blksprs 1.9.2__py3-none-any.whl → 1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- blksprs/__init__.py +0 -6
- blksprs/layouting/distribution_layout.py +6 -6
- blksprs/layouting/sparsity_layout.py +7 -7
- blksprs/ops/conversion.py +14 -16
- blksprs/ops/distribution.py +14 -14
- blksprs/ops/flow.py +12 -12
- blksprs/ops/matmul.py +8 -8
- blksprs/ops/misc/broadcast_ops.py +6 -6
- blksprs/ops/misc/exp.py +2 -2
- blksprs/ops/misc/row_wise.py +16 -19
- blksprs/ops/partitioning.py +24 -10
- blksprs/ops/softmax.py +17 -16
- blksprs/ops/transpose.py +9 -8
- blksprs/utils/blksprs_tensor.py +3 -1
- {blksprs-1.9.2.dist-info → blksprs-1.10.dist-info}/METADATA +18 -14
- blksprs-1.10.dist-info/RECORD +24 -0
- blksprs/ops/experimental/distribution_mdi.py +0 -447
- blksprs-1.9.2.dist-info/RECORD +0 -25
- {blksprs-1.9.2.dist-info → blksprs-1.10.dist-info}/WHEEL +0 -0
- {blksprs-1.9.2.dist-info → blksprs-1.10.dist-info}/top_level.txt +0 -0
|
@@ -1,447 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
import triton
|
|
3
|
-
from torch import Tensor
|
|
4
|
-
from triton import language as tl
|
|
5
|
-
|
|
6
|
-
from blksprs.utils.blksprs_tensor import BlksprsTensor
|
|
7
|
-
from blksprs.utils.tools import get_triton_block_size, stride
|
|
8
|
-
from blksprs.utils.validation import validate_contiguous, validate_dimensions, validate_device, \
|
|
9
|
-
validate_sparsity, validate_dtype_int, validate_sparsity_block_size, validate_triton_block_size
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def gather_mdi(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
13
|
-
idx_bat: BlksprsTensor,
|
|
14
|
-
idx_row: BlksprsTensor,
|
|
15
|
-
idx_col: BlksprsTensor,
|
|
16
|
-
sparsity_layout_idx: Tensor,
|
|
17
|
-
sparsity_block_size: int, triton_block_size: int = None) -> BlksprsTensor:
|
|
18
|
-
src = src.contiguous()
|
|
19
|
-
idx_bat = idx_bat.contiguous()
|
|
20
|
-
idx_col = idx_col.contiguous()
|
|
21
|
-
|
|
22
|
-
validate_dimensions(src, idx_bat, idx_col)
|
|
23
|
-
validate_contiguous(src, idx_bat, idx_col)
|
|
24
|
-
validate_dtype_int(idx_bat, idx_col)
|
|
25
|
-
validate_device(src, idx_bat, idx_col)
|
|
26
|
-
validate_sparsity(sparsity_block_size, (src, sparsity_layout_src),
|
|
27
|
-
(idx_bat, sparsity_layout_idx), (idx_col, sparsity_layout_idx))
|
|
28
|
-
validate_sparsity_block_size(sparsity_block_size, src, idx_bat, idx_col)
|
|
29
|
-
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
30
|
-
|
|
31
|
-
sparsity_layout_x_flat = sparsity_layout_src.reshape(-1)
|
|
32
|
-
sparsity_reverse_lut_x = ((torch.cumsum(sparsity_layout_x_flat, dim=-1) - 1) *
|
|
33
|
-
(sparsity_layout_x_flat == 1) -
|
|
34
|
-
(1 * (sparsity_layout_x_flat == 0)))
|
|
35
|
-
|
|
36
|
-
sparsity_lut_i = torch.nonzero(sparsity_layout_idx).contiguous()
|
|
37
|
-
|
|
38
|
-
validate_contiguous(sparsity_layout_src, sparsity_reverse_lut_x,
|
|
39
|
-
sparsity_layout_idx, sparsity_lut_i)
|
|
40
|
-
|
|
41
|
-
return BlksprsTensor(_BlocksparseGatherMDI.apply(src, sparsity_layout_src, sparsity_reverse_lut_x,
|
|
42
|
-
idx_bat, idx_col, sparsity_layout_idx, sparsity_lut_i,
|
|
43
|
-
sparsity_block_size, triton_block_size))
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
class _BlocksparseGatherMDI(torch.autograd.Function):
|
|
47
|
-
|
|
48
|
-
@staticmethod
|
|
49
|
-
def forward(ctx, x: Tensor, sparsity_layout_x: Tensor, sparsity_reverse_lut_x: Tensor,
|
|
50
|
-
idx_bat: Tensor, idx_col: Tensor, sparsity_layout_i: Tensor, sparsity_lut_i: Tensor,
|
|
51
|
-
sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
52
|
-
output = torch.empty_like(idx_col, dtype=x.dtype)
|
|
53
|
-
|
|
54
|
-
x_b, x_r, x_c = x.size()
|
|
55
|
-
x_b_s, x_r_s, x_c_s = stride(x)
|
|
56
|
-
s_l_x_b, s_l_x_r, s_l_x_c = sparsity_layout_x.size()
|
|
57
|
-
s_l_x_b_s, s_l_x_r_s, s_l_x_c_s = stride(sparsity_layout_x)
|
|
58
|
-
i_b, i_r, i_c = idx_col.size()
|
|
59
|
-
i_b_s, i_r_s, i_c_s = stride(idx_col)
|
|
60
|
-
s_lut_i_r, s_lut_i_c = sparsity_lut_i.size()
|
|
61
|
-
s_lut_i_r_s, s_lut_i_c_s = stride(sparsity_lut_i)
|
|
62
|
-
o_b, o_r, o_c = output.size()
|
|
63
|
-
o_b_s, o_r_s, o_c_s = stride(output)
|
|
64
|
-
|
|
65
|
-
if triton_block_size is None:
|
|
66
|
-
triton_block_size = get_triton_block_size(sparsity_block_size)
|
|
67
|
-
|
|
68
|
-
triton_grid = lambda meta: [o_b,
|
|
69
|
-
triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
|
|
70
|
-
triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
|
|
71
|
-
|
|
72
|
-
(_BlocksparseGatherMDI.kernel_blocksparse_gather_mdi[triton_grid]
|
|
73
|
-
(x,
|
|
74
|
-
x_b, x_b_s, x_r_s, x_c_s,
|
|
75
|
-
s_l_x_b, s_l_x_b_s, s_l_x_r_s, s_l_x_c_s,
|
|
76
|
-
sparsity_reverse_lut_x,
|
|
77
|
-
idx_bat,
|
|
78
|
-
idx_col,
|
|
79
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
80
|
-
output,
|
|
81
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
82
|
-
sparsity_lut_i, s_lut_i_r, s_lut_i_r_s, s_lut_i_c_s,
|
|
83
|
-
sparsity_block_size,
|
|
84
|
-
triton_block_size))
|
|
85
|
-
|
|
86
|
-
ctx.save_for_backward(sparsity_layout_x, idx_bat, idx_col, sparsity_layout_i)
|
|
87
|
-
ctx.sparsity_block_size = sparsity_block_size
|
|
88
|
-
ctx.triton_block_size = triton_block_size
|
|
89
|
-
|
|
90
|
-
return output
|
|
91
|
-
|
|
92
|
-
@staticmethod
|
|
93
|
-
def backward(ctx, grad_output):
|
|
94
|
-
sparsity_layout_x, idx_bat, idx_col, sparsity_layout_i = ctx.saved_tensors
|
|
95
|
-
sparsity_block_size = ctx.sparsity_block_size
|
|
96
|
-
triton_block_size = ctx.triton_block_size
|
|
97
|
-
|
|
98
|
-
return scatter_reduce_mdi(grad_output, sparsity_layout_i,
|
|
99
|
-
idx_bat,
|
|
100
|
-
None,
|
|
101
|
-
idx_col,
|
|
102
|
-
sparsity_layout_x,
|
|
103
|
-
sparsity_block_size,
|
|
104
|
-
reduce_op="sum",
|
|
105
|
-
triton_block_size=triton_block_size), None, None, None, None, None, None, None, None
|
|
106
|
-
|
|
107
|
-
@staticmethod
|
|
108
|
-
@triton.jit
|
|
109
|
-
def kernel_blocksparse_gather_mdi(x,
|
|
110
|
-
x_b, x_b_s, x_r_s, x_c_s,
|
|
111
|
-
s_l_x_b, s_l_x_b_s, s_l_x_r_s, s_l_x_c_s,
|
|
112
|
-
r_lut_x,
|
|
113
|
-
idx_bat,
|
|
114
|
-
idx_col,
|
|
115
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
116
|
-
o,
|
|
117
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
118
|
-
s_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
|
|
119
|
-
sparsity_block_size,
|
|
120
|
-
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
121
|
-
# Get triton block indices
|
|
122
|
-
pid_blk = tl.program_id(axis=0)
|
|
123
|
-
pid_row = tl.program_id(axis=1)
|
|
124
|
-
pid_col = tl.program_id(axis=2)
|
|
125
|
-
|
|
126
|
-
# Load batch index values
|
|
127
|
-
blk_idx_bat_idx = ((pid_blk * i_b_s) +
|
|
128
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
129
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
130
|
-
blk_idx_bat_msk = (blk_idx_bat_idx < i_b * i_b_s)
|
|
131
|
-
blk_idx_bat = tl.load(idx_bat + blk_idx_bat_idx, mask=blk_idx_bat_msk).to(tl.int32)
|
|
132
|
-
|
|
133
|
-
# Get position of current sparsity block row
|
|
134
|
-
spa_row_o_idx = (pid_blk * s_lut_o_r_s + 1 * s_lut_o_c_s)
|
|
135
|
-
spa_row_o_msk = (spa_row_o_idx < s_lut_o_r * s_lut_o_r_s)
|
|
136
|
-
spa_row_o = tl.load(s_lut_o + spa_row_o_idx, mask=spa_row_o_msk)
|
|
137
|
-
|
|
138
|
-
# Load column index values
|
|
139
|
-
blk_idx_col_idx = ((pid_blk * i_b_s) +
|
|
140
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
141
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
142
|
-
blk_idx_col_msk = (blk_idx_col_idx < i_b * i_b_s)
|
|
143
|
-
blk_idx_col = tl.load(idx_col + blk_idx_col_idx, mask=blk_idx_col_msk).to(tl.int32)
|
|
144
|
-
|
|
145
|
-
# Get positions of sparsity blocks
|
|
146
|
-
pos_spa_blk_x = blk_idx_col // sparsity_block_size
|
|
147
|
-
pos_spa_col_x = blk_idx_col % sparsity_block_size
|
|
148
|
-
|
|
149
|
-
# Load reverse sparsity indices for x
|
|
150
|
-
rev_idx_spa_x_idx = ((blk_idx_bat * s_l_x_b_s) +
|
|
151
|
-
(spa_row_o * s_l_x_r_s) +
|
|
152
|
-
(pos_spa_blk_x * s_l_x_c_s))
|
|
153
|
-
rev_idx_spa_x_msk = (rev_idx_spa_x_idx < s_l_x_b * s_l_x_b_s)
|
|
154
|
-
rev_idx_spa_x = tl.load(r_lut_x + rev_idx_spa_x_idx, mask=rev_idx_spa_x_msk).to(tl.int32)
|
|
155
|
-
|
|
156
|
-
if rev_idx_spa_x == -1:
|
|
157
|
-
tl.device_assert(False)
|
|
158
|
-
return
|
|
159
|
-
|
|
160
|
-
# Load x values
|
|
161
|
-
blk_x_idx = ((rev_idx_spa_x * x_b_s) +
|
|
162
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * x_r_s)[:, None] +
|
|
163
|
-
(pos_spa_col_x * x_c_s))
|
|
164
|
-
blk_x_msk = (blk_x_idx < x_b * x_b_s)
|
|
165
|
-
blk_x = tl.load(x + blk_x_idx, mask=blk_x_msk)
|
|
166
|
-
|
|
167
|
-
# Store output
|
|
168
|
-
blk_o_idx = ((pid_blk * o_b_s) +
|
|
169
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_r_s)[:, None] +
|
|
170
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_c_s)[None, :])
|
|
171
|
-
blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
172
|
-
tl.store(o + blk_o_idx, blk_x, mask=blk_o_msk)
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
def scatter_reduce_mdi(src: BlksprsTensor, sparsity_layout_src: Tensor,
|
|
176
|
-
idx_bat: BlksprsTensor,
|
|
177
|
-
idx_row: BlksprsTensor,
|
|
178
|
-
idx_col: BlksprsTensor,
|
|
179
|
-
sparsity_layout_tgt: Tensor,
|
|
180
|
-
sparsity_block_size: int,
|
|
181
|
-
reduce_op: str = "sum", triton_block_size: int = None) -> BlksprsTensor:
|
|
182
|
-
src = src.contiguous()
|
|
183
|
-
idx_bat = idx_bat.contiguous()
|
|
184
|
-
idx_col = idx_col.contiguous()
|
|
185
|
-
|
|
186
|
-
validate_dimensions(src, idx_bat, idx_col)
|
|
187
|
-
validate_contiguous(src, idx_bat, idx_col)
|
|
188
|
-
validate_dtype_int(idx_bat, idx_col)
|
|
189
|
-
validate_device(src, idx_bat, idx_col)
|
|
190
|
-
validate_sparsity(sparsity_block_size, (src, sparsity_layout_src),
|
|
191
|
-
(idx_bat, sparsity_layout_src),
|
|
192
|
-
(idx_col, sparsity_layout_src))
|
|
193
|
-
validate_sparsity_block_size(sparsity_block_size, src, idx_bat, idx_col)
|
|
194
|
-
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
195
|
-
|
|
196
|
-
if reduce_op not in ["none", "sum"]:
|
|
197
|
-
raise ValueError(f"Reduction operation '{reduce_op}' is not supported")
|
|
198
|
-
|
|
199
|
-
sparsity_lut_x = torch.nonzero(sparsity_layout_src).contiguous()
|
|
200
|
-
|
|
201
|
-
sparsity_layout_o_flat = sparsity_layout_tgt.reshape(-1)
|
|
202
|
-
sparsity_reverse_lut_o = ((torch.cumsum(sparsity_layout_o_flat, dim=-1) - 1) *
|
|
203
|
-
(sparsity_layout_o_flat == 1) -
|
|
204
|
-
(1 * (sparsity_layout_o_flat == 0)))
|
|
205
|
-
|
|
206
|
-
n_sparse_blocks = torch.sum(sparsity_layout_tgt.to(torch.int)).item()
|
|
207
|
-
|
|
208
|
-
validate_contiguous(sparsity_layout_src, sparsity_lut_x,
|
|
209
|
-
sparsity_layout_tgt, sparsity_reverse_lut_o)
|
|
210
|
-
|
|
211
|
-
return BlksprsTensor(_BlocksparseScatterReduceMDI.apply(src, sparsity_layout_src, sparsity_lut_x,
|
|
212
|
-
idx_bat,
|
|
213
|
-
idx_col,
|
|
214
|
-
sparsity_layout_tgt, sparsity_reverse_lut_o,
|
|
215
|
-
sparsity_block_size, n_sparse_blocks,
|
|
216
|
-
reduce_op, triton_block_size))
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
class _BlocksparseScatterReduceMDI(torch.autograd.Function):
|
|
220
|
-
|
|
221
|
-
@staticmethod
|
|
222
|
-
def forward(ctx, x: Tensor, sparsity_layout_x: Tensor, sparsity_lut_x: Tensor,
|
|
223
|
-
idx_bat: Tensor,
|
|
224
|
-
idx_col: Tensor,
|
|
225
|
-
sparsity_layout_o: Tensor, sparsity_reverse_lut_o: Tensor,
|
|
226
|
-
sparsity_block_size: int, n_sparse_blocks: int,
|
|
227
|
-
reduce_op: str, triton_block_size: int) -> Tensor:
|
|
228
|
-
output = torch.zeros(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size),
|
|
229
|
-
dtype=x.dtype, device=x.device)
|
|
230
|
-
|
|
231
|
-
x_b, x_r, x_c = x.size()
|
|
232
|
-
x_b_s, x_r_s, x_c_s = stride(x)
|
|
233
|
-
s_lut_x_r, s_lut_x_c = sparsity_lut_x.size()
|
|
234
|
-
s_lut_x_r_s, s_lut_x_c_s = stride(sparsity_lut_x)
|
|
235
|
-
i_b, i_r, i_c = idx_col.size()
|
|
236
|
-
i_b_s, i_r_s, i_c_s = stride(idx_col)
|
|
237
|
-
o_b, o_r, o_c = output.size()
|
|
238
|
-
o_b_s, o_r_s, o_c_s = stride(output)
|
|
239
|
-
s_l_o_b, s_l_o_r, s_l_o_c = sparsity_layout_o.size()
|
|
240
|
-
s_l_o_b_s, s_l_o_r_s, s_l_o_c_s = stride(sparsity_layout_o)
|
|
241
|
-
|
|
242
|
-
if triton_block_size is None:
|
|
243
|
-
triton_block_size = get_triton_block_size(sparsity_block_size)
|
|
244
|
-
|
|
245
|
-
triton_grid = lambda meta: [x_b,
|
|
246
|
-
triton.cdiv(x_r, meta["TRITON_BLOCK_SIZE"]),
|
|
247
|
-
triton.cdiv(x_c, meta["TRITON_BLOCK_SIZE"])]
|
|
248
|
-
|
|
249
|
-
reduce_op_ind = 0
|
|
250
|
-
if reduce_op == "sum":
|
|
251
|
-
reduce_op_ind = 1
|
|
252
|
-
|
|
253
|
-
(_BlocksparseScatterReduceMDI.kernel_blocksparse_scatter_mdi[triton_grid]
|
|
254
|
-
(x,
|
|
255
|
-
x_b, x_b_s, x_r_s, x_c_s,
|
|
256
|
-
sparsity_lut_x, s_lut_x_r, s_lut_x_r_s, s_lut_x_c_s,
|
|
257
|
-
idx_bat,
|
|
258
|
-
idx_col,
|
|
259
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
260
|
-
output,
|
|
261
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
262
|
-
s_l_o_b, s_l_o_b_s, s_l_o_r_s, s_l_o_c_s,
|
|
263
|
-
sparsity_reverse_lut_o,
|
|
264
|
-
reduce_op_ind,
|
|
265
|
-
sparsity_block_size,
|
|
266
|
-
triton_block_size))
|
|
267
|
-
|
|
268
|
-
ctx.save_for_backward(sparsity_layout_x, idx_bat, idx_col, sparsity_layout_o)
|
|
269
|
-
ctx.sparsity_block_size = sparsity_block_size
|
|
270
|
-
ctx.reduce_op = reduce_op
|
|
271
|
-
ctx.triton_block_size = triton_block_size
|
|
272
|
-
|
|
273
|
-
return output
|
|
274
|
-
|
|
275
|
-
@staticmethod
|
|
276
|
-
def backward(ctx, grad_output):
|
|
277
|
-
sparsity_layout_x, idx_bat, idx_col, sparsity_layout_o = ctx.saved_tensors
|
|
278
|
-
sparsity_block_size = ctx.sparsity_block_size
|
|
279
|
-
reduce_op = ctx.reduce_op
|
|
280
|
-
triton_block_size = ctx.triton_block_size
|
|
281
|
-
|
|
282
|
-
if reduce_op == "sum":
|
|
283
|
-
return gather_mdi(grad_output, sparsity_layout_o,
|
|
284
|
-
idx_bat,
|
|
285
|
-
None,
|
|
286
|
-
idx_col,
|
|
287
|
-
sparsity_layout_x, sparsity_block_size,
|
|
288
|
-
triton_block_size=triton_block_size), None, None, None, None, None, None, None, None, None, None
|
|
289
|
-
else:
|
|
290
|
-
raise ValueError(f"Reduction operation '{reduce_op}' does not support backward pass")
|
|
291
|
-
|
|
292
|
-
@staticmethod
|
|
293
|
-
@triton.jit
|
|
294
|
-
def kernel_blocksparse_scatter_mdi(x,
|
|
295
|
-
x_b, x_b_s, x_r_s, x_c_s,
|
|
296
|
-
s_lut_x, s_lut_x_r, s_lut_x_r_s, s_lut_x_c_s,
|
|
297
|
-
idx_bat,
|
|
298
|
-
idx_col,
|
|
299
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
300
|
-
o,
|
|
301
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
302
|
-
s_l_o_b, s_l_o_b_s, s_l_o_r_s, s_l_o_c_s,
|
|
303
|
-
r_lut_o,
|
|
304
|
-
reduce_op_ind,
|
|
305
|
-
sparsity_block_size,
|
|
306
|
-
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
307
|
-
# Get triton block indices
|
|
308
|
-
pid_blk = tl.program_id(axis=0)
|
|
309
|
-
pid_row = tl.program_id(axis=1)
|
|
310
|
-
pid_col = tl.program_id(axis=2)
|
|
311
|
-
|
|
312
|
-
# Load batch index values
|
|
313
|
-
blk_idx_bat_idx = ((pid_blk * i_b_s) +
|
|
314
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
315
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
316
|
-
blk_idx_bat_msk = (blk_idx_bat_idx < i_b * i_b_s)
|
|
317
|
-
blk_idx_bat = tl.load(idx_bat + blk_idx_bat_idx, mask=blk_idx_bat_msk).to(tl.int32)
|
|
318
|
-
|
|
319
|
-
# Get position of current sparsity block row
|
|
320
|
-
spa_row_x_idx = (pid_blk * s_lut_x_r_s + 1 * s_lut_x_c_s)
|
|
321
|
-
spa_row_x_msk = (spa_row_x_idx < s_lut_x_r * s_lut_x_r_s)
|
|
322
|
-
spa_row_x = tl.load(s_lut_x + spa_row_x_idx, mask=spa_row_x_msk)
|
|
323
|
-
|
|
324
|
-
# Load x values
|
|
325
|
-
blk_x_idx = ((pid_blk * x_b_s) +
|
|
326
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * x_r_s)[:, None] +
|
|
327
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * x_c_s)[None, :])
|
|
328
|
-
blk_x_msk = (blk_x_idx < x_b * x_b_s)
|
|
329
|
-
blk_x = tl.load(x + blk_x_idx, mask=blk_x_msk)
|
|
330
|
-
|
|
331
|
-
# Load column index values
|
|
332
|
-
blk_idx_col_idx = ((pid_blk * i_b_s) +
|
|
333
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
334
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
335
|
-
blk_idx_col_msk = (blk_idx_col_idx < i_b * i_b_s)
|
|
336
|
-
blk_idx_col = tl.load(idx_col + blk_idx_col_idx, mask=blk_idx_col_msk).to(tl.int32)
|
|
337
|
-
|
|
338
|
-
# Get positions of sparsity blocks
|
|
339
|
-
pos_spa_blk_o = blk_idx_col // sparsity_block_size
|
|
340
|
-
pos_spa_col_o = blk_idx_col % sparsity_block_size
|
|
341
|
-
|
|
342
|
-
# Load reverse sparsity indices for o
|
|
343
|
-
rev_idx_spa_o_idx = ((blk_idx_bat * s_l_o_b_s) +
|
|
344
|
-
(spa_row_x * s_l_o_r_s) +
|
|
345
|
-
(pos_spa_blk_o * s_l_o_c_s))
|
|
346
|
-
rev_idx_spa_o_msk = (rev_idx_spa_o_idx < s_l_o_b * s_l_o_b_s)
|
|
347
|
-
rev_idx_spa_o = tl.load(r_lut_o + rev_idx_spa_o_idx, mask=rev_idx_spa_o_msk).to(tl.int32)
|
|
348
|
-
|
|
349
|
-
if rev_idx_spa_o == -1:
|
|
350
|
-
tl.device_assert(False)
|
|
351
|
-
return
|
|
352
|
-
|
|
353
|
-
# Store output
|
|
354
|
-
blk_o_idx = ((rev_idx_spa_o * o_b_s) +
|
|
355
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_r_s)[:, None] +
|
|
356
|
-
(pos_spa_col_o * o_c_s))
|
|
357
|
-
blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
358
|
-
|
|
359
|
-
if reduce_op_ind == 0:
|
|
360
|
-
tl.store(o + blk_o_idx, blk_x, mask=blk_o_msk)
|
|
361
|
-
elif reduce_op_ind == 1:
|
|
362
|
-
tl.atomic_add(o + blk_o_idx, blk_x, mask=blk_o_msk)
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
def build_distribution_layout_mdi(idx_bat: BlksprsTensor, idx_row: BlksprsTensor, idx_col: BlksprsTensor,
|
|
366
|
-
sparsity_layout_idx: Tensor, size_target: torch.Size,
|
|
367
|
-
sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
|
|
368
|
-
validate_dimensions(idx_bat, idx_col)
|
|
369
|
-
validate_contiguous(idx_bat, idx_col)
|
|
370
|
-
validate_device(idx_bat, idx_col)
|
|
371
|
-
|
|
372
|
-
sparsity_lut_i = torch.nonzero(sparsity_layout_idx).contiguous()
|
|
373
|
-
|
|
374
|
-
output = torch.zeros(size_target[0], size_target[1] // sparsity_block_size, size_target[2] // sparsity_block_size,
|
|
375
|
-
dtype=torch.bool, device=idx_col.device)
|
|
376
|
-
|
|
377
|
-
i_b, i_r, i_c = idx_col.size()
|
|
378
|
-
i_b_s, i_r_s, i_c_s = stride(idx_col)
|
|
379
|
-
s_lut_i_r, s_lut_i_c = sparsity_lut_i.size()
|
|
380
|
-
s_lut_i_r_s, s_lut_i_c_s = stride(sparsity_lut_i)
|
|
381
|
-
o_b, o_r, o_c = output.size()
|
|
382
|
-
o_b_s, o_r_s, o_c_s = stride(output)
|
|
383
|
-
|
|
384
|
-
if triton_block_size is None:
|
|
385
|
-
triton_block_size = get_triton_block_size(sparsity_block_size)
|
|
386
|
-
|
|
387
|
-
validate_triton_block_size(triton_block_size, sparsity_block_size)
|
|
388
|
-
|
|
389
|
-
triton_grid = lambda meta: [i_b,
|
|
390
|
-
triton.cdiv(i_r, meta["TRITON_BLOCK_SIZE"]),
|
|
391
|
-
triton.cdiv(i_c, meta["TRITON_BLOCK_SIZE"])]
|
|
392
|
-
|
|
393
|
-
(kernel_distribution_layout_mdi[triton_grid]
|
|
394
|
-
(idx_bat,
|
|
395
|
-
idx_col,
|
|
396
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
397
|
-
sparsity_lut_i,
|
|
398
|
-
s_lut_i_r, s_lut_i_r_s, s_lut_i_c_s,
|
|
399
|
-
output,
|
|
400
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
401
|
-
sparsity_block_size,
|
|
402
|
-
triton_block_size))
|
|
403
|
-
|
|
404
|
-
return output
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
@triton.jit
|
|
408
|
-
def kernel_distribution_layout_mdi(idx_bat,
|
|
409
|
-
idx_col,
|
|
410
|
-
i_b, i_b_s, i_r_s, i_c_s,
|
|
411
|
-
s_lut_i,
|
|
412
|
-
s_lut_i_r, s_lut_i_r_s, s_lut_i_c_s,
|
|
413
|
-
o,
|
|
414
|
-
o_b, o_b_s, o_r_s, o_c_s,
|
|
415
|
-
sparsity_block_size,
|
|
416
|
-
TRITON_BLOCK_SIZE: tl.constexpr) -> None:
|
|
417
|
-
# Get triton block indices
|
|
418
|
-
pid_blk = tl.program_id(axis=0)
|
|
419
|
-
pid_row = tl.program_id(axis=1)
|
|
420
|
-
pid_col = tl.program_id(axis=2)
|
|
421
|
-
|
|
422
|
-
# Load batch index values
|
|
423
|
-
blk_idx_bat_idx = ((pid_blk * i_b_s) +
|
|
424
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
425
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
426
|
-
blk_idx_bat_msk = (blk_idx_bat_idx < i_b * i_b_s)
|
|
427
|
-
blk_idx_bat = tl.load(idx_bat + blk_idx_bat_idx, mask=blk_idx_bat_msk).to(tl.int32)
|
|
428
|
-
|
|
429
|
-
# Get position of current sparsity block row
|
|
430
|
-
spa_row_i_idx = (pid_blk * s_lut_i_r_s + 1 * s_lut_i_c_s)
|
|
431
|
-
spa_row_i_msk = (spa_row_i_idx < s_lut_i_r * s_lut_i_r_s)
|
|
432
|
-
spa_row_i = tl.load(s_lut_i + spa_row_i_idx, mask=spa_row_i_msk)
|
|
433
|
-
|
|
434
|
-
blk_i_idx = (pid_blk * i_b_s +
|
|
435
|
-
((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
|
|
436
|
-
((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
|
|
437
|
-
blk_i_msk = (blk_i_idx < i_b * i_b_s)
|
|
438
|
-
blk_i = tl.load(idx_col + blk_i_idx, mask=blk_i_msk)
|
|
439
|
-
|
|
440
|
-
blk_i = blk_i // sparsity_block_size
|
|
441
|
-
blk_v = tl.full((TRITON_BLOCK_SIZE, TRITON_BLOCK_SIZE), 1, dtype=tl.int32)
|
|
442
|
-
|
|
443
|
-
blk_o_idx = ((blk_idx_bat * o_b_s) +
|
|
444
|
-
(spa_row_i * o_r_s) +
|
|
445
|
-
(blk_i * o_c_s))
|
|
446
|
-
blk_o_msk = (blk_o_idx < o_b * o_b_s)
|
|
447
|
-
tl.store(o + blk_o_idx, blk_v, mask=blk_o_msk)
|
blksprs-1.9.2.dist-info/RECORD
DELETED
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
blksprs/__init__.py,sha256=L2wP3sFBjfcIOuI2WhQW1eUEYuKoZLKxSV9z0aQmknM,2001
|
|
2
|
-
blksprs/layouting/distribution_layout.py,sha256=9f_Bx2YQF4LTH95C0S7OuB9eeOuh73NcE0Z7Wrtug38,5034
|
|
3
|
-
blksprs/layouting/sparsity_layout.py,sha256=-sScIn4hhG35j9BXytrojEzp8jnFkMargJjtivPV1fc,9755
|
|
4
|
-
blksprs/ops/conversion.py,sha256=2lQZfPd1iFheXIcoH0LbN2m7vqFRQ8XUzhGFlDckBsM,22052
|
|
5
|
-
blksprs/ops/distribution.py,sha256=JGa-eLY-1OgicU3vPAwuhqsoUIeyadzmTk2t25aYyak,19956
|
|
6
|
-
blksprs/ops/flow.py,sha256=RBXNOA6O0Ay2sotH8uNoltZywkdxJocJCn3bfB1fGjM,6185
|
|
7
|
-
blksprs/ops/matmul.py,sha256=yh2ZnO0ZltT1AgadiFP0vX28YJ4n74xO-I_5vFUmOmA,11452
|
|
8
|
-
blksprs/ops/partitioning.py,sha256=z7kx4FrC-ugxZP-IsOHCfdbsF__ld0P-vDota5CbU4s,7672
|
|
9
|
-
blksprs/ops/repeat.py,sha256=RCa-dITomA5v12K5Oxa5_ReA361zS7WHPNNHxSp9PGw,8578
|
|
10
|
-
blksprs/ops/softmax.py,sha256=V-1vqRefjjwSp6JPwKxVxh5pTng9gOdtgGlXHDPbpYM,12190
|
|
11
|
-
blksprs/ops/transpose.py,sha256=jxzFFffrj4S_9tiCrwwUMdz6EA98o1dziWXjlqb64a4,6859
|
|
12
|
-
blksprs/ops/experimental/distribution_mdi.py,sha256=F_0tl4Gn-9JZs_TZfDtZqO_RPFl7sejqQNF8UNIoCbs,20533
|
|
13
|
-
blksprs/ops/misc/broadcast_ops.py,sha256=cPtRJa3pkZfY1QG51CJ-zDn4SK-CRpX5LEXoKGGMvRU,5418
|
|
14
|
-
blksprs/ops/misc/exp.py,sha256=FnSFosBfJHuiEbD0MD-i4axLghRn4a0f8KvHXrKBB6M,3802
|
|
15
|
-
blksprs/ops/misc/row_wise.py,sha256=U4Kk0-P4oOuMNjMHXxP2gP9njMIeMfz8RZrzItNIF94,17229
|
|
16
|
-
blksprs/utils/benchmarking.py,sha256=4pLVlnPW_2EM-NT3n4SClaRznVYEljztLbJcccz8kZE,1360
|
|
17
|
-
blksprs/utils/blksprs_tensor.py,sha256=VjplBgDhnf9sxf-1R5feA0xp5FDCDdaeZmCeoIRdCnc,151
|
|
18
|
-
blksprs/utils/layout_utils.py,sha256=49ZdPS_gMn_IrWty3FARbi2rda5a8g5DmAEL8LOrC30,670
|
|
19
|
-
blksprs/utils/processing.py,sha256=WLuMJQ8v-YovXwcDjhlDn3N31WMZXrtyeeyKSgq_zn4,3642
|
|
20
|
-
blksprs/utils/tools.py,sha256=r7Y4C37vfSWUyQTGwa8NyRqgovmsq9hMufkenqYHOxo,539
|
|
21
|
-
blksprs/utils/validation.py,sha256=CbxBbeQWJo8wox5eMoVzaTlP9FVBwt3-gxUOmi3EUgw,4213
|
|
22
|
-
blksprs-1.9.2.dist-info/METADATA,sha256=JIHA58YnLfFrUyAOsPmHMWbDz_XmkDiXypLhg1ijO0E,8670
|
|
23
|
-
blksprs-1.9.2.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
|
24
|
-
blksprs-1.9.2.dist-info/top_level.txt,sha256=qyp0IHeY3H2GQA97i4hk_To5rRBS2YcE1HRPSLy04fk,8
|
|
25
|
-
blksprs-1.9.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|