bmtool 0.6.9.17__py3-none-any.whl → 0.6.9.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bmtool-0.6.9.18.dist-info/METADATA +79 -0
- {bmtool-0.6.9.17.dist-info → bmtool-0.6.9.18.dist-info}/RECORD +6 -6
- bmtool-0.6.9.17.dist-info/METADATA +0 -610
- {bmtool-0.6.9.17.dist-info → bmtool-0.6.9.18.dist-info}/WHEEL +0 -0
- {bmtool-0.6.9.17.dist-info → bmtool-0.6.9.18.dist-info}/entry_points.txt +0 -0
- {bmtool-0.6.9.17.dist-info → bmtool-0.6.9.18.dist-info}/licenses/LICENSE +0 -0
- {bmtool-0.6.9.17.dist-info → bmtool-0.6.9.18.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,79 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: bmtool
|
3
|
+
Version: 0.6.9.18
|
4
|
+
Summary: BMTool
|
5
|
+
Home-page: https://github.com/cyneuro/bmtool
|
6
|
+
Download-URL:
|
7
|
+
Author: Neural Engineering Laboratory at the University of Missouri
|
8
|
+
Author-email: gregglickert@mail.missouri.edu
|
9
|
+
License: MIT
|
10
|
+
Classifier: Intended Audience :: Developers
|
11
|
+
Classifier: Intended Audience :: Education
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
15
|
+
Classifier: Programming Language :: Python :: 3.6
|
16
|
+
Classifier: Topic :: Software Development :: Libraries
|
17
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
18
|
+
Classifier: Operating System :: OS Independent
|
19
|
+
Description-Content-Type: text/markdown
|
20
|
+
License-File: LICENSE
|
21
|
+
Requires-Dist: bmtk
|
22
|
+
Requires-Dist: click
|
23
|
+
Requires-Dist: clint
|
24
|
+
Requires-Dist: h5py
|
25
|
+
Requires-Dist: matplotlib
|
26
|
+
Requires-Dist: networkx
|
27
|
+
Requires-Dist: numpy
|
28
|
+
Requires-Dist: pandas
|
29
|
+
Requires-Dist: questionary
|
30
|
+
Requires-Dist: pynmodlt
|
31
|
+
Requires-Dist: xarray
|
32
|
+
Requires-Dist: fooof
|
33
|
+
Requires-Dist: requests
|
34
|
+
Requires-Dist: pyyaml
|
35
|
+
Requires-Dist: PyWavelets
|
36
|
+
Requires-Dist: numba
|
37
|
+
Dynamic: author
|
38
|
+
Dynamic: author-email
|
39
|
+
Dynamic: classifier
|
40
|
+
Dynamic: description
|
41
|
+
Dynamic: description-content-type
|
42
|
+
Dynamic: home-page
|
43
|
+
Dynamic: license
|
44
|
+
Dynamic: license-file
|
45
|
+
Dynamic: requires-dist
|
46
|
+
Dynamic: summary
|
47
|
+
|
48
|
+
# bmtool
|
49
|
+
A collection of modules to make developing [Neuron](https://www.neuron.yale.edu/neuron/) and [BMTK](https://alleninstitute.github.io/bmtk/) models easier.
|
50
|
+
|
51
|
+
[](https://github.com/cyneuro/bmtool/blob/master/LICENSE)
|
52
|
+
|
53
|
+
## In depth documentation and examples can be found [here](https://cyneuro.github.io/bmtool/)
|
54
|
+
|
55
|
+
## Getting Started
|
56
|
+
|
57
|
+
**Installation**
|
58
|
+
```bash
|
59
|
+
pip install bmtool
|
60
|
+
```
|
61
|
+
For developers who will be pulling down additional updates to this repository regularly use the following instead.
|
62
|
+
```bash
|
63
|
+
git clone https://github.com/cyneuro/bmtool.git
|
64
|
+
cd bmtool
|
65
|
+
python setup.py develop
|
66
|
+
```
|
67
|
+
Then download updates (from this directory) with
|
68
|
+
```bash
|
69
|
+
git pull
|
70
|
+
```
|
71
|
+
|
72
|
+
BMTool provides several modules to simplify the development of computational neuroscience models with NEURON and the Brain Modeling Toolkit (BMTK). It offers functionality for:
|
73
|
+
|
74
|
+
- **Single Cell Modeling**: Analyze passive properties, current injection, FI curves, and impedance profiles
|
75
|
+
- **Synapse Development**: Tools for tuning synaptic properties and gap junctions
|
76
|
+
- **Network Construction**: Connectors for building complex network structures
|
77
|
+
- **Visualization**: Plot connection matrices, network positions, and more
|
78
|
+
- **Simulation Management**: Run simulations on SLURM clusters with parameter sweeps
|
79
|
+
- **Analysis**: Process simulation results efficiently
|
@@ -19,9 +19,9 @@ bmtool/util/commands.py,sha256=zJF-fiLk0b8LyzHDfvewUyS7iumOxVnj33IkJDzux4M,64396
|
|
19
19
|
bmtool/util/util.py,sha256=00vOAwTVIifCqouBoFoT0lBashl4fCalrk8fhg_Uq4c,56654
|
20
20
|
bmtool/util/neuron/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
21
21
|
bmtool/util/neuron/celltuner.py,sha256=xSRpRN6DhPFz4q5buq_W8UmsD7BbUrkzYBEbKVloYss,87194
|
22
|
-
bmtool-0.6.9.
|
23
|
-
bmtool-0.6.9.
|
24
|
-
bmtool-0.6.9.
|
25
|
-
bmtool-0.6.9.
|
26
|
-
bmtool-0.6.9.
|
27
|
-
bmtool-0.6.9.
|
22
|
+
bmtool-0.6.9.18.dist-info/licenses/LICENSE,sha256=qrXg2jj6kz5d0EnN11hllcQt2fcWVNumx0xNbV05nyM,1068
|
23
|
+
bmtool-0.6.9.18.dist-info/METADATA,sha256=spdS9_tiyimQL_IyZT52Osm15hNSWPqa6LLWiVW0j44,2769
|
24
|
+
bmtool-0.6.9.18.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
25
|
+
bmtool-0.6.9.18.dist-info/entry_points.txt,sha256=0-BHZ6nUnh0twWw9SXNTiRmKjDnb1VO2DfG_-oprhAc,45
|
26
|
+
bmtool-0.6.9.18.dist-info/top_level.txt,sha256=gpd2Sj-L9tWbuJEd5E8C8S8XkNm5yUE76klUYcM-eWM,7
|
27
|
+
bmtool-0.6.9.18.dist-info/RECORD,,
|
@@ -1,610 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.4
|
2
|
-
Name: bmtool
|
3
|
-
Version: 0.6.9.17
|
4
|
-
Summary: BMTool
|
5
|
-
Home-page: https://github.com/cyneuro/bmtool
|
6
|
-
Download-URL:
|
7
|
-
Author: Neural Engineering Laboratory at the University of Missouri
|
8
|
-
Author-email: gregglickert@mail.missouri.edu
|
9
|
-
License: MIT
|
10
|
-
Classifier: Intended Audience :: Developers
|
11
|
-
Classifier: Intended Audience :: Education
|
12
|
-
Classifier: Intended Audience :: Science/Research
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
14
|
-
Classifier: Programming Language :: Python :: 3
|
15
|
-
Classifier: Programming Language :: Python :: 3.6
|
16
|
-
Classifier: Topic :: Software Development :: Libraries
|
17
|
-
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
18
|
-
Classifier: Operating System :: OS Independent
|
19
|
-
Description-Content-Type: text/markdown
|
20
|
-
License-File: LICENSE
|
21
|
-
Requires-Dist: bmtk
|
22
|
-
Requires-Dist: click
|
23
|
-
Requires-Dist: clint
|
24
|
-
Requires-Dist: h5py
|
25
|
-
Requires-Dist: matplotlib
|
26
|
-
Requires-Dist: networkx
|
27
|
-
Requires-Dist: numpy
|
28
|
-
Requires-Dist: pandas
|
29
|
-
Requires-Dist: questionary
|
30
|
-
Requires-Dist: pynmodlt
|
31
|
-
Requires-Dist: xarray
|
32
|
-
Requires-Dist: fooof
|
33
|
-
Requires-Dist: requests
|
34
|
-
Requires-Dist: pyyaml
|
35
|
-
Requires-Dist: PyWavelets
|
36
|
-
Requires-Dist: numba
|
37
|
-
Dynamic: author
|
38
|
-
Dynamic: author-email
|
39
|
-
Dynamic: classifier
|
40
|
-
Dynamic: description
|
41
|
-
Dynamic: description-content-type
|
42
|
-
Dynamic: home-page
|
43
|
-
Dynamic: license
|
44
|
-
Dynamic: license-file
|
45
|
-
Dynamic: requires-dist
|
46
|
-
Dynamic: summary
|
47
|
-
|
48
|
-
# bmtool
|
49
|
-
A collection of modules to make developing [Neuron](https://www.neuron.yale.edu/neuron/) and [BMTK](https://alleninstitute.github.io/bmtk/) models easier.
|
50
|
-
|
51
|
-
[](https://github.com/cyneuro/bmtool/blob/master/LICENSE)
|
52
|
-
|
53
|
-
## Table of Contents
|
54
|
-
- [Getting Started](#getting-started)
|
55
|
-
- [CLI](#cli)
|
56
|
-
- [Single Cell](#single-cell-module)
|
57
|
-
- [Synapses](#synapses-module)
|
58
|
-
- [Connectors](#connectors-module)
|
59
|
-
- [Bmplot](#bmplot-module)
|
60
|
-
- [Analysis](#analysis-module)
|
61
|
-
- [SLURM](#slurm-module)
|
62
|
-
- [Graphs](#graphs-module)
|
63
|
-
|
64
|
-
## Getting Started
|
65
|
-
|
66
|
-
**Installation**
|
67
|
-
```bash
|
68
|
-
pip install bmtool
|
69
|
-
```
|
70
|
-
For developers who will be pulling down additional updates to this repository regularly use the following instead.
|
71
|
-
```bash
|
72
|
-
git clone https://github.com/cyneuro/bmtool.git
|
73
|
-
cd bmtool
|
74
|
-
python setup.py develop
|
75
|
-
```
|
76
|
-
Then download updates (from this directory) with
|
77
|
-
```bash
|
78
|
-
git pull
|
79
|
-
```
|
80
|
-
|
81
|
-
## CLI
|
82
|
-
#### Many of modules available can be accesed using the command line
|
83
|
-
```bash
|
84
|
-
> cd your_bmtk_model_directory
|
85
|
-
> bmtool
|
86
|
-
Usage: bmtool [OPTIONS] COMMAND [ARGS]...
|
87
|
-
|
88
|
-
Options:
|
89
|
-
--verbose Verbose printing
|
90
|
-
--help Show this message and exit.
|
91
|
-
|
92
|
-
Commands:
|
93
|
-
debug
|
94
|
-
plot
|
95
|
-
util
|
96
|
-
|
97
|
-
>
|
98
|
-
> bmtool plot
|
99
|
-
Usage: bmtool plot [OPTIONS] COMMAND [ARGS]...
|
100
|
-
|
101
|
-
Options:
|
102
|
-
--config PATH Configuration file to use, default: "simulation_config.json"
|
103
|
-
--no-display When set there will be no plot displayed, useful for saving
|
104
|
-
plots
|
105
|
-
--help Show this message and exit.
|
106
|
-
|
107
|
-
Commands:
|
108
|
-
connection Display information related to neuron connections
|
109
|
-
positions Plot cell positions for a given set of populations
|
110
|
-
raster Plot the spike raster for a given population
|
111
|
-
report Plot the specified report using BMTK's default report plotter
|
112
|
-
>
|
113
|
-
```
|
114
|
-
|
115
|
-
## Single Cell Module
|
116
|
-
- [Passive properties](#passive-properties)
|
117
|
-
- [Current injection](#current-clamp)
|
118
|
-
- [FI curve](#fi-curve)
|
119
|
-
- [ZAP](#zap)
|
120
|
-
- [Tuner](#single-cell-tuning)
|
121
|
-
- [VHalf Segregation](#vhalf-segregation-module)
|
122
|
-
#### Jupyter Notebook for how to use passive properties, current injection, FI curve, and ZAP can be found [here](examples/single_cell/). There are versions with example how to use single cells in HOC format and in the Allen Database format.
|
123
|
-
|
124
|
-
#### The single cell module can take any neuron HOC object and calculate passive properties, run a current clamp, calculate FI curve, or run a ZAP. The module is designed to work with HOC template files and can also turn Allen database SWC and json files into HOC objects and use those. The examples below uses "Cell_Cf" which is the name of a HOC templated loaded by the profiler. E
|
125
|
-
|
126
|
-
#### First step is it initialize the profiler.
|
127
|
-
|
128
|
-
|
129
|
-
```python
|
130
|
-
from bmtool.singlecell import Profiler
|
131
|
-
profiler = Profiler(template_dir='templates', mechanism_dir = 'mechanisms', dt=0.1)
|
132
|
-
```
|
133
|
-
|
134
|
-
#### Can provide any single cell module with either name of Hoc template or a HOC object. If you are wanted to use Allen database SWC and json files you can use the following function
|
135
|
-
|
136
|
-
|
137
|
-
```python
|
138
|
-
from bmtool.singlecell import load_allen_database_cells
|
139
|
-
cell = load_allen_database_cells(path_to_SWC_file,path_to_json_file)
|
140
|
-
```
|
141
|
-
|
142
|
-
### Passive properties
|
143
|
-
#### Calculates the passive properties(V-rest, Rin and tau) of a HOC object
|
144
|
-
|
145
|
-
|
146
|
-
```python
|
147
|
-
from bmtool.singlecell import Passive,run_and_plot
|
148
|
-
import matplotlib.pyplot as plt
|
149
|
-
sim = Passive('Cell_Cf', inj_amp=-100., inj_delay=1500., inj_dur=1000., tstop=2500., method='exp2')
|
150
|
-
title = 'Passive Cell Current Injection'
|
151
|
-
xlabel = 'Time (ms)'
|
152
|
-
ylabel = 'Membrane Potential (mV)'
|
153
|
-
X, Y = run_and_plot(sim, title, xlabel, ylabel, plot_injection_only=True)
|
154
|
-
plt.gca().plot(*sim.double_exponential_fit(), 'r:', label='double exponential fit')
|
155
|
-
plt.legend()
|
156
|
-
plt.show()
|
157
|
-
```
|
158
|
-
|
159
|
-
Injection location: Cell_Cf[0].soma[0](0.5)
|
160
|
-
Recording: Cell_Cf[0].soma[0](0.5)._ref_v
|
161
|
-
Running simulation for passive properties...
|
162
|
-
|
163
|
-
V Rest: -70.21 (mV)
|
164
|
-
Resistance: 128.67 (MOhms)
|
165
|
-
Membrane time constant: 55.29 (ms)
|
166
|
-
|
167
|
-
V_rest Calculation: Voltage taken at time 1500.0 (ms) is
|
168
|
-
-70.21 (mV)
|
169
|
-
|
170
|
-
R_in Calculation: dV/dI = (v_final-v_rest)/(i_final-i_start)
|
171
|
-
(-83.08 - (-70.21)) / (-0.1 - 0)
|
172
|
-
12.87 (mV) / 0.1 (nA) = 128.67 (MOhms)
|
173
|
-
|
174
|
-
Tau Calculation: Fit a double exponential curve to the membrane potential response
|
175
|
-
f(t) = a0 + a1*exp(-t/tau1) + a2*exp(-t/tau2)
|
176
|
-
Constained by initial value: f(0) = a0 + a1 + a2 = v_rest
|
177
|
-
Fit parameters: (a0, a1, a2, tau1, tau2) = (-83.06, -3306.48, 3319.33, 55.29, 55.15)
|
178
|
-
Membrane time constant is determined from the slowest exponential term: 55.29 (ms)
|
179
|
-
|
180
|
-
Sag potential: v_sag = v_peak - v_final = -0.66 (mV)
|
181
|
-
Normalized sag potential: v_sag / (v_peak - v_rest) = 0.049
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-

|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
### Current clamp
|
192
|
-
#### Runs a current clamp on a HOC object
|
193
|
-
|
194
|
-
|
195
|
-
```python
|
196
|
-
from bmtool.singlecell import CurrentClamp
|
197
|
-
sim = CurrentClamp('Cell_Cf', inj_amp=350., inj_delay=1500., inj_dur=1000., tstop=3000., threshold=-15.)
|
198
|
-
X, Y = run_and_plot(sim, title='Current Injection', xlabel='Time (ms)',
|
199
|
-
ylabel='Membrane Potential (mV)', plot_injection_only=True)
|
200
|
-
plt.show()
|
201
|
-
```
|
202
|
-
|
203
|
-
Injection location: Cell_Cf[1].soma[0](0.5)
|
204
|
-
Recording: Cell_Cf[1].soma[0](0.5)._ref_v
|
205
|
-
Current clamp simulation running...
|
206
|
-
|
207
|
-
Number of spikes: 19
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-

|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
### FI curve
|
218
|
-
#### Calculates the frequency vs current injection plot for a HOC object
|
219
|
-
|
220
|
-
|
221
|
-
```python
|
222
|
-
from bmtool.singlecell import FI
|
223
|
-
sim = FI('Cell_Cf', i_start=0., i_stop=1000., i_increment=50., tstart=1500.,threshold=-15.)
|
224
|
-
X, Y = run_and_plot(sim, title='FI Curve', xlabel='Injection (nA)', ylabel='# Spikes')
|
225
|
-
plt.show()
|
226
|
-
```
|
227
|
-
|
228
|
-
Injection location: Cell_Cf[21].soma[0](0.5)
|
229
|
-
Recording: Cell_Cf[21].soma[0](0.5)._ref_v
|
230
|
-
Running simulations for FI curve...
|
231
|
-
|
232
|
-
Results
|
233
|
-
Injection (nA): 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
|
234
|
-
Number of spikes: 0, 1, 10, 12, 15, 16, 17, 19, 20, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-

|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
### ZAP
|
245
|
-
#### Runs a ZAP on a HOC object
|
246
|
-
|
247
|
-
|
248
|
-
```python
|
249
|
-
from bmtool.singlecell import ZAP
|
250
|
-
sim = ZAP('Cell_Cf')
|
251
|
-
X, Y = run_and_plot(sim)
|
252
|
-
plt.show()
|
253
|
-
```
|
254
|
-
|
255
|
-
Injection location: Cell_Cf[22].soma[0](0.5)
|
256
|
-
Recording: Cell_Cf[22].soma[0](0.5)._ref_v
|
257
|
-
ZAP current simulation running...
|
258
|
-
|
259
|
-
Chirp current injection with frequency changing from 0 to 15 Hz over 15 seconds
|
260
|
-
Impedance is calculated as the ratio of FFT amplitude of membrane voltage to FFT amplitude of chirp current
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-

|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
### Single Cell Tuning
|
271
|
-
|
272
|
-
#### From a BMTK Model directory containing a `simulation_config.json` file:
|
273
|
-
```bash
|
274
|
-
bmtool util cell tune --builder
|
275
|
-
```
|
276
|
-
|
277
|
-
#### For non-BMTK cell tuning:
|
278
|
-
```bash
|
279
|
-
bmtool util cell --template TemplateFile.hoc --mod-folder ./ tune --builder
|
280
|
-
```
|
281
|
-

|
282
|
-
|
283
|
-
### VHalf Segregation Module
|
284
|
-
|
285
|
-
#### Based on the Alturki et al. (2016) paper.
|
286
|
-
|
287
|
-
#### Segregate your channel activation for an easier time tuning your cells.
|
288
|
-
|
289
|
-
|
290
|
-
```bash
|
291
|
-
> bmtool util cell vhseg --help
|
292
|
-
|
293
|
-
Usage: bmtool util cell vhseg [OPTIONS]
|
294
|
-
|
295
|
-
Alturki et al. (2016) V1/2 Automated Segregation Interface, simplify
|
296
|
-
tuning by separating channel activation
|
297
|
-
|
298
|
-
Options:
|
299
|
-
--title TEXT
|
300
|
-
--tstop INTEGER
|
301
|
-
--outhoc TEXT Specify the file you want the modified cell template
|
302
|
-
written to
|
303
|
-
--outfolder TEXT Specify the directory you want the modified cell
|
304
|
-
template and mod files written to (default: _seg)
|
305
|
-
--outappend Append out instead of overwriting (default: False)
|
306
|
-
--debug Print all debug statements
|
307
|
-
--fminpa INTEGER Starting FI Curve amps (default: 0)
|
308
|
-
--fmaxpa INTEGER Ending FI Curve amps (default: 1000)
|
309
|
-
--fincrement INTEGER Increment the FI Curve amps by supplied pA (default:
|
310
|
-
100)
|
311
|
-
--infvars TEXT Specify the inf variables to plot, skips the wizard.
|
312
|
-
(Comma separated, eg: inf_mech,minf_mech2,ninf_mech2)
|
313
|
-
--segvars TEXT Specify the segregation variables to globally set,
|
314
|
-
skips the wizard. (Comma separated, eg:
|
315
|
-
mseg_mech,nseg_mech2)
|
316
|
-
--eleak TEXT Specify the eleak var manually
|
317
|
-
--gleak TEXT Specify the gleak var manually
|
318
|
-
--othersec TEXT Specify other sections that a window should be
|
319
|
-
generated for (Comma separated, eg: dend[0],dend[1])
|
320
|
-
--help Show this message and exit.
|
321
|
-
|
322
|
-
```
|
323
|
-
|
324
|
-
### Examples
|
325
|
-
|
326
|
-
#### Wizard Mode (Interactive)
|
327
|
-
|
328
|
-
```bash
|
329
|
-
> bmtool util cell vhseg
|
330
|
-
|
331
|
-
? Select a cell: CA3PyramidalCell
|
332
|
-
Using section dend[0]
|
333
|
-
? Show other sections? (default: No) Yes
|
334
|
-
? Select other sections (space bar to select): done (2 selections)
|
335
|
-
? Select inf variables to plot (space bar to select): done (5 selections)
|
336
|
-
? Select segregation variables [OR VARIABLES YOU WANT TO CHANGE ON ALL SEGMENTS at the same time] (space bar to select): done (2 selections)
|
337
|
-
```
|
338
|
-
|
339
|
-
#### Command Mode (Non-interactive)
|
340
|
-
|
341
|
-
```bash
|
342
|
-
bmtool util cell --template CA3PyramidalCell vhseg --othersec dend[0],dend[1] --infvars inf_im --segvars gbar_im --gleak gl_ichan2CA3 --eleak el_ichan2CA3
|
343
|
-
```
|
344
|
-
|
345
|
-
Example:
|
346
|
-
|
347
|
-

|
348
|
-
|
349
|
-
#### Simple models can utilize
|
350
|
-
``` bash
|
351
|
-
bmtool util cell --hoc cell_template.hoc vhsegbuild --build
|
352
|
-
bmtool util cell --hoc segmented_template.hoc vhsegbuild
|
353
|
-
```
|
354
|
-
ex: [https://github.com/tjbanks/two-cell-hco](https://github.com/tjbanks/two-cell-hco)
|
355
|
-
|
356
|
-
### Synapses Module
|
357
|
-
-[SynapticTuner](#synaptictuner)
|
358
|
-
-Gap Junction tuner
|
359
|
-
|
360
|
-
#### SynapticTuner - Aids in the tuning of synapses by printing out synaptic properties and giving the user sliders in a Jupyter notebook to tune the synapse. For more info view the example [here](examples/synapses/synaptic_tuner.ipynb)
|
361
|
-
#### GapJunctionTuner - Provides jupyter sliders to tune for coupling coefficient in a similar style to the SynapticTuner. The Gap junction tuner also has an optimizer which can find the best resistance for the desired coupling coefficient. an example can be viewed [here](examples/synapses/gap_junction_tuner.ipynb)
|
362
|
-
|
363
|
-
### Connectors Module
|
364
|
-
- [UnidirectionConnector](#unidirectional-connector---unidirectional-connections-in-bmtk-network-model-with-given-probability-within-a-single-population-or-between-two-populations)
|
365
|
-
- [ReciprocalConnector](#recipical-connector---buiilding-connections-in-bmtk-network-model-with-reciprocal-probability-within-a-single-population-or-between-two-populations)
|
366
|
-
- [CorrelatedGapJunction](#correlatedgapjunction)
|
367
|
-
- [OneToOneSequentialConnector](#onetoonesequentialconnector)
|
368
|
-
|
369
|
-
#### This module contains helper functions and classes that work with BMTK's NetworkBuilder module in building networks. It facilitates building reciprocal connections, distance dependent connections, afferent connections, etc. See documentation inside the script `connectors.py` for more notes on usage.
|
370
|
-
|
371
|
-
#### All connector example below use the following network node structure
|
372
|
-
```python
|
373
|
-
from bmtk.builder import NetworkBuilder
|
374
|
-
net = NetworkBuilder('example_net')
|
375
|
-
net.add_nodes(N=100, pop_name='PopA',model_type = 'biophysical')
|
376
|
-
net.add_nodes(N=100, pop_name='PopB',model_type = 'biophysical')
|
377
|
-
|
378
|
-
background = NetworkBuilder('background')
|
379
|
-
background.add_nodes(N=300,pop_name='tON',potential='exc',model_type='virtual')
|
380
|
-
```
|
381
|
-
|
382
|
-
#### Unidirectional connector - Object for building unidirectional connections in bmtk network model with given probability within a single population (or between two populations).
|
383
|
-
```python
|
384
|
-
from bmtool.connectors import UnidirectionConnector
|
385
|
-
connector = UnidirectionConnector(p=0.15, n_syn=1)
|
386
|
-
connector.setup_nodes(source=net.nodes(pop_name = 'PopA'), target=net.nodes(pop_name = 'PopB'))
|
387
|
-
net.add_edges(**connector.edge_params())
|
388
|
-
```
|
389
|
-
#### Recipical connector - Object for building connections in bmtk network model with reciprocal probability within a single population (or between two populations)
|
390
|
-
```python
|
391
|
-
from bmtool.connectors import ReciprocalConnector
|
392
|
-
connector = ReciprocalConnector(p0=0.15, pr=0.06767705087, n_syn0=1, n_syn1=1,estimate_rho=False)
|
393
|
-
connector.setup_nodes(source=net.nodes(pop_name = 'PopA'), target=net.nodes(pop_name = 'PopA'))
|
394
|
-
net.add_edges(**connector.edge_params())
|
395
|
-
```
|
396
|
-
#### CorrelatedGapJunction - Object for building gap junction connections in bmtk network model with given probabilities within a single population which could be correlated with the recurrent chemical synapses in this population.
|
397
|
-
```python
|
398
|
-
from bmtool.connectors import ReciprocalConnector, CorrelatedGapJunction
|
399
|
-
connector = ReciprocalConnector(p0=0.15, pr=0.06, n_syn0=1, n_syn1=1, estimate_rho=False)
|
400
|
-
connector.setup_nodes(source=net.nodes(pop_name='PopA'), target=net.nodes(pop_name='PopA'))
|
401
|
-
net.add_edges(**connector.edge_params())
|
402
|
-
gap_junc = CorrelatedGapJunction(p_non=0.1228,p_uni=0.56,p_rec=1,connector=connector)
|
403
|
-
gap_junc.setup_nodes(source=net.nodes(pop_name='PopA'), target=net.nodes(pop_name='PopA'))
|
404
|
-
conn = net.add_edges(is_gap_junction=True, syn_weight=0.0000495, target_sections=None,afferent_section_id=0, afferent_section_pos=0.5,
|
405
|
-
**gap_junc.edge_params())
|
406
|
-
```
|
407
|
-
|
408
|
-
#### OneToOneSequentialConnector - Object for building one to one correspondence connections in bmtk network model with between two populations. One of the population can consist of multiple sub-populations.
|
409
|
-
```python
|
410
|
-
from bmtool.connectors import OneToOneSequentialConnector
|
411
|
-
connector = OneToOneSequentialConnector()
|
412
|
-
connector.setup_nodes(source=background.nodes(), target=net.nodes(pop_name = 'PopA'))
|
413
|
-
net.add_edges(**connector.edge_params())
|
414
|
-
connector.setup_nodes(target=net.nodes(pop_name = 'PopB'))
|
415
|
-
net.add_edges(**connector.edge_params())
|
416
|
-
```
|
417
|
-
|
418
|
-
## Bmplot Module
|
419
|
-
- [total_connection_matrix](#total_connection_matrix)
|
420
|
-
- [percent_connection_matrix](#percent_connection_matrix)
|
421
|
-
- [connector_percent_matrix](#connector_percent_matrix)
|
422
|
-
- [convergence_connection_matrix](#convergence_connection_matrix)
|
423
|
-
- [divergence_connection_matrix](#divergence_connection_matrix)
|
424
|
-
- [gap_junction_matrix](#gap_junction_matrix)
|
425
|
-
- [connection_distance](#connection_distance)
|
426
|
-
- [connection_histogram](#connection_histogram)
|
427
|
-
- [plot_3d_positions](#plot_3d_positions)
|
428
|
-
- [plot_3d_cell_rotation](#plot_3d_cell_rotation)
|
429
|
-
### for a demo please see the notebook [here](examples/bmplot/bmplot.ipynb)
|
430
|
-
|
431
|
-
### total_connection_matrix
|
432
|
-
#### Generates a table of total number of connections each neuron population recieves
|
433
|
-
|
434
|
-
|
435
|
-
### percent_connection_matrix
|
436
|
-
#### Generates a table of the percent connectivity of neuron populations.Method can change if you want the table to be total percent connectivity, only unidirectional connectivity or only bi directional connectvity
|
437
|
-
|
438
|
-
### connector_percent_matrix
|
439
|
-
#### Generates a table of the percent connectivity using the output from bmtool.connector. By default will generate the percent connectivity of the possible connections meaning factoring in distance rules.
|
440
|
-
|
441
|
-
|
442
|
-
### convergence_connection_matrix
|
443
|
-
#### Generates a table of the mean convergence of neuron populations. Method can be changed to show max, min, mean, or std for convergence a cell recieves
|
444
|
-
|
445
|
-
|
446
|
-
### divergence_connection_matrix
|
447
|
-
#### Generates a table of the mean divergence of neuron populations. Method can be changed to show max, min, mean or std divergence a cell recieves.
|
448
|
-
|
449
|
-
|
450
|
-
### gap_junction_matrix
|
451
|
-
#### While gap junctions can be include in the above plots, you can use this function to only view gap junctions. Method can be either 'convergence' or 'percent' connections to generate different plots
|
452
|
-
|
453
|
-
|
454
|
-
### connection_distance
|
455
|
-
#### Generates a 3d plot with the source and target cells location along with a histogram showing connection distance
|
456
|
-
|
457
|
-
### connection_histogram
|
458
|
-
#### Generates a histogram of the distribution of connections a population of cells give to individual cells of another population
|
459
|
-
|
460
|
-
|
461
|
-
### plot_3d_positions
|
462
|
-
#### Generates a plot of cells positions in 3D space
|
463
|
-
|
464
|
-
|
465
|
-
### plot_3d_cell_rotation
|
466
|
-
#### Generates a plot of cells location in 3D plot and also the cells rotation
|
467
|
-
|
468
|
-
|
469
|
-
### Plot Connection Diagram
|
470
|
-
|
471
|
-
|
472
|
-
```python
|
473
|
-
bmplot.plot_network_graph(config='config.json',sources='LA',targets='LA',tids='pop_name',sids='pop_name',no_prepend_pop=True)
|
474
|
-
```
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-

|
479
|
-
|
480
|
-
|
481
|
-
## Analysis Module
|
482
|
-
### A notebook example of how to use the spikes module can be found [here](examples/analysis/using_spikes.ipynb)
|
483
|
-
|
484
|
-
## SLURM Module
|
485
|
-
### This is an extremely helpful module that can simplify using SLURM too submit your models. There is also features to enable doing a seedSweep. This will vary the parameters of the simulation and make tuning the model easier. An example can be found [here](examples/SLURM/using_BlockRunner.ipynb)
|
486
|
-
|
487
|
-
|
488
|
-
## Graphs Module
|
489
|
-
- [Generate graph](#generate-graph)
|
490
|
-
- [Plot Graph](#plot-graph)
|
491
|
-
- [Connectioon table](#generate-graph-connection-table)
|
492
|
-
|
493
|
-
### Generate Graph
|
494
|
-
|
495
|
-
```python
|
496
|
-
from bmtool import graphs
|
497
|
-
import networkx as nx
|
498
|
-
|
499
|
-
Graph = graphs.generate_graph(config='config.json',source='LA',target='LA')
|
500
|
-
print("Number of nodes:", Graph.number_of_nodes())
|
501
|
-
print("Number of edges:", Graph.number_of_edges())
|
502
|
-
print("Node labels:", set(nx.get_node_attributes(Graph, 'label').values()))
|
503
|
-
```
|
504
|
-
|
505
|
-
Number of nodes: 2000
|
506
|
-
Number of edges: 84235
|
507
|
-
Node labels: {'SOM', 'PNc', 'PNa', 'PV'}
|
508
|
-
|
509
|
-
|
510
|
-
### Plot Graph
|
511
|
-
#### Generates an interactive plot showing nodes, edges and # of connections
|
512
|
-
|
513
|
-
|
514
|
-
```python
|
515
|
-
graphs.plot_graph(Graph)
|
516
|
-
```
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
### Generate graph connection table
|
521
|
-
#### Generates a CSV of all cells and the number of connections each individual cell receives
|
522
|
-
|
523
|
-
|
524
|
-
```python
|
525
|
-
import pandas as pd
|
526
|
-
graphs.export_node_connections_to_csv(Graph, 'node_connections.csv')
|
527
|
-
df = pd.read_csv('node_connections.csv')
|
528
|
-
df.head()
|
529
|
-
```
|
530
|
-
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
<div>
|
535
|
-
<style scoped>
|
536
|
-
.dataframe tbody tr th:only-of-type {
|
537
|
-
vertical-align: middle;
|
538
|
-
}
|
539
|
-
|
540
|
-
.dataframe tbody tr th {
|
541
|
-
vertical-align: top;
|
542
|
-
}
|
543
|
-
|
544
|
-
.dataframe thead th {
|
545
|
-
text-align: right;
|
546
|
-
}
|
547
|
-
</style>
|
548
|
-
<table border="1" class="dataframe">
|
549
|
-
<thead>
|
550
|
-
<tr style="text-align: right;">
|
551
|
-
<th></th>
|
552
|
-
<th>Unnamed: 0</th>
|
553
|
-
<th>Node Label</th>
|
554
|
-
<th>PNc Connections</th>
|
555
|
-
<th>PV Connections</th>
|
556
|
-
<th>SOM Connections</th>
|
557
|
-
<th>PNa Connections</th>
|
558
|
-
</tr>
|
559
|
-
</thead>
|
560
|
-
<tbody>
|
561
|
-
<tr>
|
562
|
-
<th>0</th>
|
563
|
-
<td>0</td>
|
564
|
-
<td>PNa</td>
|
565
|
-
<td>15</td>
|
566
|
-
<td>11</td>
|
567
|
-
<td>9</td>
|
568
|
-
<td>6</td>
|
569
|
-
</tr>
|
570
|
-
<tr>
|
571
|
-
<th>1</th>
|
572
|
-
<td>1</td>
|
573
|
-
<td>PNa</td>
|
574
|
-
<td>24</td>
|
575
|
-
<td>25</td>
|
576
|
-
<td>6</td>
|
577
|
-
<td>21</td>
|
578
|
-
</tr>
|
579
|
-
<tr>
|
580
|
-
<th>2</th>
|
581
|
-
<td>2</td>
|
582
|
-
<td>PNa</td>
|
583
|
-
<td>27</td>
|
584
|
-
<td>28</td>
|
585
|
-
<td>12</td>
|
586
|
-
<td>25</td>
|
587
|
-
</tr>
|
588
|
-
<tr>
|
589
|
-
<th>3</th>
|
590
|
-
<td>3</td>
|
591
|
-
<td>PNa</td>
|
592
|
-
<td>19</td>
|
593
|
-
<td>27</td>
|
594
|
-
<td>15</td>
|
595
|
-
<td>35</td>
|
596
|
-
</tr>
|
597
|
-
<tr>
|
598
|
-
<th>4</th>
|
599
|
-
<td>4</td>
|
600
|
-
<td>PNa</td>
|
601
|
-
<td>25</td>
|
602
|
-
<td>11</td>
|
603
|
-
<td>8</td>
|
604
|
-
<td>16</td>
|
605
|
-
</tr>
|
606
|
-
</tbody>
|
607
|
-
</table>
|
608
|
-
</div>
|
609
|
-
|
610
|
-
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|