blksprs 2.0rc6__py3-none-any.whl → 2.0rc8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- blksprs/__init__.py +1 -0
- blksprs/layouting/distribution_layout.py +39 -26
- blksprs/layouting/sparsity_layout.py +58 -45
- blksprs/ops/conversion.py +86 -84
- blksprs/ops/distribution.py +81 -79
- blksprs/ops/flow.py +64 -60
- blksprs/ops/matmul.py +50 -55
- blksprs/ops/misc/broadcast_ops.py +29 -27
- blksprs/ops/misc/row_wise.py +134 -132
- blksprs/ops/partitioning.py +12 -10
- blksprs/ops/repeat.py +6 -5
- blksprs/ops/softmax.py +55 -47
- blksprs/ops/transpose.py +8 -7
- blksprs/utils/autotuning.py +10 -10
- blksprs/utils/processing.py +0 -1
- blksprs/utils/tools.py +8 -9
- {blksprs-2.0rc6.dist-info → blksprs-2.0rc8.dist-info}/METADATA +7 -3
- blksprs-2.0rc8.dist-info/RECORD +23 -0
- {blksprs-2.0rc6.dist-info → blksprs-2.0rc8.dist-info}/WHEEL +1 -1
- blksprs-2.0rc6.dist-info/RECORD +0 -23
- {blksprs-2.0rc6.dist-info → blksprs-2.0rc8.dist-info}/top_level.txt +0 -0
blksprs/ops/distribution.py
CHANGED
|
@@ -51,44 +51,45 @@ def gather(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
|
51
51
|
sparsity_block_size))
|
|
52
52
|
|
|
53
53
|
|
|
54
|
-
@triton_op("blksprs::
|
|
54
|
+
@triton_op("blksprs::gather_forward", mutates_args={})
|
|
55
55
|
def gather_forward(x: Tensor, sparsity_layout_x: Tensor, sparsity_reverse_lut_x: Tensor,
|
|
56
56
|
dim: int, i: Tensor, _: Tensor, sparsity_lut_i: Tensor,
|
|
57
57
|
sparsity_block_size: int) -> Tensor:
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
58
|
+
with torch.no_grad():
|
|
59
|
+
output = torch.zeros_like(i, dtype=x.dtype)
|
|
60
|
+
|
|
61
|
+
x_b, x_r, x_c = x.size()
|
|
62
|
+
x_b_s, x_r_s, x_c_s = stride(x)
|
|
63
|
+
s_l_x_b, s_l_x_r, s_l_x_c = sparsity_layout_x.size()
|
|
64
|
+
s_l_x_b_s, s_l_x_r_s, s_l_x_c_s = stride(sparsity_layout_x)
|
|
65
|
+
i_b, i_r, i_c = i.size()
|
|
66
|
+
i_b_s, i_r_s, i_c_s = stride(i)
|
|
67
|
+
s_lut_i_r, s_lut_i_c = sparsity_lut_i.size()
|
|
68
|
+
s_lut_i_r_s, s_lut_i_c_s = stride(sparsity_lut_i)
|
|
69
|
+
o_b, o_r, o_c = output.size()
|
|
70
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
71
|
+
|
|
72
|
+
triton_grid = lambda meta: [o_b,
|
|
73
|
+
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
74
|
+
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
75
|
+
|
|
76
|
+
(wrap_triton(gather_kernel)[triton_grid]
|
|
77
|
+
(x,
|
|
78
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
79
|
+
s_l_x_b, s_l_x_b_s, s_l_x_r_s, s_l_x_c_s,
|
|
80
|
+
sparsity_reverse_lut_x,
|
|
81
|
+
dim,
|
|
82
|
+
i,
|
|
83
|
+
i_b, i_b_s, i_r_s, i_c_s,
|
|
84
|
+
output,
|
|
85
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
86
|
+
sparsity_lut_i, s_lut_i_r, s_lut_i_r_s, s_lut_i_c_s,
|
|
87
|
+
sparsity_block_size))
|
|
88
|
+
|
|
89
|
+
return output
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def gather_wrapper_backward(ctx, grad_output):
|
|
92
93
|
sparsity_layout_x, i, sparsity_layout_i = ctx.saved_tensors
|
|
93
94
|
dim = ctx.dim
|
|
94
95
|
sparsity_block_size = ctx.sparsity_block_size
|
|
@@ -221,7 +222,7 @@ def gather_setup_context(ctx, inputs, output):
|
|
|
221
222
|
ctx.sparsity_block_size = sparsity_block_size
|
|
222
223
|
|
|
223
224
|
|
|
224
|
-
gather_forward.register_autograd(
|
|
225
|
+
gather_forward.register_autograd(gather_wrapper_backward, setup_context=gather_setup_context)
|
|
225
226
|
|
|
226
227
|
|
|
227
228
|
def scatter(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
@@ -240,7 +241,7 @@ def scatter(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
|
240
241
|
reduce_op="none", lut=lut)
|
|
241
242
|
|
|
242
243
|
|
|
243
|
-
@torch.amp.custom_fwd(device_type="cuda", cast_inputs=torch.
|
|
244
|
+
@torch.amp.custom_fwd(device_type="cuda", cast_inputs=torch.float32)
|
|
244
245
|
def scatter_reduce(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
245
246
|
dim: int,
|
|
246
247
|
idx: BlksprsTensor,
|
|
@@ -288,52 +289,53 @@ def scatter_reduce(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
|
288
289
|
reduce_op))
|
|
289
290
|
|
|
290
291
|
|
|
291
|
-
@triton_op("blksprs::
|
|
292
|
+
@triton_op("blksprs::scatter_reduce_forward", mutates_args={})
|
|
292
293
|
def scatter_reduce_forward(x: Tensor, _: Tensor, sparsity_lut_x: Tensor,
|
|
293
294
|
dim: int, i: Tensor,
|
|
294
295
|
sparsity_layout_o: Tensor, sparsity_reverse_lut_o: Tensor,
|
|
295
296
|
sparsity_block_size: int, n_sparse_blocks: int,
|
|
296
297
|
reduce_op: str) -> Tensor:
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
298
|
+
with torch.no_grad():
|
|
299
|
+
output = torch.zeros(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
300
|
+
dtype=x.dtype, device=x.device)
|
|
301
|
+
|
|
302
|
+
x_b, x_r, x_c = x.size()
|
|
303
|
+
x_b_s, x_r_s, x_c_s = stride(x)
|
|
304
|
+
s_lut_x_r, s_lut_x_c = sparsity_lut_x.size()
|
|
305
|
+
s_lut_x_r_s, s_lut_x_c_s = stride(sparsity_lut_x)
|
|
306
|
+
i_b, i_r, i_c = i.size()
|
|
307
|
+
i_b_s, i_r_s, i_c_s = stride(i)
|
|
308
|
+
o_b, o_r, o_c = output.size()
|
|
309
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
310
|
+
s_l_o_b, s_l_o_r, s_l_o_c = sparsity_layout_o.size()
|
|
311
|
+
s_l_o_b_s, s_l_o_r_s, s_l_o_c_s = stride(sparsity_layout_o)
|
|
312
|
+
|
|
313
|
+
triton_grid = lambda meta: [x_b,
|
|
314
|
+
triton.cdiv(x_r, meta["TRITON_BLOCK_SIZE"]),
|
|
315
|
+
triton.cdiv(x_c, meta["TRITON_BLOCK_SIZE"])]
|
|
316
|
+
|
|
317
|
+
reduce_op_ind = 0
|
|
318
|
+
if reduce_op == "sum":
|
|
319
|
+
reduce_op_ind = 1
|
|
320
|
+
|
|
321
|
+
(wrap_triton(scatter_reduce_kernel)[triton_grid]
|
|
322
|
+
(x,
|
|
323
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
324
|
+
sparsity_lut_x, s_lut_x_r, s_lut_x_r_s, s_lut_x_c_s,
|
|
325
|
+
dim,
|
|
326
|
+
i,
|
|
327
|
+
i_b, i_b_s, i_r_s, i_c_s,
|
|
328
|
+
output,
|
|
329
|
+
o_b, o_b_s,
|
|
330
|
+
s_l_o_b, s_l_o_b_s, s_l_o_r_s, s_l_o_c_s,
|
|
331
|
+
sparsity_reverse_lut_o,
|
|
332
|
+
reduce_op_ind,
|
|
333
|
+
sparsity_block_size))
|
|
334
|
+
|
|
335
|
+
return output
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def scatter_reduce_wrapper_backward(ctx, grad_output):
|
|
337
339
|
sparsity_layout_x, i, sparsity_layout_o = ctx.saved_tensors
|
|
338
340
|
dim = ctx.dim
|
|
339
341
|
sparsity_block_size = ctx.sparsity_block_size
|
|
@@ -477,4 +479,4 @@ def scatter_reduce_setup_context(ctx, inputs, output):
|
|
|
477
479
|
ctx.reduce_op = reduce_op
|
|
478
480
|
|
|
479
481
|
|
|
480
|
-
scatter_reduce_forward.register_autograd(
|
|
482
|
+
scatter_reduce_forward.register_autograd(scatter_reduce_wrapper_backward, setup_context=scatter_reduce_setup_context)
|
blksprs/ops/flow.py
CHANGED
|
@@ -9,39 +9,41 @@ from blksprs.utils.tools import stride
|
|
|
9
9
|
from blksprs.utils.autotuning import get_autotune_configs, prune_autotune_configs
|
|
10
10
|
|
|
11
11
|
|
|
12
|
-
@triton_op("blksprs::
|
|
12
|
+
@triton_op("blksprs::flow_pull_forward", mutates_args={})
|
|
13
13
|
def flow_pull_forward(x: Tensor, sparsity_layout_o: Tensor,
|
|
14
14
|
sparsity_lut: Tensor, sparsity_reverse_lut: Tensor,
|
|
15
15
|
sparsity_block_size: int, n_sparse_blocks: int) -> Tensor:
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
16
|
+
with torch.no_grad():
|
|
17
|
+
output = torch.zeros(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
18
|
+
dtype=x.dtype, device=x.device)
|
|
19
|
+
|
|
20
|
+
x_b, x_r, x_c = x.size()
|
|
21
|
+
x_b_s, x_r_s, x_c_s = stride(x)
|
|
22
|
+
o_b, o_r, o_c = output.size()
|
|
23
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
24
|
+
s_l_o_b, s_l_o_r, s_l_o_c = sparsity_layout_o.size()
|
|
25
|
+
s_l_o_b_s, s_l_o_r_s, s_l_o_c_s = stride(sparsity_layout_o)
|
|
26
|
+
s_lut_r, s_lut_c = sparsity_lut.size()
|
|
27
|
+
s_lut_r_s, s_lut_c_s = stride(sparsity_lut)
|
|
28
|
+
|
|
29
|
+
triton_grid = lambda meta: [o_b,
|
|
30
|
+
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
31
|
+
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
32
|
+
|
|
33
|
+
(wrap_triton(flow_pull_kernel)[triton_grid]
|
|
34
|
+
(x,
|
|
35
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
36
|
+
output,
|
|
37
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
38
|
+
s_l_o_b, s_l_o_b_s, s_l_o_r_s, s_l_o_c_s,
|
|
39
|
+
sparsity_lut, s_lut_r, s_lut_r_s, s_lut_c_s,
|
|
40
|
+
sparsity_reverse_lut,
|
|
41
|
+
sparsity_block_size))
|
|
42
|
+
|
|
43
|
+
return output
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
# noinspection PyUnusedLocal
|
|
45
47
|
@triton.autotune(
|
|
46
48
|
configs=get_autotune_configs(),
|
|
47
49
|
key=["sparsity_block_size"],
|
|
@@ -99,38 +101,40 @@ def flow_pull_kernel(x,
|
|
|
99
101
|
tl.store(o + blk_o_idx, blk_x, mask=blk_o_msk)
|
|
100
102
|
|
|
101
103
|
|
|
102
|
-
@triton_op("blksprs::
|
|
104
|
+
@triton_op("blksprs::flow_push_forward", mutates_args={})
|
|
103
105
|
def flow_push_forward(x: Tensor, sparsity_layout_x: Tensor, sparsity_lut: Tensor, sparsity_reverse_lut: Tensor,
|
|
104
106
|
sparsity_block_size: int, n_sparse_blocks: int) -> Tensor:
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
107
|
+
with torch.no_grad():
|
|
108
|
+
output = torch.zeros(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
109
|
+
dtype=x.dtype, device=x.device)
|
|
110
|
+
|
|
111
|
+
x_b, x_r, x_c = x.size()
|
|
112
|
+
x_b_s, x_r_s, x_c_s = stride(x)
|
|
113
|
+
s_l_x_b, s_l_x_r, s_l_x_c = sparsity_layout_x.size()
|
|
114
|
+
s_l_x_b_s, s_l_x_r_s, s_l_x_c_s = stride(sparsity_layout_x)
|
|
115
|
+
s_lut_r, s_lut_c = sparsity_lut.size()
|
|
116
|
+
s_lut_r_s, s_lut_c_s = stride(sparsity_lut)
|
|
117
|
+
o_b, o_r, o_c = output.size()
|
|
118
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
119
|
+
|
|
120
|
+
triton_grid = lambda meta: [x_b,
|
|
121
|
+
triton.cdiv(x_r, meta["TRITON_BLOCK_SIZE"]),
|
|
122
|
+
triton.cdiv(x_c, meta["TRITON_BLOCK_SIZE"])]
|
|
123
|
+
|
|
124
|
+
(wrap_triton(flow_push_kernel)[triton_grid]
|
|
125
|
+
(x,
|
|
126
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
127
|
+
s_l_x_b, s_l_x_b_s, s_l_x_r_s, s_l_x_c_s,
|
|
128
|
+
sparsity_lut, s_lut_r, s_lut_r_s, s_lut_c_s,
|
|
129
|
+
sparsity_reverse_lut,
|
|
130
|
+
output,
|
|
131
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
132
|
+
sparsity_block_size))
|
|
133
|
+
|
|
134
|
+
return output
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
# noinspection PyUnusedLocal
|
|
134
138
|
@triton.autotune(
|
|
135
139
|
configs=get_autotune_configs(),
|
|
136
140
|
key=["sparsity_block_size"],
|
blksprs/ops/matmul.py
CHANGED
|
@@ -55,53 +55,54 @@ def matmul(x: BlksprsTensor, sparsity_layout_x: Tensor,
|
|
|
55
55
|
sparsity_block_size, lut["n_sparse_blocks"]))
|
|
56
56
|
|
|
57
57
|
|
|
58
|
-
@triton_op("blksprs::
|
|
58
|
+
@triton_op("blksprs::matmul_forward", mutates_args={})
|
|
59
59
|
def matmul_forward(x: Tensor, y: Tensor,
|
|
60
60
|
sparsity_layout_x: Tensor, sparsity_reverse_lut_x: Tensor,
|
|
61
61
|
sparsity_layout_y: Tensor, sparsity_reverse_lut_y: Tensor,
|
|
62
62
|
_: Tensor, sparsity_lut_o: Tensor,
|
|
63
63
|
sparsity_block_size: int, n_sparse_blocks: int) -> Tensor:
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
64
|
+
with torch.no_grad():
|
|
65
|
+
output = torch.zeros(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
66
|
+
dtype=x.dtype, device=x.device)
|
|
67
|
+
|
|
68
|
+
x_b, x_r, x_c = x.size()
|
|
69
|
+
x_b_s, x_r_s, x_c_s = stride(x)
|
|
70
|
+
s_l_x_b, s_l_x_r, s_l_x_c = sparsity_layout_x.size()
|
|
71
|
+
s_l_x_b_s, s_l_x_r_s, s_l_x_c_s = stride(sparsity_layout_x)
|
|
72
|
+
y_b, y_r, y_c = y.size()
|
|
73
|
+
y_b_s, y_r_s, y_c_s = stride(y)
|
|
74
|
+
s_l_y_b, s_l_y_r, s_l_y_c = sparsity_layout_y.size()
|
|
75
|
+
s_l_y_b_s, s_l_y_r_s, s_l_y_c_s = stride(sparsity_layout_y)
|
|
76
|
+
o_b, o_r, o_c = output.size()
|
|
77
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
78
|
+
s_lut_o_r, s_lut_o_c = sparsity_lut_o.size()
|
|
79
|
+
s_lut_o_r_s, s_lut_o_c_s = stride(sparsity_lut_o)
|
|
80
|
+
|
|
81
|
+
triton_grid = lambda meta: [o_b,
|
|
82
|
+
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
83
|
+
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
84
|
+
|
|
85
|
+
(wrap_triton(matmul_kernel)[triton_grid]
|
|
86
|
+
(x,
|
|
87
|
+
x_b, x_b_s, x_r_s, x_c_s,
|
|
88
|
+
s_l_x_b, s_l_x_b_s, s_l_x_r_s,
|
|
89
|
+
s_l_x_c, s_l_x_c_s,
|
|
90
|
+
sparsity_reverse_lut_x,
|
|
91
|
+
y,
|
|
92
|
+
y_b, y_b_s, y_r_s, y_c_s,
|
|
93
|
+
s_l_y_b, s_l_y_b_s, s_l_y_r_s,
|
|
94
|
+
s_l_y_c_s,
|
|
95
|
+
sparsity_reverse_lut_y,
|
|
96
|
+
output,
|
|
97
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
98
|
+
sparsity_lut_o,
|
|
99
|
+
s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
|
|
100
|
+
sparsity_block_size))
|
|
101
|
+
|
|
102
|
+
return output
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def matmul_wrapper_backward(ctx, grad_output):
|
|
105
106
|
x, sparsity_layout_x, y, sparsity_layout_y, sparsity_layout_o = ctx.saved_tensors
|
|
106
107
|
sparsity_block_size = ctx.sparsity_block_size
|
|
107
108
|
|
|
@@ -187,20 +188,16 @@ def matmul_kernel(x,
|
|
|
187
188
|
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * x_r_s)[:, None] +
|
|
188
189
|
((i_seg_tri_mod * TRITON_BLOCK_SIZE +
|
|
189
190
|
tl.arange(0, TRITON_BLOCK_SIZE)) * x_c_s)[None, :])
|
|
190
|
-
blk_x_msk = (
|
|
191
|
-
|
|
192
|
-
(tl.arange(0, TRITON_BLOCK_SIZE)[:, None] < TRITON_BLOCK_SIZE and
|
|
193
|
-
tl.arange(0, TRITON_BLOCK_SIZE)[None, :] < TRITON_BLOCK_SIZE))
|
|
191
|
+
blk_x_msk = (blk_x_idx >= 0 and
|
|
192
|
+
blk_x_idx < x_b * x_b_s)
|
|
194
193
|
blk_x = tl.load(x + blk_x_idx, mask=blk_x_msk)
|
|
195
194
|
|
|
196
195
|
blk_y_idx = ((rev_idx_spa_y * y_b_s) +
|
|
197
196
|
((i_seg_tri_mod * TRITON_BLOCK_SIZE +
|
|
198
197
|
tl.arange(0, TRITON_BLOCK_SIZE)) * y_r_s)[:, None] +
|
|
199
198
|
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * y_c_s)[None, :])
|
|
200
|
-
blk_y_msk = (
|
|
201
|
-
|
|
202
|
-
(tl.arange(0, TRITON_BLOCK_SIZE)[:, None] < TRITON_BLOCK_SIZE and
|
|
203
|
-
tl.arange(0, TRITON_BLOCK_SIZE)[None, :] < TRITON_BLOCK_SIZE))
|
|
199
|
+
blk_y_msk = (blk_y_idx >= 0 and
|
|
200
|
+
blk_y_idx < y_b * y_b_s)
|
|
204
201
|
blk_y = tl.load(y + blk_y_idx, mask=blk_y_msk)
|
|
205
202
|
|
|
206
203
|
# Perform matrix multiplication
|
|
@@ -213,10 +210,8 @@ def matmul_kernel(x,
|
|
|
213
210
|
blk_o_idx = ((pid_blk * o_b_s) +
|
|
214
211
|
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_r_s)[:, None] +
|
|
215
212
|
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_c_s)[None, :])
|
|
216
|
-
blk_o_msk = (
|
|
217
|
-
|
|
218
|
-
(tl.arange(0, TRITON_BLOCK_SIZE)[:, None] < TRITON_BLOCK_SIZE and
|
|
219
|
-
tl.arange(0, TRITON_BLOCK_SIZE)[None, :] < TRITON_BLOCK_SIZE))
|
|
213
|
+
blk_o_msk = (blk_o_idx >= 0 and
|
|
214
|
+
blk_o_idx < o_b * o_b_s)
|
|
220
215
|
tl.store(o + blk_o_idx, buf, mask=blk_o_msk)
|
|
221
216
|
|
|
222
217
|
|
|
@@ -262,4 +257,4 @@ def matmul_setup_context(ctx, inputs, output):
|
|
|
262
257
|
ctx.sparsity_block_size = sparsity_block_size
|
|
263
258
|
|
|
264
259
|
|
|
265
|
-
matmul_forward.register_autograd(
|
|
260
|
+
matmul_forward.register_autograd(matmul_wrapper_backward, setup_context=matmul_setup_context)
|
|
@@ -12,6 +12,7 @@ from blksprs.utils.validation import validate_contiguous, validate_device, \
|
|
|
12
12
|
validate_sparsity_block_size
|
|
13
13
|
|
|
14
14
|
|
|
15
|
+
@torch.amp.custom_fwd(device_type="cuda", cast_inputs=torch.float16)
|
|
15
16
|
def broadcast_add(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
|
|
16
17
|
sparsity_block_size: int) -> BlksprsTensor:
|
|
17
18
|
"""Performs a broadcast and subsequent addition of two dense tensors x and y. Returns a block-sparse tensor in
|
|
@@ -54,36 +55,37 @@ def broadcast_sub(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
|
|
|
54
55
|
return broadcast_add(x, torch.neg(y), sparsity_layout_output, sparsity_block_size)
|
|
55
56
|
|
|
56
57
|
|
|
57
|
-
@triton_op("blksprs::
|
|
58
|
+
@triton_op("blksprs::broadcast_add_forward", mutates_args={})
|
|
58
59
|
def broadcast_add_forward(x: Tensor, y: Tensor,
|
|
59
60
|
sparsity_lut_o: Tensor,
|
|
60
61
|
sparsity_block_size: int, n_sparse_blocks: int) -> Tensor:
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
62
|
+
with torch.no_grad():
|
|
63
|
+
output = torch.zeros(n_sparse_blocks, sparsity_block_size, sparsity_block_size, dtype=x.dtype, device=x.device)
|
|
64
|
+
|
|
65
|
+
x_b, x_c = x.size()
|
|
66
|
+
x_b_s, x_c_s = stride(x)
|
|
67
|
+
y_b, y_c = y.size()
|
|
68
|
+
y_b_s, y_c_s = stride(y)
|
|
69
|
+
o_b, o_r, o_c = output.size()
|
|
70
|
+
o_b_s, o_r_s, o_c_s = stride(output)
|
|
71
|
+
s_lut_o_r, s_lut_o_c = sparsity_lut_o.size()
|
|
72
|
+
s_lut_o_r_s, s_lut_o_c_s = stride(sparsity_lut_o)
|
|
73
|
+
|
|
74
|
+
triton_grid = lambda meta: [o_b,
|
|
75
|
+
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
76
|
+
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
77
|
+
|
|
78
|
+
(wrap_triton(broadcast_add_kernel)[triton_grid]
|
|
79
|
+
(x,
|
|
80
|
+
x_b, x_b_s, x_c_s,
|
|
81
|
+
y,
|
|
82
|
+
y_b, y_b_s, y_c_s,
|
|
83
|
+
output,
|
|
84
|
+
o_b, o_b_s, o_r_s, o_c_s,
|
|
85
|
+
sparsity_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
|
|
86
|
+
sparsity_block_size))
|
|
87
|
+
|
|
88
|
+
return output
|
|
87
89
|
|
|
88
90
|
|
|
89
91
|
@triton.autotune(
|