.
987
+ Note does exclude gap junctions since they dont have an afferent id stored in the h5 file!
986
988
 
987
989
  Parameters
988
990
  ----------
@@ -1031,15 +1033,28 @@ def plot_synapse_location(config: str, source: str, target: str, sids: str, tids
1031
1033
  if source not in nodes or f"{source}_to_{target}" not in edges:
1032
1034
  raise ValueError(f"Source '{source}' or target '{target}' networks not found in data")
1033
1035
 
1034
- nodes = nodes[source]
1036
+ target_nodes = nodes[target]
1037
+ source_nodes = nodes[source]
1035
1038
  edges = edges[f"{source}_to_{target}"]
1039
+ # Find edges with NaN afferent_section_id
1040
+ nan_edges = edges[edges["afferent_section_id"].isna()]
1041
+ # Print information about removed edges
1042
+ if not nan_edges.empty:
1043
+ unique_indices = sorted(list(set(nan_edges.index.tolist())))
1044
+ print(f"Removing {len(nan_edges)} edges with missing afferent_section_id")
1045
+ print(f"Unique indices removed: {unique_indices}")
1046
+
1047
+ # Filter out edges with NaN afferent_section_id
1048
+ edges = edges[edges["afferent_section_id"].notna()]
1049
+
1050
+
1036
1051
  except Exception as e:
1037
1052
  raise RuntimeError(f"Failed to load nodes and edges: {str(e)}")
1038
1053
 
1039
1054
  # Map identifiers while checking for missing values
1040
- edges["target_model_template"] = edges["target_node_id"].map(nodes["model_template"])
1041
- edges["target_pop_name"] = edges["target_node_id"].map(nodes[tids])
1042
- edges["source_pop_name"] = edges["source_node_id"].map(nodes[sids])
1055
+ edges["target_model_template"] = edges["target_node_id"].map(target_nodes["model_template"])
1056
+ edges["target_pop_name"] = edges["target_node_id"].map(target_nodes[tids])
1057
+ edges["source_pop_name"] = edges["source_node_id"].map(source_nodes[sids])
1043
1058
 
1044
1059
  if edges["target_model_template"].isnull().any():
1045
1060
  print("Warning: Some target nodes missing model template")
bmtool/util/util.py CHANGED
@@ -16,6 +16,9 @@ import numpy as np
16
16
  import pandas as pd
17
17
  from neuron import h
18
18
 
19
+ from typing import Dict, List, Optional, Union, Any
20
+ from pathlib import Path
21
+
19
22
  # from bmtk.utils.io.cell_vars import CellVarsFile
20
23
  # from bmtk.analyzer.cell_vars import _get_cell_report
21
24
  # from bmtk.analyzer.io_tools import load_config
@@ -345,95 +348,366 @@ def load_edges(edges_file, edge_types_file):
345
348
  return edges # return (population, edges_df)
346
349
 
347
350
 
348
- def load_edges_from_paths(edge_paths): # network_dir='network'):
351
+ def load_edges_from_paths(
352
+ file_paths: str,
353
+ verbose: bool = False
354
+ ) -> Dict[str, pd.DataFrame]:
349
355
  """
350
- Returns: A dictionary of connections with filenames (minus _edges.h5) as keys
351
-
352
- edge_paths must be in the format in a circuit config file:
353
- [
354
- {
355
- "edges_file":"filepath", (csv)
356
- "edge_types_file":"filepath" (h5)
357
- },...
358
- ]
359
- util.load_edges_from_paths([{"edges_file":"network/hippocampus_hippocampus_edges.h5","edge_types_file":"network/hippocampus_hippocampus_edge_types.csv"}])
356
+ Load multiple SONATA edge files into a dictionary of DataFrames.
357
+
358
+ This function reads a configuration file containing multiple edge file pairs
359
+ (CSV + H5) and loads each pair into a separate DataFrame. Each DataFrame
360
+ contains merged edge connectivity and metadata information.
361
+
362
+ Parameters:
363
+ -----------
364
+ file_paths str
365
+ Expected structure: [{'edge_types_file': ..., 'edges_file': ...}, ...]
366
+ verbose : bool, default False
367
+ If True, print detailed information about the loading process
368
+
369
+ Returns:
370
+ --------
371
+ Dict[str, pd.DataFrame]
372
+ Dictionary mapping edge dataset names to DataFrames.
373
+ Keys are derived from CSV filenames (without '_edge_types.csv' suffix).
374
+ Values are DataFrames containing merged edge data.
375
+
376
+ Notes:
377
+ ------
378
+ - If loading fails for any dataset, an empty DataFrame is stored for that key
379
+ - Dataset names are extracted from CSV filenames for readability
380
+ - All edge data follows SONATA format specifications
360
381
  """
361
- import h5py
362
- import pandas as pd
363
- # edges_regex = "_edges.h5"
364
- # edge_types_regex = "_edge_types.csv"
365
-
366
- # edges_h5_fpaths = glob.glob(os.path.join(network_dir,'*'+edges_regex))
367
- # edge_types_fpaths = glob.glob(os.path.join(network_dir,'*'+edge_types_regex))
368
-
369
- # connections = [re.findall('^[A-Za-z0-9]+_[A-Za-z0-9][^_]+', os.path.basename(n))[0] for n in edges_h5_fpaths]
370
- edges_dict = {}
371
-
372
- def get_edge_table(edges_file, edge_types_file, population=None):
373
- # dataframe where each row is an edge type
374
- cm_df = pd.read_csv(edge_types_file, sep=" ")
375
- cm_df.set_index("edge_type_id", inplace=True)
376
-
377
- with h5py.File(edges_file, "r") as connections_h5:
378
- if population is None:
379
- if len(connections_h5["/edges"]) > 1:
380
- raise Exception(
381
- "Multiple populations in edges file. Not currently implemented, should not be hard to do, contact Tyler"
382
- )
383
- else:
384
- population = list(connections_h5["/edges"])[0]
385
- conn_grp = connections_h5["/edges"][population]
386
-
387
- # dataframe where each row is an edge
388
- c_df = pd.DataFrame(
389
- {key: conn_grp[key] for key in ("edge_type_id", "source_node_id", "target_node_id")}
390
- )
382
+
383
+ # Load configuration and extract edge file information
384
+
385
+ edge_files_list = file_paths
386
+
387
+ if verbose:
388
+ print(f"Loading {len(edge_files_list)} edge datasets from config: {config}")
389
+
390
+ edges_dict: Dict[str, pd.DataFrame] = {}
391
+
392
+ # Process each edge file pair
393
+ for i, file_info in enumerate(edge_files_list):
394
+ csv_path = file_info['edge_types_file']
395
+ h5_path = file_info['edges_file']
396
+
397
+ # Generate meaningful key from h5 file
398
+ with h5py.File(h5_path, "r") as connections_h5:
399
+ key = list(connections_h5["/edges"])[0]
400
+
401
+ if verbose:
402
+ print(f"\n{'='*60}")
403
+ print(f"Loading edge set {i+1}/{len(edge_files_list)}: {key}")
404
+ print(f"{'='*60}")
405
+
406
+ try:
407
+ # Load individual edge dataset
408
+ df = load_sonata_edges_to_dataframe(csv_path, h5_path, verbose=verbose)
409
+ edges_dict[key] = df
410
+
411
+ if verbose:
412
+ print(f"\nSuccessfully loaded {key}: {df.shape[0]} edges, {df.shape[1]} columns")
413
+
414
+ # Show important columns for verification
415
+ important_cols = ['edge_type_id', 'source_node_id', 'target_node_id',
416
+ 'model_template', 'afferent_section_id']
417
+ available_important = [col for col in important_cols if col in df.columns]
418
+ print(f"Key columns available: {available_important}")
419
+
420
+ # Show model template information if available
421
+ if 'model_template' in df.columns:
422
+ unique_templates = df['model_template'].dropna().unique()
423
+ print(f"Model templates: {unique_templates}")
424
+
425
+ except Exception as e:
426
+ if verbose:
427
+ print(f"Error loading {key}: {str(e)}")
428
+ edges_dict[key] = pd.DataFrame() # Store empty DataFrame on error
429
+
430
+ if verbose:
431
+ print(f"\n{'='*60}")
432
+ print("LOADING SUMMARY")
433
+ print(f"{'='*60}")
434
+ for key, df in edges_dict.items():
435
+ if not df.empty:
436
+ print(f"{key}: {df.shape[0]} edges, {df.shape[1]} columns")
437
+ if 'model_template' in df.columns:
438
+ templates = df['model_template'].dropna().unique()
439
+ print(f" Model templates: {list(templates)}")
440
+ if 'afferent_section_id' in df.columns:
441
+ print(f" afferent_section_id available")
442
+ else:
443
+ print(f"{key}: No data loaded (error occurred)")
444
+
445
+ return edges_dict
391
446
 
392
- c_df.reset_index(inplace=True)
393
- c_df.rename(columns={"index": "edge_id"}, inplace=True)
394
- c_df.set_index("edge_type_id", inplace=True)
395
447
 
396
- # add edge type properties to df of edges
397
- edges_df = pd.merge(
398
- left=c_df, right=cm_df, how="left", left_index=True, right_index=True
448
+ def load_sonata_edges_to_dataframe(
449
+ csv_path: Union[str, Path],
450
+ h5_path: Union[str, Path],
451
+ verbose: bool = False
452
+ ) -> pd.DataFrame:
453
+ """
454
+ Load SONATA format edge data into a pandas DataFrame.
455
+
456
+ This function combines edge connectivity data from HDF5 files with edge type
457
+ metadata from CSV files according to the SONATA specification. H5 attributes
458
+ take precedence over CSV attributes when both exist for the same column.
459
+
460
+ Parameters:
461
+ -----------
462
+ csv_path : Union[str, Path]
463
+ Path to the edge types CSV file (space-delimited)
464
+ h5_path : Union[str, Path]
465
+ Path to the edges HDF5 file containing connectivity data
466
+ verbose : bool, default False
467
+ If True, print detailed information about the loading process
468
+
469
+ Returns:
470
+ --------
471
+ pd.DataFrame
472
+ Combined edge data with columns from both H5 and CSV sources.
473
+ Columns include:
474
+ - edge_id: Sequential edge identifier
475
+ - population: Edge population name
476
+ - edge_type_id: Edge type identifier for merging with CSV
477
+ - source_node_id, target_node_id: Connected node IDs
478
+ - source_population, target_population: Node population names
479
+ - edge_group_id, edge_group_index: Edge grouping information
480
+ - Additional attributes from H5 edge groups
481
+ - Edge type metadata from CSV (model_template, afferent_section_id, etc.)
482
+
483
+ Notes:
484
+ ------
485
+ - CSV file must be space-delimited and contain 'edge_type_id' column
486
+ - H5 file must follow SONATA edge format with required datasets
487
+ - When both H5 and CSV contain the same attribute, H5 version is kept
488
+ - Dynamics parameters are flattened with 'dynamics_params/' prefix
489
+ """
490
+
491
+ # Load edge types CSV (space-delimited)
492
+ edge_types_df = pd.read_csv(csv_path, sep=' ')
493
+
494
+ if verbose:
495
+ print(f"Loaded edge types from: {csv_path}")
496
+ print(f" Columns: {edge_types_df.columns.tolist()}")
497
+ print(f" Shape: {edge_types_df.shape}")
498
+ print(f" Unique edge_type_ids: {sorted(edge_types_df['edge_type_id'].unique())}")
499
+
500
+ # Open HDF5 file and process edge data
501
+ with h5py.File(h5_path, 'r') as h5f:
502
+
503
+ # Navigate to edges group
504
+ edges_group = h5f['edges']
505
+ populations = list(edges_group.keys())
506
+
507
+ if verbose:
508
+ print(f"\nProcessing H5 file: {h5_path}")
509
+ print(f" Edge populations: {populations}")
510
+
511
+ # Process each population (typically one per file)
512
+ all_edges_data: List[pd.DataFrame] = []
513
+
514
+ for pop_name in populations:
515
+ pop_group = edges_group[pop_name]
516
+
517
+ if verbose:
518
+ print(f"\n Processing population: {pop_name}")
519
+
520
+ # Read required SONATA edge datasets
521
+ edge_type_ids = pop_group['edge_type_id'][:]
522
+ source_node_ids = pop_group['source_node_id'][:]
523
+ target_node_ids = pop_group['target_node_id'][:]
524
+ edge_group_ids = pop_group['edge_group_id'][:]
525
+ edge_group_indices = pop_group['edge_group_index'][:]
526
+
527
+ if verbose:
528
+ print(f" Unique edge_type_ids in H5: {sorted(np.unique(edge_type_ids))}")
529
+ print(f" Number of edges: {len(edge_type_ids)}")
530
+
531
+ # Extract node population attributes with proper string handling
532
+ source_pop = pop_group['source_node_id'].attrs.get('node_population', '')
533
+ target_pop = pop_group['target_node_id'].attrs.get('node_population', '')
534
+
535
+ # Handle both string and bytes cases for population names
536
+ if isinstance(source_pop, bytes):
537
+ source_pop = source_pop.decode()
538
+ if isinstance(target_pop, bytes):
539
+ target_pop = target_pop.decode()
540
+
541
+ n_edges = len(edge_type_ids)
542
+
543
+ # Create base DataFrame with core edge attributes
544
+ edges_df = pd.DataFrame({
545
+ 'edge_id': np.arange(n_edges), # Sequential edge identifiers
546
+ 'population': pop_name,
547
+ 'edge_type_id': edge_type_ids,
548
+ 'source_node_id': source_node_ids,
549
+ 'target_node_id': target_node_ids,
550
+ 'source_population': source_pop,
551
+ 'target_population': target_pop,
552
+ 'edge_group_id': edge_group_ids,
553
+ 'edge_group_index': edge_group_indices
554
+ })
555
+
556
+ # Process edge groups to extract additional attributes
557
+ edge_group_names = [
558
+ key for key in pop_group.keys()
559
+ if key not in ['edge_type_id', 'source_node_id', 'target_node_id',
560
+ 'edge_group_id', 'edge_group_index', 'indices']
561
+ ]
562
+
563
+ # Track which columns come from H5 for precedence handling
564
+ edge_attributes: Dict[str, np.ndarray] = {}
565
+ h5_column_names: set = set()
566
+
567
+ # Process each edge group to extract group-specific attributes
568
+ for group_name in edge_group_names:
569
+ group = pop_group[group_name]
570
+ group_id = int(group_name)
571
+
572
+ # Identify edges belonging to this group
573
+ group_mask = edge_group_ids == group_id
574
+ group_indices = edge_group_indices[group_mask]
575
+
576
+ # Extract all attributes from this edge group
577
+ for attr_name in group.keys():
578
+ if attr_name == 'dynamics_params': # sonata says this exist but i have yet to see it
579
+ # Handle nested dynamics parameters
580
+ dynamics_group = group[attr_name]
581
+ for param_name in dynamics_group.keys():
582
+ param_data = dynamics_group[param_name][:]
583
+ full_attr_name = f"dynamics_params/{param_name}"
584
+
585
+ # Initialize attribute array if not exists
586
+ if full_attr_name not in edge_attributes:
587
+ edge_attributes[full_attr_name] = np.full(n_edges, np.nan, dtype=object)
588
+
589
+ # Assign data to appropriate edges
590
+ edge_attributes[full_attr_name][group_mask] = param_data[group_indices]
591
+ h5_column_names.add(full_attr_name)
592
+ else:
593
+ # Handle regular attributes with proper string decoding
594
+ attr_data = group[attr_name][:]
595
+
596
+ # Handle string attributes properly
597
+ if attr_data.dtype.kind in ['S', 'U']: # String or Unicode
598
+ # Decode bytes to strings if necessary
599
+ if attr_data.dtype.kind == 'S':
600
+ attr_data = np.array([
601
+ s.decode() if isinstance(s, bytes) else s
602
+ for s in attr_data
603
+ ])
604
+
605
+ # Initialize attribute array with appropriate default
606
+ if attr_name not in edge_attributes:
607
+ if attr_data.dtype.kind in ['S', 'U']:
608
+ edge_attributes[attr_name] = np.full(n_edges, '', dtype=object)
609
+ else:
610
+ edge_attributes[attr_name] = np.full(n_edges, np.nan, dtype=object)
611
+
612
+ # Assign data to appropriate edges
613
+ edge_attributes[attr_name][group_mask] = attr_data[group_indices]
614
+ h5_column_names.add(attr_name)
615
+
616
+ # Add all H5 attributes to the DataFrame
617
+ for attr_name, attr_values in edge_attributes.items():
618
+ edges_df[attr_name] = attr_values
619
+
620
+ all_edges_data.append(edges_df)
621
+
622
+ # Combine all populations into single DataFrame
623
+ if all_edges_data:
624
+ combined_edges_df = pd.concat(all_edges_data, ignore_index=True)
625
+ else:
626
+ combined_edges_df = pd.DataFrame()
627
+
628
+ if verbose:
629
+ print(f"\n H5 columns: {sorted(h5_column_names)}")
630
+ print(f" CSV columns: {edge_types_df.columns.tolist()}")
631
+ print(f" Combined edges before merge: {combined_edges_df.shape}")
632
+
633
+ # Merge H5 data with CSV edge type metadata
634
+ if not combined_edges_df.empty and not edge_types_df.empty:
635
+ # Determine merge columns (typically just edge_type_id)
636
+ merge_cols = []
637
+ if 'edge_type_id' in combined_edges_df.columns and 'edge_type_id' in edge_types_df.columns:
638
+ merge_cols.append('edge_type_id')
639
+
640
+ if 'population' in edge_types_df.columns and 'population' in combined_edges_df.columns:
641
+ merge_cols.append('population')
642
+
643
+ if merge_cols:
644
+ if verbose:
645
+ # Debug merge compatibility
646
+ h5_edge_types = set(combined_edges_df['edge_type_id'].unique())
647
+ csv_edge_types = set(edge_types_df['edge_type_id'].unique())
648
+ overlap = h5_edge_types.intersection(csv_edge_types)
649
+
650
+ print(f"\n Merging on columns: {merge_cols}")
651
+ print(f" Edge types in H5: {sorted(h5_edge_types)}")
652
+ print(f" Edge types in CSV: {sorted(csv_edge_types)}")
653
+ print(f" Overlap: {sorted(overlap)}")
654
+
655
+ # Perform left join to preserve all H5 edges
656
+ final_df = combined_edges_df.merge(
657
+ edge_types_df,
658
+ on=merge_cols,
659
+ how='left',
660
+ suffixes=('', '_csv')
399
661
  )
400
-
401
- # extra properties of individual edges (see SONATA Data format)
402
- if conn_grp.get("0"):
403
- edge_group_id = conn_grp["edge_group_id"][()]
404
- edge_group_index = conn_grp["edge_group_index"][()]
405
- n_group = edge_group_id.max() + 1
406
- prop_dtype = {}
407
- for group_id in range(n_group):
408
- group = conn_grp[str(group_id)]
409
- idx = edge_group_id == group_id
410
- for prop in group:
411
- # create new column with NaN if property does not exist
412
- if prop not in edges_df:
413
- edges_df[prop] = np.nan
414
- edges_df.loc[idx, prop] = tuple(group[prop][edge_group_index[idx]])
415
- prop_dtype[prop] = group[prop].dtype
416
- # convert to original data type if possible
417
- for prop, dtype in prop_dtype.items():
418
- edges_df[prop] = edges_df[prop].astype(dtype, errors="ignore")
419
-
420
- return population, edges_df
421
-
422
- # for edges_dict, conn_models_file, conns_file in zip(connections, edge_types_fpaths, edges_h5_fpaths):
423
- # connections_dict[connection] = get_connection_table(conn_models_file,conns_file)
424
- try:
425
- for nodes in edge_paths:
426
- edges_file = nodes["edges_file"]
427
- edge_types_file = nodes["edge_types_file"]
428
- region_name, region = get_edge_table(edges_file, edge_types_file)
429
- edges_dict[region_name] = region
430
- except Exception as e:
431
- print(repr(e))
432
- print("Hint: Are you loading the correct simulation config file?")
433
- print("Command Line: bmtool plot --config yourconfig.json <rest of command>")
434
- print("Python: bmplot.connection_matrix(config='yourconfig.json')")
435
-
436
- return edges_dict
662
+
663
+ if verbose:
664
+ print(f" After merge: {final_df.shape}")
665
+
666
+ # Apply H5 precedence rule: H5 attributes override CSV attributes
667
+ for col in edge_types_df.columns:
668
+ if col in merge_cols:
669
+ continue # Skip merge columns
670
+
671
+ csv_col_name = f"{col}_csv" if f"{col}_csv" in final_df.columns else col
672
+
673
+ # If column exists in H5, handle row-by-row precedence
674
+ if col in h5_column_names:
675
+ if csv_col_name in final_df.columns and csv_col_name != col:
676
+ # Row-by-row logic: use CSV value only where H5 is NaN
677
+ mask_h5_nan = final_df[col].isna()
678
+ final_df.loc[mask_h5_nan, col] = final_df.loc[mask_h5_nan, csv_col_name]
679
+
680
+ if verbose and mask_h5_nan.any():
681
+ n_filled = mask_h5_nan.sum()
682
+ print(f" Column '{col}': filled {n_filled} NaN values from CSV")
683
+
684
+ # Remove CSV version after filling NaN values
685
+ final_df = final_df.drop(columns=[csv_col_name])
686
+ elif verbose:
687
+ print(f" Column '{col}' exists in H5 only")
688
+ # If column only in CSV, rename if needed
689
+ elif csv_col_name in final_df.columns and csv_col_name != col:
690
+ final_df = final_df.rename(columns={csv_col_name: col})
691
+ if verbose:
692
+ print(f" Added column '{col}' from CSV")
693
+ else:
694
+ if verbose:
695
+ print(" No common merge columns found. Using H5 data only.")
696
+ final_df = combined_edges_df
697
+ else:
698
+ final_df = combined_edges_df
699
+
700
+ if verbose:
701
+ print(f"\nFinal DataFrame: {final_df.shape}")
702
+ print(f"Final columns: {final_df.columns.tolist()}")
703
+
704
+ # Set edge_type_id as the index to match old function
705
+ if 'edge_type_id' in final_df.columns:
706
+ final_df = final_df.set_index('edge_type_id')
707
+ if verbose:
708
+ print(f"Set edge_type_id as index. Final shape: {final_df.shape}")
709
+
710
+ return final_df
437
711
 
438
712
 
439
713
  def load_mechanisms_from_config(config=None):
@@ -604,7 +878,6 @@ def relation_matrix(
604
878
  if relation_func:
605
879
  source_nodes = nodes[source].add_prefix("source_")
606
880
  target_nodes = nodes[target].add_prefix("target_")
607
-
608
881
  c_edges = pd.merge(
609
882
  left=edges[e_name],
610
883
  right=source_nodes,
@@ -856,7 +1129,8 @@ def percent_connections(
856
1129
  cons = edges[(edges[source_id_type] == source_id) & (edges[target_id_type] == target_id)]
857
1130
  if not include_gap:
858
1131
  try:
859
- cons = cons[~cons["is_gap_junction"]]
1132
+ gaps = cons["is_gap_junction"]==True
1133
+ cons = cons[~gaps]
860
1134
  except:
861
1135
  raise Exception("no gap junctions found to drop from connections")
862
1136
 
@@ -1003,7 +1277,7 @@ def gap_junction_connections(
1003
1277
  # print(cons)
1004
1278
 
1005
1279
  try:
1006
- cons = cons[cons["is_gap_junction"]]
1280
+ cons = cons[cons["is_gap_junction"]==True]
1007
1281
  except:
1008
1282
  raise Exception("no gap junctions found to drop from connections")
1009
1283
  mean = cons["target_node_id"].value_counts().mean()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: bmtool
3
- Version: 0.7.2.1
3
+ Version: 0.7.3
4
4
  Summary: BMTool
5
5
  Home-page: https://github.com/cyneuro/bmtool
6
6
  Download-URL:
@@ -13,7 +13,7 @@ bmtool/analysis/lfp.py,sha256=S2JvxkjcK3-EH93wCrhqNSFY6cX7fOq74pz64ibHKrc,26556
13
13
  bmtool/analysis/netcon_reports.py,sha256=VnPZNKPaQA7oh1q9cIatsqQudm4cOtzNtbGPXoiDCD0,2909
14
14
  bmtool/analysis/spikes.py,sha256=3n-xmyEZ7w6CKEND7-aKOAvdDg0lwDuPI5sMdOuPwa0,24637
15
15
  bmtool/bmplot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
- bmtool/bmplot/connections.py,sha256=L0UGOOsD4Iqxv492uSChpsFHIC_Ntz8X51ZfE_AJcP8,58216
16
+ bmtool/bmplot/connections.py,sha256=Tdi-17poEuBBgXcKQ--pcDTDwl029nXg9EConRgZo-k,58928
17
17
  bmtool/bmplot/entrainment.py,sha256=BrBMerqyiG2YWAO_OEFv7OJf3yeFz3l9jUt4NamluLc,32837
18
18
  bmtool/bmplot/lfp.py,sha256=SNpbWGOUnYEgnkeBw5S--aPN5mIGD22Gw2Pwus0_lvY,2034
19
19
  bmtool/bmplot/netcon_reports.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -23,12 +23,12 @@ bmtool/debug/commands.py,sha256=VV00f6q5gzZI503vUPeG40ABLLen0bw_k4-EX-H5WZE,580
23
23
  bmtool/debug/debug.py,sha256=9yUFvA4_Bl-x9s29quIEG3pY-S8hNJF3RKBfRBHCl28,208
24
24
  bmtool/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  bmtool/util/commands.py,sha256=Nn-R-4e9g8ZhSPZvTkr38xeKRPfEMANB9Lugppj82UI,68564
26
- bmtool/util/util.py,sha256=S8sAXwDiISGAqnSXRIgFqxqCRzL5YcxAqP1UGxGA5Z4,62906
26
+ bmtool/util/util.py,sha256=TAWdGd0tDuouS-JiusMs8WwP7kQpWHPr1nu0XG01TBQ,75056
27
27
  bmtool/util/neuron/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
28
  bmtool/util/neuron/celltuner.py,sha256=lokRLUM1rsdSYBYrNbLBBo39j14mm8TBNVNRnSlhHCk,94868
29
- bmtool-0.7.2.1.dist-info/licenses/LICENSE,sha256=qrXg2jj6kz5d0EnN11hllcQt2fcWVNumx0xNbV05nyM,1068
30
- bmtool-0.7.2.1.dist-info/METADATA,sha256=rEXYmlS4RZxoXEK_2fV57B1c0CSNA38Eh4JmzQ1YGQ8,3577
31
- bmtool-0.7.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
- bmtool-0.7.2.1.dist-info/entry_points.txt,sha256=0-BHZ6nUnh0twWw9SXNTiRmKjDnb1VO2DfG_-oprhAc,45
33
- bmtool-0.7.2.1.dist-info/top_level.txt,sha256=gpd2Sj-L9tWbuJEd5E8C8S8XkNm5yUE76klUYcM-eWM,7
34
- bmtool-0.7.2.1.dist-info/RECORD,,
29
+ bmtool-0.7.3.dist-info/licenses/LICENSE,sha256=qrXg2jj6kz5d0EnN11hllcQt2fcWVNumx0xNbV05nyM,1068
30
+ bmtool-0.7.3.dist-info/METADATA,sha256=uzyKoEDxd3kJQc89-pzf6wSxR7v3BhBHYEvyqCh5aHM,3575
31
+ bmtool-0.7.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
+ bmtool-0.7.3.dist-info/entry_points.txt,sha256=0-BHZ6nUnh0twWw9SXNTiRmKjDnb1VO2DfG_-oprhAc,45
33
+ bmtool-0.7.3.dist-info/top_level.txt,sha256=gpd2Sj-L9tWbuJEd5E8C8S8XkNm5yUE76klUYcM-eWM,7
34
+ bmtool-0.7.3.dist-info/RECORD,,