bluecellulab 2.5.10__py3-none-any.whl → 2.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bluecellulab might be problematic. Click here for more details.
- bluecellulab/__init__.py +2 -2
- bluecellulab/analysis/inject_sequence.py +3 -7
- bluecellulab/circuit/circuit_access/bluepy_circuit_access.py +2 -1
- bluecellulab/circuit/circuit_access/sonata_circuit_access.py +2 -1
- bluecellulab/simulation/neuron_globals.py +13 -0
- bluecellulab/simulation/parallel.py +36 -0
- bluecellulab/stimulus/factory.py +225 -90
- bluecellulab/tools.py +2 -1
- bluecellulab/utils.py +20 -22
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/METADATA +1 -1
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/RECORD +15 -14
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/AUTHORS.txt +0 -0
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/LICENSE +0 -0
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/WHEEL +0 -0
- {bluecellulab-2.5.10.dist-info → bluecellulab-2.6.0.dist-info}/top_level.txt +0 -0
bluecellulab/__init__.py
CHANGED
|
@@ -7,7 +7,7 @@ try:
|
|
|
7
7
|
except ImportError:
|
|
8
8
|
BLUEPY_AVAILABLE = False
|
|
9
9
|
|
|
10
|
-
from .importer import
|
|
10
|
+
from bluecellulab.importer import import_hoc
|
|
11
11
|
from .verbosity import *
|
|
12
12
|
from .cell import Cell, create_ball_stick # NOQA
|
|
13
13
|
from .circuit import EmodelProperties
|
|
@@ -19,7 +19,7 @@ from .psegment import PSegment # NOQA
|
|
|
19
19
|
from .simulation import Simulation # NOQA
|
|
20
20
|
from .rngsettings import RNGSettings # NOQA
|
|
21
21
|
from .circuit_simulation import CircuitSimulation, CircuitSimulation # NOQA
|
|
22
|
-
|
|
22
|
+
import neuron
|
|
23
23
|
|
|
24
24
|
from .simulation.neuron_globals import NeuronGlobals
|
|
25
25
|
|
|
@@ -7,9 +7,9 @@ import neuron
|
|
|
7
7
|
import numpy as np
|
|
8
8
|
from bluecellulab.cell.core import Cell
|
|
9
9
|
from bluecellulab.cell.template import TemplateParams
|
|
10
|
+
from bluecellulab.simulation.parallel import IsolatedProcess
|
|
10
11
|
from bluecellulab.simulation.simulation import Simulation
|
|
11
12
|
from bluecellulab.stimulus.factory import Stimulus, StimulusFactory
|
|
12
|
-
from bluecellulab.utils import IsolatedProcess
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
class StimulusName(Enum):
|
|
@@ -35,7 +35,6 @@ def run_stimulus(
|
|
|
35
35
|
stimulus: Stimulus,
|
|
36
36
|
section: str,
|
|
37
37
|
segment: float,
|
|
38
|
-
duration: float,
|
|
39
38
|
) -> Recording:
|
|
40
39
|
"""Creates a cell and stimulates it with a given stimulus.
|
|
41
40
|
|
|
@@ -44,7 +43,6 @@ def run_stimulus(
|
|
|
44
43
|
stimulus: The input stimulus to inject into the cell.
|
|
45
44
|
section: Name of the section of cell where the stimulus is to be injected.
|
|
46
45
|
segment: The segment of the section where the stimulus is to be injected.
|
|
47
|
-
duration: The duration for which the simulation is to be run.
|
|
48
46
|
|
|
49
47
|
Returns:
|
|
50
48
|
The voltage-time recording at the specified location.
|
|
@@ -61,7 +59,7 @@ def run_stimulus(
|
|
|
61
59
|
current_vector = neuron.h.Vector()
|
|
62
60
|
current_vector.record(iclamp._ref_i)
|
|
63
61
|
simulation = Simulation(cell)
|
|
64
|
-
simulation.run(
|
|
62
|
+
simulation.run(stimulus.stimulus_time)
|
|
65
63
|
current = np.array(current_vector.to_python())
|
|
66
64
|
voltage = cell.get_voltage_recording(neuron_section, segment)
|
|
67
65
|
time = cell.get_time()
|
|
@@ -74,7 +72,6 @@ def apply_multiple_step_stimuli(
|
|
|
74
72
|
cell: Cell,
|
|
75
73
|
stimulus_name: StimulusName,
|
|
76
74
|
amplitudes: Sequence[float],
|
|
77
|
-
duration: float,
|
|
78
75
|
section_name: str | None = None,
|
|
79
76
|
segment: float = 0.5,
|
|
80
77
|
n_processes: int | None = None,
|
|
@@ -85,7 +82,6 @@ def apply_multiple_step_stimuli(
|
|
|
85
82
|
cell: The cell to which the stimuli are applied.
|
|
86
83
|
stimulus_name: The name of the stimulus to apply.
|
|
87
84
|
amplitudes: The amplitudes of the stimuli to apply.
|
|
88
|
-
duration: The duration for which each stimulus is applied.
|
|
89
85
|
section_name: Section name of the cell where the stimuli are applied.
|
|
90
86
|
If None, the stimuli are applied at the soma[0] of the cell.
|
|
91
87
|
segment: The segment of the section where the stimuli are applied.
|
|
@@ -116,7 +112,7 @@ def apply_multiple_step_stimuli(
|
|
|
116
112
|
else:
|
|
117
113
|
raise ValueError("Unknown stimulus name.")
|
|
118
114
|
|
|
119
|
-
task_args.append((cell.template_params, stimulus, section_name, segment
|
|
115
|
+
task_args.append((cell.template_params, stimulus, section_name, segment))
|
|
120
116
|
|
|
121
117
|
with IsolatedProcess(processes=n_processes) as pool:
|
|
122
118
|
# Map expects a function and a list of argument tuples
|
|
@@ -19,8 +19,9 @@ import os
|
|
|
19
19
|
from pathlib import Path
|
|
20
20
|
from typing import Optional
|
|
21
21
|
|
|
22
|
+
import neuron
|
|
22
23
|
import pandas as pd
|
|
23
|
-
from bluecellulab import circuit
|
|
24
|
+
from bluecellulab import circuit
|
|
24
25
|
from bluecellulab.circuit.circuit_access import EmodelProperties
|
|
25
26
|
from bluecellulab.circuit.config import BluepySimulationConfig
|
|
26
27
|
from bluecellulab.circuit.config.definition import SimulationConfig
|
|
@@ -22,8 +22,9 @@ from bluepysnap.bbp import Cell as SnapCell
|
|
|
22
22
|
from bluepysnap.circuit_ids import CircuitNodeId, CircuitEdgeIds
|
|
23
23
|
from bluepysnap.exceptions import BluepySnapError
|
|
24
24
|
from bluepysnap import Circuit as SnapCircuit
|
|
25
|
+
import neuron
|
|
25
26
|
import pandas as pd
|
|
26
|
-
from bluecellulab import circuit
|
|
27
|
+
from bluecellulab import circuit
|
|
27
28
|
from bluecellulab.circuit.circuit_access.definition import EmodelProperties
|
|
28
29
|
from bluecellulab.circuit import CellId, SynapseProperty
|
|
29
30
|
from bluecellulab.circuit.config import SimulationConfig
|
|
@@ -13,6 +13,7 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
"""Module that handles the global NEURON parameters."""
|
|
15
15
|
|
|
16
|
+
from typing import NamedTuple
|
|
16
17
|
import neuron
|
|
17
18
|
from bluecellulab.circuit.config.sections import Conditions, MechanismConditions
|
|
18
19
|
from bluecellulab.exceptions import error_context
|
|
@@ -62,6 +63,11 @@ def set_minis_single_vesicle_values(mech_conditions: MechanismConditions) -> Non
|
|
|
62
63
|
)
|
|
63
64
|
|
|
64
65
|
|
|
66
|
+
class NeuronGlobalParams(NamedTuple):
|
|
67
|
+
temperature: float
|
|
68
|
+
v_init: float
|
|
69
|
+
|
|
70
|
+
|
|
65
71
|
class NeuronGlobals:
|
|
66
72
|
_instance = None
|
|
67
73
|
|
|
@@ -96,3 +102,10 @@ class NeuronGlobals:
|
|
|
96
102
|
def v_init(self, value):
|
|
97
103
|
self._v_init = value
|
|
98
104
|
neuron.h.v_init = value
|
|
105
|
+
|
|
106
|
+
def export_params(self) -> NeuronGlobalParams:
|
|
107
|
+
return NeuronGlobalParams(self.temperature, self.v_init)
|
|
108
|
+
|
|
109
|
+
def load_params(self, params: NeuronGlobalParams) -> None:
|
|
110
|
+
self.temperature = params.temperature
|
|
111
|
+
self.v_init = params.v_init
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
"""Controlled simulations in parallel."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
from multiprocessing.pool import Pool
|
|
5
|
+
from bluecellulab.simulation.neuron_globals import NeuronGlobals
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class IsolatedProcess(Pool):
|
|
9
|
+
"""Multiprocessing Pool that restricts a worker to run max 1 process.
|
|
10
|
+
|
|
11
|
+
Use this when running isolated NEURON simulations. Running 2 NEURON
|
|
12
|
+
simulations on a single process is to be avoided. Required global
|
|
13
|
+
NEURON simulation parameters will automatically be passed to each
|
|
14
|
+
worker.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
def __init__(self, processes: int | None = 1):
|
|
18
|
+
"""Initialize the IsolatedProcess pool.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
processes: The number of processes to use for running the simulations.
|
|
22
|
+
If set to None, then the number returned by os.cpu_count() is used.
|
|
23
|
+
"""
|
|
24
|
+
neuron_global_params = NeuronGlobals.get_instance().export_params()
|
|
25
|
+
super().__init__(
|
|
26
|
+
processes=processes,
|
|
27
|
+
initializer=self.init_worker,
|
|
28
|
+
initargs=(neuron_global_params,),
|
|
29
|
+
maxtasksperchild=1,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
@staticmethod
|
|
33
|
+
def init_worker(neuron_global_params):
|
|
34
|
+
"""Load global parameters for the NEURON environment in each worker
|
|
35
|
+
process."""
|
|
36
|
+
NeuronGlobals.get_instance().load_params(neuron_global_params)
|
bluecellulab/stimulus/factory.py
CHANGED
|
@@ -39,38 +39,38 @@ class Stimulus(ABC):
|
|
|
39
39
|
ax.set_title(self.__class__.__name__)
|
|
40
40
|
return ax
|
|
41
41
|
|
|
42
|
-
def plot_during_simulation(self, duration: float, ax=None, **kwargs):
|
|
43
|
-
if ax is None:
|
|
44
|
-
ax = plt.gca()
|
|
45
|
-
# Create an array for the entire duration
|
|
46
|
-
full_time = np.arange(0, duration, self.dt)
|
|
47
|
-
full_current = np.zeros_like(full_time)
|
|
48
|
-
|
|
49
|
-
# Replace the corresponding values with self.time and self.current
|
|
50
|
-
indices = (self.time / self.dt).astype(int)
|
|
51
|
-
full_current[indices] = self.current
|
|
52
|
-
|
|
53
|
-
ax.plot(full_time, full_current, **kwargs)
|
|
54
|
-
ax.set_xlabel("Time (ms)")
|
|
55
|
-
ax.set_ylabel("Current (nA)")
|
|
56
|
-
ax.set_title(self.__class__.__name__)
|
|
57
|
-
ax.set_xlim(0, duration)
|
|
58
|
-
return ax
|
|
59
|
-
|
|
60
42
|
def __add__(self, other: Stimulus) -> CombinedStimulus:
|
|
61
43
|
"""Override + operator to concatenate Stimulus objects."""
|
|
62
44
|
if self.dt != other.dt:
|
|
63
|
-
raise ValueError(
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
45
|
+
raise ValueError(
|
|
46
|
+
"Stimulus objects must have the same dt to be concatenated"
|
|
47
|
+
)
|
|
48
|
+
if len(self.time) == 0:
|
|
49
|
+
return CombinedStimulus(other.dt, other.time, other.current)
|
|
50
|
+
elif len(other.time) == 0:
|
|
51
|
+
return CombinedStimulus(self.dt, self.time, self.current)
|
|
52
|
+
else:
|
|
53
|
+
# shift other time
|
|
54
|
+
other_time = other.time + self.time[-1] + self.dt
|
|
55
|
+
combined_time = np.concatenate([self.time, other_time])
|
|
56
|
+
# Concatenate the current arrays
|
|
57
|
+
combined_current = np.concatenate([self.current, other.current])
|
|
58
|
+
return CombinedStimulus(self.dt, combined_time, combined_current)
|
|
59
|
+
|
|
60
|
+
def __eq__(self, other: object) -> bool:
|
|
61
|
+
if not isinstance(other, Stimulus):
|
|
62
|
+
return NotImplemented
|
|
63
|
+
else:
|
|
64
|
+
return (
|
|
65
|
+
np.allclose(self.time, other.time)
|
|
66
|
+
and np.allclose(self.current, other.current)
|
|
67
|
+
and self.dt == other.dt
|
|
68
|
+
)
|
|
70
69
|
|
|
71
70
|
|
|
72
71
|
class CombinedStimulus(Stimulus):
|
|
73
72
|
"""Represents the Stimulus created by combining multiple stimuli."""
|
|
73
|
+
|
|
74
74
|
def __init__(self, dt: float, time: np.ndarray, current: np.ndarray) -> None:
|
|
75
75
|
super().__init__(dt)
|
|
76
76
|
self._time = time
|
|
@@ -85,11 +85,12 @@ class CombinedStimulus(Stimulus):
|
|
|
85
85
|
return self._current
|
|
86
86
|
|
|
87
87
|
|
|
88
|
-
class
|
|
88
|
+
class Empty(Stimulus):
|
|
89
89
|
"""Represents empty stimulus (all zeros) that has no impact on the cell.
|
|
90
90
|
|
|
91
91
|
This is required by some Stimuli that expect the cell to rest.
|
|
92
92
|
"""
|
|
93
|
+
|
|
93
94
|
def __init__(self, dt: float, duration: float) -> None:
|
|
94
95
|
super().__init__(dt)
|
|
95
96
|
self.duration = duration
|
|
@@ -103,152 +104,286 @@ class EmptyStimulus(Stimulus):
|
|
|
103
104
|
return np.zeros_like(self.time)
|
|
104
105
|
|
|
105
106
|
|
|
106
|
-
class
|
|
107
|
-
def __init__(self, dt: float,
|
|
107
|
+
class Flat(Stimulus):
|
|
108
|
+
def __init__(self, dt: float, duration: float, amplitude: float) -> None:
|
|
108
109
|
super().__init__(dt)
|
|
109
|
-
self.
|
|
110
|
-
self.end = end
|
|
110
|
+
self.duration = duration
|
|
111
111
|
self.amplitude = amplitude
|
|
112
112
|
|
|
113
|
-
@classmethod
|
|
114
|
-
def threshold_based(
|
|
115
|
-
cls,
|
|
116
|
-
dt: float,
|
|
117
|
-
threshold_current: float,
|
|
118
|
-
threshold_percentage: float,
|
|
119
|
-
start: float,
|
|
120
|
-
end: float,
|
|
121
|
-
post_wait: float,
|
|
122
|
-
) -> CombinedStimulus:
|
|
123
|
-
amplitude = threshold_current * threshold_percentage / 100
|
|
124
|
-
res = cls(dt, start, end, amplitude) + EmptyStimulus(dt, duration=post_wait)
|
|
125
|
-
return res
|
|
126
|
-
|
|
127
113
|
@property
|
|
128
114
|
def time(self) -> np.ndarray:
|
|
129
|
-
return np.arange(
|
|
115
|
+
return np.arange(0.0, self.duration, self.dt)
|
|
130
116
|
|
|
131
117
|
@property
|
|
132
118
|
def current(self) -> np.ndarray:
|
|
133
119
|
return np.full_like(self.time, self.amplitude)
|
|
134
120
|
|
|
135
121
|
|
|
136
|
-
class
|
|
122
|
+
class Slope(Stimulus):
|
|
137
123
|
def __init__(
|
|
138
|
-
self,
|
|
139
|
-
dt: float,
|
|
140
|
-
start: float,
|
|
141
|
-
end: float,
|
|
142
|
-
amplitude_start: float,
|
|
143
|
-
amplitude_end: float,
|
|
124
|
+
self, dt: float, duration: float, amplitude_start: float, amplitude_end: float
|
|
144
125
|
) -> None:
|
|
145
126
|
super().__init__(dt)
|
|
146
|
-
self.
|
|
147
|
-
self.end = end
|
|
127
|
+
self.duration = duration
|
|
148
128
|
self.amplitude_start = amplitude_start
|
|
149
129
|
self.amplitude_end = amplitude_end
|
|
150
130
|
|
|
151
131
|
@property
|
|
152
132
|
def time(self) -> np.ndarray:
|
|
153
|
-
return np.arange(
|
|
133
|
+
return np.arange(0.0, self.duration, self.dt)
|
|
154
134
|
|
|
155
135
|
@property
|
|
156
136
|
def current(self) -> np.ndarray:
|
|
157
137
|
return np.linspace(self.amplitude_start, self.amplitude_end, len(self.time))
|
|
158
138
|
|
|
159
139
|
|
|
140
|
+
class Step(Stimulus):
|
|
141
|
+
|
|
142
|
+
def __init__(self):
|
|
143
|
+
raise NotImplementedError(
|
|
144
|
+
"This class cannot be instantiated directly. "
|
|
145
|
+
"Please use the class methods 'amplitude_based' "
|
|
146
|
+
"or 'threshold_based' to create objects."
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
@classmethod
|
|
150
|
+
def amplitude_based(
|
|
151
|
+
cls,
|
|
152
|
+
dt: float,
|
|
153
|
+
pre_delay: float,
|
|
154
|
+
duration: float,
|
|
155
|
+
post_delay: float,
|
|
156
|
+
amplitude: float,
|
|
157
|
+
) -> CombinedStimulus:
|
|
158
|
+
"""Create a Step stimulus from given time events and amplitude.
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
dt: The time step of the stimulus.
|
|
162
|
+
pre_delay: The delay before the start of the step.
|
|
163
|
+
duration: The duration of the step.
|
|
164
|
+
post_delay: The time to wait after the end of the step.
|
|
165
|
+
amplitude: The amplitude of the step.
|
|
166
|
+
"""
|
|
167
|
+
return (
|
|
168
|
+
Empty(dt, duration=pre_delay)
|
|
169
|
+
+ Flat(dt, duration=duration, amplitude=amplitude)
|
|
170
|
+
+ Empty(dt, duration=post_delay)
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
@classmethod
|
|
174
|
+
def threshold_based(
|
|
175
|
+
cls,
|
|
176
|
+
dt: float,
|
|
177
|
+
pre_delay: float,
|
|
178
|
+
duration: float,
|
|
179
|
+
post_delay: float,
|
|
180
|
+
threshold_current: float,
|
|
181
|
+
threshold_percentage: float,
|
|
182
|
+
) -> CombinedStimulus:
|
|
183
|
+
"""Creates a Step stimulus with respect to the threshold current.
|
|
184
|
+
|
|
185
|
+
Args:
|
|
186
|
+
|
|
187
|
+
dt: The time step of the stimulus.
|
|
188
|
+
pre_delay: The delay before the start of the step.
|
|
189
|
+
duration: The duration of the step.
|
|
190
|
+
post_delay: The time to wait after the end of the step.
|
|
191
|
+
threshold_current: The threshold current of the Cell.
|
|
192
|
+
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
193
|
+
"""
|
|
194
|
+
amplitude = threshold_current * threshold_percentage / 100
|
|
195
|
+
res = cls.amplitude_based(
|
|
196
|
+
dt,
|
|
197
|
+
pre_delay=pre_delay,
|
|
198
|
+
duration=duration,
|
|
199
|
+
post_delay=post_delay,
|
|
200
|
+
amplitude=amplitude,
|
|
201
|
+
)
|
|
202
|
+
return res
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
class Ramp(Stimulus):
|
|
206
|
+
|
|
207
|
+
def __init__(self):
|
|
208
|
+
raise NotImplementedError(
|
|
209
|
+
"This class cannot be instantiated directly. "
|
|
210
|
+
"Please use the class methods 'amplitude_based' "
|
|
211
|
+
"or 'threshold_based' to create objects."
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
@classmethod
|
|
215
|
+
def amplitude_based(
|
|
216
|
+
cls,
|
|
217
|
+
dt: float,
|
|
218
|
+
pre_delay: float,
|
|
219
|
+
duration: float,
|
|
220
|
+
post_delay: float,
|
|
221
|
+
amplitude: float,
|
|
222
|
+
) -> CombinedStimulus:
|
|
223
|
+
"""Create a Ramp stimulus from given time events and amplitudes.
|
|
224
|
+
|
|
225
|
+
Args:
|
|
226
|
+
dt: The time step of the stimulus.
|
|
227
|
+
pre_delay: The delay before the start of the ramp.
|
|
228
|
+
duration: The duration of the ramp.
|
|
229
|
+
post_delay: The time to wait after the end of the ramp.
|
|
230
|
+
amplitude: The final amplitude of the ramp.
|
|
231
|
+
"""
|
|
232
|
+
return (
|
|
233
|
+
Empty(dt, duration=pre_delay)
|
|
234
|
+
+ Slope(
|
|
235
|
+
dt,
|
|
236
|
+
duration=duration,
|
|
237
|
+
amplitude_start=0.0,
|
|
238
|
+
amplitude_end=amplitude,
|
|
239
|
+
)
|
|
240
|
+
+ Empty(dt, duration=post_delay)
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
@classmethod
|
|
244
|
+
def threshold_based(
|
|
245
|
+
cls,
|
|
246
|
+
dt: float,
|
|
247
|
+
pre_delay: float,
|
|
248
|
+
duration: float,
|
|
249
|
+
post_delay: float,
|
|
250
|
+
threshold_current: float,
|
|
251
|
+
threshold_percentage: float,
|
|
252
|
+
) -> CombinedStimulus:
|
|
253
|
+
"""Creates a Ramp stimulus with respect to the threshold current.
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
|
|
257
|
+
dt: The time step of the stimulus.
|
|
258
|
+
pre_delay: The delay before the start of the ramp.
|
|
259
|
+
duration: The duration of the ramp.
|
|
260
|
+
post_delay: The time to wait after the end of the ramp.
|
|
261
|
+
threshold_current: The threshold current of the Cell.
|
|
262
|
+
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
263
|
+
"""
|
|
264
|
+
amplitude = threshold_current * threshold_percentage / 100
|
|
265
|
+
res = cls.amplitude_based(
|
|
266
|
+
dt,
|
|
267
|
+
pre_delay=pre_delay,
|
|
268
|
+
duration=duration,
|
|
269
|
+
post_delay=post_delay,
|
|
270
|
+
amplitude=amplitude,
|
|
271
|
+
)
|
|
272
|
+
return res
|
|
273
|
+
|
|
274
|
+
|
|
160
275
|
class StimulusFactory:
|
|
161
276
|
def __init__(self, dt: float):
|
|
162
277
|
self.dt = dt
|
|
163
278
|
|
|
164
|
-
def step(
|
|
165
|
-
|
|
279
|
+
def step(
|
|
280
|
+
self, pre_delay: float, duration: float, post_delay: float, amplitude: float
|
|
281
|
+
) -> Stimulus:
|
|
282
|
+
return Step.amplitude_based(
|
|
283
|
+
self.dt,
|
|
284
|
+
pre_delay=pre_delay,
|
|
285
|
+
duration=duration,
|
|
286
|
+
post_delay=post_delay,
|
|
287
|
+
amplitude=amplitude,
|
|
288
|
+
)
|
|
166
289
|
|
|
167
290
|
def ramp(
|
|
168
|
-
self,
|
|
291
|
+
self, pre_delay: float, duration: float, post_delay: float, amplitude: float
|
|
169
292
|
) -> Stimulus:
|
|
170
|
-
return Ramp(
|
|
293
|
+
return Ramp.amplitude_based(
|
|
294
|
+
self.dt,
|
|
295
|
+
pre_delay=pre_delay,
|
|
296
|
+
duration=duration,
|
|
297
|
+
post_delay=post_delay,
|
|
298
|
+
amplitude=amplitude,
|
|
299
|
+
)
|
|
171
300
|
|
|
172
301
|
def ap_waveform(
|
|
173
|
-
self,
|
|
174
|
-
threshold_current: float,
|
|
175
|
-
threshold_percentage: float = 220.0,
|
|
176
|
-
start: float = 250.0,
|
|
177
|
-
end: float = 300.0,
|
|
178
|
-
post_wait: float = 250.0,
|
|
302
|
+
self, threshold_current: float, threshold_percentage: float = 220.0
|
|
179
303
|
) -> Stimulus:
|
|
180
304
|
"""Returns the APWaveform Stimulus object, a type of Step stimulus.
|
|
181
305
|
|
|
182
306
|
Args:
|
|
183
307
|
threshold_current: The threshold current of the Cell.
|
|
184
308
|
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
185
|
-
start: The start time of the step.
|
|
186
|
-
end: The end time of the step.
|
|
187
|
-
post_wait: The time to wait after the end of the step.
|
|
188
309
|
"""
|
|
310
|
+
pre_delay = 250.0
|
|
311
|
+
duration = 50.0
|
|
312
|
+
post_delay = 250.0
|
|
189
313
|
return Step.threshold_based(
|
|
190
|
-
self.dt,
|
|
314
|
+
self.dt,
|
|
315
|
+
pre_delay=pre_delay,
|
|
316
|
+
duration=duration,
|
|
317
|
+
post_delay=post_delay,
|
|
318
|
+
threshold_current=threshold_current,
|
|
319
|
+
threshold_percentage=threshold_percentage,
|
|
191
320
|
)
|
|
192
321
|
|
|
193
322
|
def idrest(
|
|
194
323
|
self,
|
|
195
324
|
threshold_current: float,
|
|
196
325
|
threshold_percentage: float = 200.0,
|
|
197
|
-
start: float = 250.0,
|
|
198
|
-
end: float = 1600.0,
|
|
199
|
-
post_wait: float = 250.0,
|
|
200
326
|
) -> Stimulus:
|
|
201
327
|
"""Returns the IDRest Stimulus object, a type of Step stimulus.
|
|
202
328
|
|
|
203
329
|
Args:
|
|
204
330
|
threshold_current: The threshold current of the Cell.
|
|
205
331
|
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
206
|
-
start: The start time of the step.
|
|
207
|
-
end: The end time of the step.
|
|
208
|
-
post_wait: The time to wait after the end of the step.
|
|
209
332
|
"""
|
|
333
|
+
pre_delay = 250.0
|
|
334
|
+
duration = 1350.0
|
|
335
|
+
post_delay = 250.0
|
|
210
336
|
return Step.threshold_based(
|
|
211
|
-
self.dt,
|
|
337
|
+
self.dt,
|
|
338
|
+
pre_delay=pre_delay,
|
|
339
|
+
duration=duration,
|
|
340
|
+
post_delay=post_delay,
|
|
341
|
+
threshold_current=threshold_current,
|
|
342
|
+
threshold_percentage=threshold_percentage,
|
|
212
343
|
)
|
|
213
344
|
|
|
214
345
|
def iv(
|
|
215
346
|
self,
|
|
216
347
|
threshold_current: float,
|
|
217
348
|
threshold_percentage: float = -40.0,
|
|
218
|
-
start: float = 250.0,
|
|
219
|
-
end: float = 3250.0,
|
|
220
|
-
post_wait: float = 250.0,
|
|
221
349
|
) -> Stimulus:
|
|
222
350
|
"""Returns the IV Stimulus object, a type of Step stimulus.
|
|
223
351
|
|
|
224
352
|
Args:
|
|
225
353
|
threshold_current: The threshold current of the Cell.
|
|
226
354
|
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
227
|
-
start: The start time of the step.
|
|
228
|
-
end: The end time of the step.
|
|
229
|
-
post_wait: The time to wait after the end of the step.
|
|
230
355
|
"""
|
|
356
|
+
pre_delay = 250.0
|
|
357
|
+
duration = 3000.0
|
|
358
|
+
post_delay = 250.0
|
|
231
359
|
return Step.threshold_based(
|
|
232
|
-
self.dt,
|
|
360
|
+
self.dt,
|
|
361
|
+
pre_delay=pre_delay,
|
|
362
|
+
duration=duration,
|
|
363
|
+
post_delay=post_delay,
|
|
364
|
+
threshold_current=threshold_current,
|
|
365
|
+
threshold_percentage=threshold_percentage,
|
|
233
366
|
)
|
|
234
367
|
|
|
235
368
|
def fire_pattern(
|
|
236
369
|
self,
|
|
237
370
|
threshold_current: float,
|
|
238
371
|
threshold_percentage: float = 200.0,
|
|
239
|
-
start: float = 250.0,
|
|
240
|
-
end: float = 3850.0,
|
|
241
|
-
post_wait: float = 250.0,
|
|
242
372
|
) -> Stimulus:
|
|
243
373
|
"""Returns the FirePattern Stimulus object, a type of Step stimulus.
|
|
244
374
|
|
|
245
375
|
Args:
|
|
246
376
|
threshold_current: The threshold current of the Cell.
|
|
247
377
|
threshold_percentage: Percentage of desired threshold_current amplification.
|
|
248
|
-
start: The start time of the step.
|
|
249
|
-
end: The end time of the step.
|
|
250
|
-
post_wait: The time to wait after the end of the step.
|
|
251
378
|
"""
|
|
379
|
+
pre_delay = 250.0
|
|
380
|
+
duration = 3600.0
|
|
381
|
+
post_delay = 250.0
|
|
252
382
|
return Step.threshold_based(
|
|
253
|
-
self.dt,
|
|
383
|
+
self.dt,
|
|
384
|
+
pre_delay=pre_delay,
|
|
385
|
+
duration=duration,
|
|
386
|
+
post_delay=post_delay,
|
|
387
|
+
threshold_current=threshold_current,
|
|
388
|
+
threshold_percentage=threshold_percentage,
|
|
254
389
|
)
|
bluecellulab/tools.py
CHANGED
|
@@ -25,7 +25,8 @@ import numpy as np
|
|
|
25
25
|
import bluecellulab
|
|
26
26
|
from bluecellulab.circuit.circuit_access import EmodelProperties
|
|
27
27
|
from bluecellulab.exceptions import UnsteadyCellError
|
|
28
|
-
from bluecellulab.
|
|
28
|
+
from bluecellulab.simulation.parallel import IsolatedProcess
|
|
29
|
+
from bluecellulab.utils import CaptureOutput
|
|
29
30
|
|
|
30
31
|
logger = logging.getLogger(__name__)
|
|
31
32
|
|
bluecellulab/utils.py
CHANGED
|
@@ -1,19 +1,21 @@
|
|
|
1
1
|
"""Utility functions used within BlueCellulab."""
|
|
2
|
+
|
|
2
3
|
from __future__ import annotations
|
|
3
4
|
import contextlib
|
|
4
5
|
import io
|
|
5
6
|
import json
|
|
6
|
-
from multiprocessing.pool import Pool
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def run_once(func):
|
|
12
12
|
"""A decorator to ensure a function is only called once."""
|
|
13
|
+
|
|
13
14
|
def wrapper(*args, **kwargs):
|
|
14
15
|
if not wrapper.has_run:
|
|
15
16
|
wrapper.has_run = True
|
|
16
17
|
return func(*args, **kwargs)
|
|
18
|
+
|
|
17
19
|
wrapper.has_run = False
|
|
18
20
|
return wrapper
|
|
19
21
|
|
|
@@ -32,29 +34,25 @@ class CaptureOutput(list):
|
|
|
32
34
|
|
|
33
35
|
class NumpyEncoder(json.JSONEncoder):
|
|
34
36
|
def default(self, obj):
|
|
35
|
-
if isinstance(
|
|
36
|
-
|
|
37
|
-
|
|
37
|
+
if isinstance(
|
|
38
|
+
obj,
|
|
39
|
+
(
|
|
40
|
+
np.int_,
|
|
41
|
+
np.intc,
|
|
42
|
+
np.intp,
|
|
43
|
+
np.int8,
|
|
44
|
+
np.int16,
|
|
45
|
+
np.int32,
|
|
46
|
+
np.int64,
|
|
47
|
+
np.uint8,
|
|
48
|
+
np.uint16,
|
|
49
|
+
np.uint32,
|
|
50
|
+
np.uint64,
|
|
51
|
+
),
|
|
52
|
+
):
|
|
38
53
|
return int(obj)
|
|
39
|
-
elif isinstance(obj, (np.float_, np.float16, np.float32,
|
|
40
|
-
np.float64)):
|
|
54
|
+
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
|
|
41
55
|
return float(obj)
|
|
42
56
|
elif isinstance(obj, np.ndarray):
|
|
43
57
|
return obj.tolist()
|
|
44
58
|
return json.JSONEncoder.default(self, obj)
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
class IsolatedProcess(Pool):
|
|
48
|
-
"""Multiprocessing Pool that restricts a worker to run max 1 process.
|
|
49
|
-
|
|
50
|
-
Use this when running isolated NEURON simulations. Running 2 NEURON
|
|
51
|
-
simulations on a single process is to be avoided.
|
|
52
|
-
"""
|
|
53
|
-
def __init__(self, processes: int | None = 1):
|
|
54
|
-
"""Initialize the IsolatedProcess pool.
|
|
55
|
-
|
|
56
|
-
Args:
|
|
57
|
-
processes: The number of processes to use for running the stimuli.
|
|
58
|
-
If set to None, then the number returned by os.cpu_count() is used.
|
|
59
|
-
"""
|
|
60
|
-
super().__init__(processes=processes, maxtasksperchild=1)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
bluecellulab/__init__.py,sha256
|
|
1
|
+
bluecellulab/__init__.py,sha256=JvigOm_7WDjVAodm4R_TyRzj7vd9hmEbvLJDUVtgeqo,899
|
|
2
2
|
bluecellulab/circuit_simulation.py,sha256=GLy_O5onhiSa-RajorDHlgP1rkFxjUONB4G6B4upyg0,33672
|
|
3
3
|
bluecellulab/connection.py,sha256=volV2YKtmqAF7MOEJar5ldF1ARAo7k2vF9MB1NXybUY,4640
|
|
4
4
|
bluecellulab/dendrogram.py,sha256=w0vvv0Q169DolTX1j9dAZIvHIl4H258gAjQ1xQaNiGk,6427
|
|
@@ -10,12 +10,12 @@ bluecellulab/plotwindow.py,sha256=UVHzml-BB83m5Qr-YGkjR9kB-vSW8mM0Owh2j95yIaU,27
|
|
|
10
10
|
bluecellulab/psection.py,sha256=SYI2mGUIp8UiuMkyp9ITChHVLbJ0fDsEmen1pAbgNJQ,6174
|
|
11
11
|
bluecellulab/psegment.py,sha256=02DkvazPGjnwjfjn1K8CZqdcVWnUhYpgrjqjoHNz6jM,3133
|
|
12
12
|
bluecellulab/rngsettings.py,sha256=Dlt34dc4AoWyxCCzUK3Jlui90VCK20xHg6gD_OJzPIw,4237
|
|
13
|
-
bluecellulab/tools.py,sha256=
|
|
13
|
+
bluecellulab/tools.py,sha256=Bg6F0allDJrQrvxfvPdMdFe47a_CF7Q-KmF2TWNDE44,11213
|
|
14
14
|
bluecellulab/type_aliases.py,sha256=DvgjERv2Ztdw_sW63JrZTQGpJ0x5uMTFB5hcBHDb0WA,441
|
|
15
|
-
bluecellulab/utils.py,sha256=
|
|
15
|
+
bluecellulab/utils.py,sha256=SbOOkzw1YGjCKV3qOw0zpabNEy7V9BRtgMLsQJiFRq4,1526
|
|
16
16
|
bluecellulab/verbosity.py,sha256=T0IgX7DrRo19faxrT4Xzb27gqxzoILQ8FzYKxvUeaPM,1342
|
|
17
17
|
bluecellulab/analysis/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
18
|
-
bluecellulab/analysis/inject_sequence.py,sha256=
|
|
18
|
+
bluecellulab/analysis/inject_sequence.py,sha256=qr3N1tQX4avvKzFBT0L7W6LnSgk2y_P_7Yhy0UjlGmk,4769
|
|
19
19
|
bluecellulab/cell/__init__.py,sha256=Sbc0QOsJ8E7tSwf3q7fsXuE_SevBN6ZmoCVyyU5zfII,208
|
|
20
20
|
bluecellulab/cell/cell_dict.py,sha256=PVmZsjhZ9jp3HC-8QmdFqp-crAcVMSVeLWujcOPLlpo,1346
|
|
21
21
|
bluecellulab/cell/core.py,sha256=MtrVQAxT82dc9uQuWZyTQfc6Oczrnc_y_9hcyBqUT7w,31467
|
|
@@ -39,9 +39,9 @@ bluecellulab/circuit/simulation_access.py,sha256=QHVEN-sEZbCCvblhBHEShGX0-NEXCD1
|
|
|
39
39
|
bluecellulab/circuit/synapse_properties.py,sha256=6PpMWeothomR2c-mx63yVIISJc4eSL9xMnaIM2nryNM,5494
|
|
40
40
|
bluecellulab/circuit/validate.py,sha256=7EUN15u0JFFlLf389jUBqLwDOHyZdfKtoidI-xLUVYA,3593
|
|
41
41
|
bluecellulab/circuit/circuit_access/__init__.py,sha256=sgp6m5kP-pq60V1IFGUiSUR1OW01zdxXNNUJmPA8anI,201
|
|
42
|
-
bluecellulab/circuit/circuit_access/bluepy_circuit_access.py,sha256=
|
|
42
|
+
bluecellulab/circuit/circuit_access/bluepy_circuit_access.py,sha256=HxQaRTz1HaeOVV87fiptJBXRNWCitT-5YHn71WtSsLg,14687
|
|
43
43
|
bluecellulab/circuit/circuit_access/definition.py,sha256=SnKBFEgdXFG-QexYRrGSzVAd7bSj7NwN0IuTsjDOrDY,4435
|
|
44
|
-
bluecellulab/circuit/circuit_access/sonata_circuit_access.py,sha256=
|
|
44
|
+
bluecellulab/circuit/circuit_access/sonata_circuit_access.py,sha256=c0MMJuoT6_dRW8O5HSRS5hHv1zDKdW0sBR-DaP0F1bk,10351
|
|
45
45
|
bluecellulab/circuit/config/__init__.py,sha256=aaoJXRKBJzpxxREo9NxKc-_CCPmVeuR1mcViRXcLrC4,215
|
|
46
46
|
bluecellulab/circuit/config/bluepy_simulation_config.py,sha256=tUyHvzlxFWRxh8rBNvU0FdUqGqJR2G8OXifATQ9W7yw,6974
|
|
47
47
|
bluecellulab/circuit/config/definition.py,sha256=o0751Dd83f8TWGw95EAQ8coJrYGasdshrIrXViF5lzg,2774
|
|
@@ -53,17 +53,18 @@ bluecellulab/hoc/TDistFunc.hoc,sha256=WKX-anvL83xGuGPH9g1oIORB17UM4Pi3-iIXzKO-pU
|
|
|
53
53
|
bluecellulab/hoc/TStim.hoc,sha256=noBJbM_ZqF6T6MEgBeowNzz21I9QeYZ5brGgUvCSm4k,8473
|
|
54
54
|
bluecellulab/hoc/fileUtils.hoc,sha256=LSM7BgyjYVqo2DGSOKvg4W8IIusbsL45JVYK0vgwitU,2539
|
|
55
55
|
bluecellulab/simulation/__init__.py,sha256=P2ebt0SFw-08J3ihN-LeRn95HeF79tzA-Q0ReLm32dM,214
|
|
56
|
-
bluecellulab/simulation/neuron_globals.py,sha256=
|
|
56
|
+
bluecellulab/simulation/neuron_globals.py,sha256=_8xmJPQMfCyhVn6KppK7i3jaUZaALMLgyxyHMKi02yo,4508
|
|
57
|
+
bluecellulab/simulation/parallel.py,sha256=xmlIelxYNct-vGhPip7_vF9gwyehdpomYB8kf9xV-S8,1314
|
|
57
58
|
bluecellulab/simulation/simulation.py,sha256=I__cZwV_A8I7XSefn6aJDBA_jXCI3E35-pCNCLUsnvo,6206
|
|
58
59
|
bluecellulab/stimulus/__init__.py,sha256=DgIgVaSyR-URf3JZzvO6j-tjCerzvktuK-ep8pjMRPQ,37
|
|
59
60
|
bluecellulab/stimulus/circuit_stimulus_definitions.py,sha256=uij_s44uNdmMwMLGmTHSRgmp9K9B_vvHHshX6YPJNJU,15686
|
|
60
|
-
bluecellulab/stimulus/factory.py,sha256=
|
|
61
|
+
bluecellulab/stimulus/factory.py,sha256=cjnMqFx-Y31kV1XHvkSbGI2f1OpEawU3Wg_cLqcIyRc,11883
|
|
61
62
|
bluecellulab/synapse/__init__.py,sha256=RW8XoAMXOvK7OG1nHl_q8jSEKLj9ZN4oWf2nY9HAwuk,192
|
|
62
63
|
bluecellulab/synapse/synapse_factory.py,sha256=YkvxbdGF-u-vxYdbRNTlX-9AtSC_3t_FQRFhybwzgrk,6805
|
|
63
64
|
bluecellulab/synapse/synapse_types.py,sha256=4gne-hve2vq1Lau-LAVPsfLjffVYqAYBW3kCfC7_600,16871
|
|
64
|
-
bluecellulab-2.
|
|
65
|
-
bluecellulab-2.
|
|
66
|
-
bluecellulab-2.
|
|
67
|
-
bluecellulab-2.
|
|
68
|
-
bluecellulab-2.
|
|
69
|
-
bluecellulab-2.
|
|
65
|
+
bluecellulab-2.6.0.dist-info/AUTHORS.txt,sha256=EDs3H-2HXBojbma10psixk3C2rFiOCTIREi2ZAbXYNQ,179
|
|
66
|
+
bluecellulab-2.6.0.dist-info/LICENSE,sha256=xOouu1gC1GGklDxkITlaVl60I9Ab860O-nZsFbWydvU,11749
|
|
67
|
+
bluecellulab-2.6.0.dist-info/METADATA,sha256=X-XmGZmXo-FZIe6H5r0qIs-VBJnTN0zNVOXNVuiLW0M,7025
|
|
68
|
+
bluecellulab-2.6.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
69
|
+
bluecellulab-2.6.0.dist-info/top_level.txt,sha256=VSyEP8w9l3pXdRkyP_goeMwiNA8KWwitfAqUkveJkdQ,13
|
|
70
|
+
bluecellulab-2.6.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|