blksprs 1.0__py3-none-any.whl → 1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,114 @@
1
+ import torch
2
+ import triton
3
+ from torch import Tensor
4
+ from triton import language as tl
5
+
6
+ from blksprs.utils.tools import get_triton_block_size
7
+ from blksprs.utils.validation import validate_triton_block_size, validate_dimensions, validate_device, \
8
+ validate_contiguous
9
+
10
+
11
+ def build_distribution_layout(indices: Tensor, sparsity_layout_indices: Tensor,
12
+ size_target: torch.Size,
13
+ sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
14
+ """Builds the sparsity layout of either the source of a gather or the target of a scatter operation.
15
+
16
+ Args:
17
+ indices (Tensor): The block-sparse indices tensor in compressed form used for the gather or scatter operation.
18
+ sparsity_layout_indices (Tensor): The sparsity layout of the indices block-sparse tensor.
19
+ size_target (torch.Size): The size of the block-sparse target tensor in regular form.
20
+ sparsity_block_size (int): The size of the sparsity blocks.
21
+ triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
22
+
23
+ Returns:
24
+ Tensor: The sparsity layout of the source or target tensor.
25
+
26
+ """
27
+ validate_dimensions(indices)
28
+ validate_contiguous(indices)
29
+ validate_device(indices)
30
+
31
+ sparsity_lut_i = torch.nonzero(sparsity_layout_indices).contiguous()
32
+
33
+ output = torch.zeros(size_target[0], size_target[1] // sparsity_block_size, size_target[2] // sparsity_block_size,
34
+ device=indices.device, dtype=torch.int32)
35
+
36
+ i_b, i_r, i_c = indices.size()
37
+ i_b_s, i_r_s, i_c_s = indices.stride()
38
+ s_l_i_b, s_l_i_r, s_l_i_c = sparsity_layout_indices.size()
39
+ s_l_i_b_s, s_l_i_r_s, s_l_i_c_s = sparsity_layout_indices.stride()
40
+ s_lut_i_r, s_lut_i_c = sparsity_lut_i.size()
41
+ s_lut_i_r_s, s_lut_i_c_s = sparsity_lut_i.stride()
42
+ o_b, o_r, o_c = output.size()
43
+ o_b_s, o_r_s, o_c_s = output.stride()
44
+
45
+ if triton_block_size is None:
46
+ triton_block_size = get_triton_block_size(sparsity_block_size)
47
+
48
+ validate_triton_block_size(triton_block_size, sparsity_block_size)
49
+
50
+ triton_grid = lambda meta: [i_b,
51
+ triton.cdiv(i_r, meta["TRITON_BLOCK_SIZE"]),
52
+ triton.cdiv(i_c, meta["TRITON_BLOCK_SIZE"])]
53
+
54
+ (kernel_distribution_layout[triton_grid]
55
+ (indices,
56
+ i_b, i_b_s, i_r_s, i_c_s,
57
+ sparsity_layout_indices,
58
+ s_l_i_b, s_l_i_b_s, s_l_i_r, s_l_i_r_s, s_l_i_c, s_l_i_c_s,
59
+ sparsity_lut_i,
60
+ s_lut_i_r, s_lut_i_r_s, s_lut_i_c, s_lut_i_c_s,
61
+ output,
62
+ o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
63
+ sparsity_block_size,
64
+ triton_block_size))
65
+
66
+ return output
67
+
68
+
69
+ @triton.jit
70
+ def kernel_distribution_layout(i,
71
+ i_b, i_b_s, i_r_s, i_c_s,
72
+ s_l_i,
73
+ s_l_i_b, s_l_i_b_s, s_l_i_r, s_l_i_r_s, s_l_i_c, s_l_i_c_s,
74
+ s_lut_i,
75
+ s_lut_i_r, s_lut_i_r_s, s_lut_i_c, s_lut_i_c_s,
76
+ o,
77
+ o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
78
+ sparsity_block_size,
79
+ TRITON_BLOCK_SIZE: tl.constexpr) -> None:
80
+ # Get triton block indices
81
+ pid_blk = tl.program_id(axis=0)
82
+ pid_row = tl.program_id(axis=1)
83
+ pid_col = tl.program_id(axis=2)
84
+
85
+ # Get position of current sparsity block consisting of its batch, row, and column index
86
+ spa_bat_i_idx = (pid_blk * s_lut_i_r_s + 0 * s_lut_i_c_s)
87
+ spa_bat_i_msk = (spa_bat_i_idx < s_lut_i_r * s_lut_i_r_s)
88
+ spa_bat_i = tl.load(s_lut_i + spa_bat_i_idx, mask=spa_bat_i_msk)
89
+
90
+ spa_row_i_idx = (pid_blk * s_lut_i_r_s + 1 * s_lut_i_c_s)
91
+ spa_row_i_msk = (spa_row_i_idx < s_lut_i_r * s_lut_i_r_s)
92
+ spa_row_i = tl.load(s_lut_i + spa_row_i_idx, mask=spa_row_i_msk)
93
+
94
+ blk_i_idx = (pid_blk * i_b_s +
95
+ ((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_r_s)[:, None] +
96
+ ((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * i_c_s)[None, :])
97
+ blk_i_msk = (blk_i_idx < i_b * i_b_s)
98
+ blk_i = tl.load(i + blk_i_idx, mask=blk_i_msk)
99
+
100
+ blk_i = blk_i // sparsity_block_size
101
+ blk_v = tl.full((TRITON_BLOCK_SIZE, TRITON_BLOCK_SIZE), 1, dtype=tl.int32)
102
+
103
+ blk_o_idx = ((spa_bat_i * o_b_s) +
104
+ (spa_row_i * o_r_s) +
105
+ (blk_i * o_c_s))
106
+ blk_o_msk = (blk_o_idx < o_b * o_b_s)
107
+ tl.store(o + blk_o_idx, blk_v, mask=blk_o_msk)
108
+
109
+ # if tl.min(blk_x) != 0 or tl.max(blk_x) != 0:
110
+ # blk_o_idx = (pid_bat * o_b_s +
111
+ # (((pid_row * TRITON_BLOCK_SIZE) // sparsity_block_size) * o_r_s +
112
+ # ((pid_col * TRITON_BLOCK_SIZE) // sparsity_block_size) * o_c_s))
113
+ # blk_o_msk = (blk_o_idx < o_b * o_b_s)
114
+ # tl.store(o + blk_o_idx, 1, mask=blk_o_msk)
@@ -5,13 +5,23 @@ from triton import language as tl
5
5
 
6
6
  from blksprs.utils.tools import get_triton_block_size
7
7
  from blksprs.utils.validation import validate_triton_block_size, validate_dimensions, validate_device, \
8
- validate_dtype_float, validate_contiguous
8
+ validate_contiguous
9
9
 
10
10
 
11
- def create_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
11
+ def build_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
12
+ """Builds the sparsity layout of a dense tensor covering its sparse blocks.
13
+
14
+ Args:
15
+ x (Tensor): A block-sparse (or dense) tensor in regular form.
16
+ sparsity_block_size (int): The size of the sparsity blocks.
17
+ triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
18
+
19
+ Returns:
20
+ Tensor: The sparsity layout of the input block-sparse (or dense) tensor.
21
+
22
+ """
12
23
  validate_dimensions(x)
13
24
  validate_contiguous(x)
14
- validate_dtype_float(x)
15
25
  validate_device(x)
16
26
 
17
27
  output = torch.zeros(x.size(0), x.size(1) // sparsity_block_size, x.size(2) // sparsity_block_size,
@@ -33,9 +43,9 @@ def create_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_siz
33
43
 
34
44
  (kernel_sparsity_layout[triton_grid]
35
45
  (x,
36
- x_b, x_b_s, x_r, x_r_s, x_c, x_c_s,
46
+ x_b, x_b_s, x_r_s, x_c_s,
37
47
  output,
38
- o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
48
+ o_b, o_b_s, o_r_s, o_c_s,
39
49
  sparsity_block_size,
40
50
  triton_block_size))
41
51
 
@@ -44,9 +54,9 @@ def create_sparsity_layout(x: Tensor, sparsity_block_size: int, triton_block_siz
44
54
 
45
55
  @triton.jit
46
56
  def kernel_sparsity_layout(x,
47
- x_b, x_b_s, x_r, x_r_s, x_c, x_c_s,
57
+ x_b, x_b_s, x_r_s, x_c_s,
48
58
  o,
49
- o_b, o_b_s, o_r, o_r_s, o_c, o_c_s,
59
+ o_b, o_b_s, o_r_s, o_c_s,
50
60
  sparsity_block_size,
51
61
  TRITON_BLOCK_SIZE: tl.constexpr) -> None:
52
62
  # Get triton block indices
@@ -0,0 +1,132 @@
1
+ import torch
2
+ import triton
3
+ from torch import Tensor
4
+ from triton import language as tl
5
+
6
+ from blksprs.utils.tools import get_triton_block_size
7
+ from blksprs.utils.validation import validate_contiguous, validate_device, \
8
+ validate_sparsity_block_size, validate_triton_block_size
9
+
10
+
11
+ def broadcast_addition(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
12
+ sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
13
+ """Performs a broadcast and subsequent addition of two dense tensors x and y. Returns a block-sparse tensor in
14
+ compressed form.
15
+
16
+ Args:
17
+ x (Tensor): A dense input tensor.
18
+ y (Tensor): A dense input tensor.
19
+ sparsity_layout_output (Tensor): The sparsity layout of the output tensor.
20
+ sparsity_block_size (int): The size of the sparsity blocks.
21
+ triton_block_size (int, optional): The block size to use for the triton kernel (default ``None``).
22
+
23
+ Returns:
24
+ Tensor: The result of the operation as a block-sparse tensor in compressed form. Each element o(i, j) of the
25
+ output tensor corresponds to x(i) + y(j).
26
+
27
+ """
28
+ validate_device(x, y)
29
+ validate_contiguous(x, y)
30
+ if x.size(-1) != y.size(-1):
31
+ raise ValueError("Dimensions of tensors must match")
32
+ validate_sparsity_block_size(sparsity_block_size)
33
+ validate_triton_block_size(triton_block_size, sparsity_block_size)
34
+
35
+ sparsity_lut_o = torch.nonzero(sparsity_layout_output).contiguous()
36
+
37
+ n_sparse_blocks = torch.sum(sparsity_layout_output.to(torch.int)).item()
38
+
39
+ validate_contiguous(sparsity_layout_output, sparsity_lut_o)
40
+
41
+ output = torch.zeros(n_sparse_blocks, sparsity_block_size, sparsity_block_size, device=x.device)
42
+
43
+ x_b, x_c = x.size()
44
+ x_b_s, x_c_s = x.stride()
45
+ y_b, y_c = y.size()
46
+ y_b_s, y_c_s = y.stride()
47
+ o_b, o_r, o_c = output.size()
48
+ o_b_s, o_r_s, o_c_s = output.stride()
49
+ s_lut_o_r, s_lut_o_c = sparsity_lut_o.size()
50
+ s_lut_o_r_s, s_lut_o_c_s = sparsity_lut_o.stride()
51
+
52
+ if triton_block_size is None:
53
+ triton_block_size = get_triton_block_size(sparsity_block_size)
54
+
55
+ triton_grid = lambda meta: [o_b,
56
+ triton.cdiv(o_r, meta["TRITON_BLOCK_SIZE"]),
57
+ triton.cdiv(o_c, meta["TRITON_BLOCK_SIZE"])]
58
+
59
+ (kernel_broadcast_addition[triton_grid]
60
+ (x,
61
+ x_b, x_b_s, x_c_s,
62
+ y,
63
+ y_b, y_b_s, y_c_s,
64
+ output,
65
+ o_b, o_b_s, o_r_s, o_c_s,
66
+ sparsity_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
67
+ sparsity_block_size,
68
+ triton_block_size))
69
+
70
+ return output
71
+
72
+
73
+ def broadcast_subtraction(x: Tensor, y: Tensor, sparsity_layout_output: Tensor,
74
+ sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
75
+ """Wrapper for ``broadcast_addition`` with negated y.
76
+
77
+ """
78
+ return broadcast_addition(x, torch.neg(y), sparsity_layout_output, sparsity_block_size, triton_block_size)
79
+
80
+
81
+ @triton.jit
82
+ def kernel_broadcast_addition(x,
83
+ x_b, x_b_s, x_c_s,
84
+ y,
85
+ y_b, y_b_s, y_c_s,
86
+ o,
87
+ o_b, o_b_s, o_r_s, o_c_s,
88
+ s_lut_o, s_lut_o_r, s_lut_o_r_s, s_lut_o_c_s,
89
+ sparsity_block_size,
90
+ TRITON_BLOCK_SIZE: tl.constexpr) -> None:
91
+ # Get triton block indices
92
+ pid_blk = tl.program_id(axis=0)
93
+ pid_row = tl.program_id(axis=1)
94
+ pid_col = tl.program_id(axis=2)
95
+
96
+ # Get position of current sparsity block consisting of its batch, row, and column index
97
+ spa_bat_o_idx = (pid_blk * s_lut_o_r_s + 0 * s_lut_o_c_s)
98
+ spa_bat_o_msk = (spa_bat_o_idx < s_lut_o_r * s_lut_o_r_s)
99
+ spa_bat_o = tl.load(s_lut_o + spa_bat_o_idx, mask=spa_bat_o_msk)
100
+
101
+ spa_row_o_idx = (pid_blk * s_lut_o_r_s + 1 * s_lut_o_c_s)
102
+ spa_row_o_msk = (spa_row_o_idx < s_lut_o_r * s_lut_o_r_s)
103
+ spa_row_o = tl.load(s_lut_o + spa_row_o_idx, mask=spa_row_o_msk)
104
+
105
+ spa_col_o_idx = (pid_blk * s_lut_o_r_s + 2 * s_lut_o_c_s)
106
+ spa_col_o_msk = (spa_col_o_idx < s_lut_o_r * s_lut_o_r_s)
107
+ spa_col_o = tl.load(s_lut_o + spa_col_o_idx, mask=spa_col_o_msk)
108
+
109
+ # Load x block
110
+ blk_x_idx = (spa_bat_o * x_b_s +
111
+ ((spa_row_o * sparsity_block_size + pid_row * TRITON_BLOCK_SIZE +
112
+ tl.arange(0, TRITON_BLOCK_SIZE)) * x_c_s)[None, :])
113
+ blk_x_msk = (blk_x_idx < x_b * x_b_s)
114
+ blk_x = tl.load(x + blk_x_idx, mask=blk_x_msk)
115
+
116
+ # Load y block
117
+ blk_y_idx = (spa_bat_o * y_b_s +
118
+ ((spa_col_o * sparsity_block_size + pid_col * TRITON_BLOCK_SIZE +
119
+ tl.arange(0, TRITON_BLOCK_SIZE)) * y_c_s)[None, :])
120
+ blk_y_msk = (blk_y_idx < y_b * y_b_s)
121
+ blk_y = tl.load(y + blk_y_idx, mask=blk_y_msk)
122
+
123
+ # Compute sum
124
+ blk_x, blk_y = tl.broadcast(tl.trans(blk_x), blk_y)
125
+ buf = blk_x + blk_y
126
+
127
+ # Store result
128
+ blk_o_idx = ((pid_blk * o_b_s) +
129
+ ((pid_row * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_r_s)[:, None] +
130
+ ((pid_col * TRITON_BLOCK_SIZE + tl.arange(0, TRITON_BLOCK_SIZE)) * o_c_s)[None, :])
131
+ blk_o_msk = (blk_o_idx < o_b * o_b_s)
132
+ tl.store(o + blk_o_idx, buf, mask=blk_o_msk)
blksprs/ops/conversion.py CHANGED
@@ -4,21 +4,33 @@ from torch import Tensor
4
4
  from triton import language as tl
5
5
 
6
6
  from blksprs.utils.tools import get_triton_block_size
7
- from blksprs.utils.validation import validate_contiguous, validate_dimensions, validate_dtype_float, validate_device
7
+ from blksprs.utils.validation import validate_contiguous, validate_dimensions, validate_device, \
8
+ validate_sparsity, validate_sparsity_block_size, validate_triton_block_size
8
9
 
9
10
 
10
11
  def to_dense(x: Tensor, sparsity_layout: Tensor, sparsity_block_size: int, fill_value: float = 0,
11
12
  triton_block_size: int = None) -> Tensor:
12
- """Converts a blocksparse tensor to a dense tensor based on the given sparsity layout.
13
+ """Converts a block-sparse tensor in compressed form to a block-sparse tensor in regular form based on the given
14
+ sparsity layout.
13
15
 
14
- The ``fill_value`` is used to fill the resulting dense tensor with a specific value (default ``0``) where the
15
- blocksparse tensor is not present.
16
+ Args:
17
+ x (Tensor): A block-sparse tensor in compressed form.
18
+ sparsity_layout (Tensor): The sparsity layout of the block-sparse tensor.
19
+ sparsity_block_size (int): The size of the sparsity blocks.
20
+ fill_value (float): The value to fill the resulting dense tensor with where the block-sparse tensor is not
21
+ present (default ``0``).
22
+ triton_block_size (int): The block size to use for the triton kernel (default ``None``).
23
+
24
+ Returns:
25
+ Tensor: The block-sparse tensor converted to regular form.
16
26
 
17
27
  """
18
28
  validate_dimensions(x)
19
29
  validate_contiguous(x, sparsity_layout)
20
- validate_dtype_float(x)
21
30
  validate_device(x)
31
+ validate_sparsity(sparsity_block_size, (x, sparsity_layout))
32
+ validate_sparsity_block_size(sparsity_block_size, x)
33
+ validate_triton_block_size(triton_block_size, sparsity_block_size)
22
34
 
23
35
  sparsity_layout_flat = sparsity_layout.reshape(-1)
24
36
  sparsity_reverse_lut = ((torch.cumsum(sparsity_layout_flat, dim=-1) - 1) *
@@ -68,7 +80,7 @@ class _BlocksparseToDense(torch.autograd.Function):
68
80
  sparsity_block_size,
69
81
  triton_block_size))
70
82
 
71
- ctx.sparsity_layout = sparsity_layout
83
+ ctx.save_for_backward(sparsity_layout)
72
84
  ctx.sparsity_block_size = sparsity_block_size
73
85
  ctx.triton_block_size = triton_block_size
74
86
 
@@ -76,11 +88,12 @@ class _BlocksparseToDense(torch.autograd.Function):
76
88
 
77
89
  @staticmethod
78
90
  def backward(ctx, grad_output):
79
- sparsity_layout = ctx.sparsity_layout
91
+ sparsity_layout = ctx.saved_tensors[0]
80
92
  sparsity_block_size = ctx.sparsity_block_size
81
93
  triton_block_size = ctx.triton_block_size
82
94
 
83
- return to_sparse(grad_output, sparsity_layout, sparsity_block_size, triton_block_size), None, None, None, None, None
95
+ return to_sparse(grad_output, sparsity_layout, sparsity_block_size,
96
+ triton_block_size), None, None, None, None, None
84
97
 
85
98
  @staticmethod
86
99
  @triton.jit
@@ -124,18 +137,29 @@ class _BlocksparseToDense(torch.autograd.Function):
124
137
 
125
138
 
126
139
  def to_sparse(x: Tensor, sparsity_layout: Tensor, sparsity_block_size: int, triton_block_size: int = None) -> Tensor:
127
- """Converts a dense tensor to a blocksparse tensor based on the given sparsity layout.
140
+ """Converts a block-sparse tensor in regular form to a block-sparse tensor in compressed form based on the given
141
+ sparsity layout.
142
+
143
+ Args:
144
+ x (Tensor): A block-sparse tensor in regular form.
145
+ sparsity_layout (Tensor): The sparsity layout of the block-sparse tensor.
146
+ sparsity_block_size (int): The size of the sparsity blocks.
147
+ triton_block_size (int): The block size to use for the triton kernel (default ``None``).
148
+
149
+ Returns:
150
+ Tensor: The block-sparse tensor converted to compressed form.
128
151
 
129
152
  """
130
153
  validate_dimensions(x)
131
- validate_contiguous(x, sparsity_layout)
132
- validate_dtype_float(x)
154
+ validate_contiguous(x)
133
155
  validate_device(x)
156
+ validate_sparsity_block_size(sparsity_block_size, x)
157
+ validate_triton_block_size(triton_block_size, sparsity_block_size)
134
158
 
135
159
  sparsity_lut = torch.nonzero(sparsity_layout).contiguous()
136
160
  n_sparse_blocks = torch.sum(sparsity_layout.to(torch.int)).item()
137
161
 
138
- validate_contiguous(sparsity_lut)
162
+ validate_contiguous(sparsity_layout, sparsity_lut)
139
163
 
140
164
  return _BlocksparseToSparse.apply(x,
141
165
  sparsity_layout, sparsity_lut,
@@ -149,7 +173,8 @@ class _BlocksparseToSparse(torch.autograd.Function):
149
173
  def forward(ctx, x: Tensor,
150
174
  sparsity_layout: Tensor, sparsity_lut: Tensor,
151
175
  sparsity_block_size: int, n_sparse_blocks: int, triton_block_size: int) -> Tensor:
152
- output = torch.empty(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size), device=x.device)
176
+ output = torch.empty(size=(n_sparse_blocks, sparsity_block_size, sparsity_block_size), dtype=x.dtype,
177
+ device=x.device)
153
178
 
154
179
  x_b, x_r, x_c = x.size()
155
180
  x_b_s, x_r_s, x_c_s = x.stride()
@@ -172,7 +197,7 @@ class _BlocksparseToSparse(torch.autograd.Function):
172
197
  sparsity_block_size,
173
198
  triton_block_size))
174
199
 
175
- ctx.sparsity_layout = sparsity_layout
200
+ ctx.save_for_backward(sparsity_layout)
176
201
  ctx.sparsity_block_size = sparsity_block_size
177
202
  ctx.triton_block_size = triton_block_size
178
203
 
@@ -180,7 +205,7 @@ class _BlocksparseToSparse(torch.autograd.Function):
180
205
 
181
206
  @staticmethod
182
207
  def backward(ctx, grad_output):
183
- sparsity_layout = ctx.sparsity_layout
208
+ sparsity_layout = ctx.saved_tensors[0]
184
209
  sparsity_block_size = ctx.sparsity_block_size
185
210
  triton_block_size = ctx.triton_block_size
186
211