blindscrambler 0.1.5__cp39-abi3-macosx_11_0_arm64.whl → 0.1.6__cp39-abi3-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -46,17 +46,11 @@ def poissondist(lam):
46
46
  """
47
47
  Params:
48
48
  (1) lam : double
49
- The number lambda that will be used to generate samples of the exponential distributions
49
+ The number lambda that will be used to generate samples of the poisson distributions
50
50
 
51
51
  Returns:
52
52
  (2) x : double
53
- A random sample that is exponentially distributed
54
-
55
- Function description: Basically, this function performs Inverse Transform Sampling. You take a random number generated between [0, 1]
56
- This represets the CDF of some given distribution. Then you apply the inverse CDF function to generate a sample. The given sample will
57
- be from the distribution in question.
58
-
59
- NOTE: the inverse CDF used here is from the exponential distribution. Therefore, the generated numbers will be exponentially distributed
53
+ A random sample that is poisson distributed
60
54
  """
61
55
  # make cumulative function and k
62
56
  cum = 0
@@ -71,7 +65,7 @@ def poissondist(lam):
71
65
 
72
66
  # keep adding probabilities unyil condition is met
73
67
  while cum < u:
74
- k += 1
68
+ x += 1
75
69
  p *= lam / x
76
70
  cum += p
77
71
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: blindscrambler
3
- Version: 0.1.5
3
+ Version: 0.1.6
4
4
  Requires-Dist: matplotlib>=3.10.6
5
5
  Requires-Dist: numpy>=2.3.3
6
6
  Requires-Dist: torch>=2.8.0
@@ -1,13 +1,13 @@
1
- blindscrambler-0.1.5.dist-info/METADATA,sha256=bao5nph2THMcn1x2s-96c-gH_nheSvwIz5Zqi3kGLDw,407
2
- blindscrambler-0.1.5.dist-info/WHEEL,sha256=DLqF2HZq4W_umZdP6RnfAuqhmtX_UrV4mkqrSIMhipE,102
1
+ blindscrambler-0.1.6.dist-info/METADATA,sha256=FuF5WPP-3OT7RMzQQttXRQafPUu3sOtJE7lxpYEMT4s,407
2
+ blindscrambler-0.1.6.dist-info/WHEEL,sha256=DLqF2HZq4W_umZdP6RnfAuqhmtX_UrV4mkqrSIMhipE,102
3
3
  blindscrambler/__init__.py,sha256=N6o-PTyGSlQ4ny1UA4ByeNenVF-wCTALnyP4WJ8PGas,98
4
4
  blindscrambler/_core.abi3.so,sha256=4uKUtCwAO1Hbvzv0FXAt38rEHYbg-Quio8CdkJ_UMrk,440112
5
5
  blindscrambler/_core.pyi,sha256=b6oJaUXUzEzqUE5rpqefV06hl8o_JCU8pgKgIIzQgmc,33
6
6
  blindscrambler/differential/__init__.py,sha256=INnk5rX2ae6mG5yynAQYKzpQ0BYsHquUhA9ZzbPVLm8,45
7
7
  blindscrambler/differential/discrete.py,sha256=mPJg6YrDVuXK-dLXgb_VDqKl1IvKfSKahMA_rRTVKQY,369
8
8
  blindscrambler/distributions/__init__.py,sha256=8O4VQvymecRFRP1njwAfbD4yUACA25RcLqn0QtZEjaE,58
9
- blindscrambler/distributions/cvdistributions.py,sha256=Dzybjr_Arsj6tJ0srhPoX77pWw8c2oAVSkqOsUcjUIc,2497
9
+ blindscrambler/distributions/cvdistributions.py,sha256=lgZnlYdlCJEhk6K4cAkZmtIED81156ZnaJAQQbHx96c,2025
10
10
  blindscrambler/matrix/__init__.py,sha256=qlItVU8AVj_mP2NUJ3gor-lsovxk3Wxf5tUfKynoUbg,157
11
11
  blindscrambler/matrix/elementary.py,sha256=hArZLiBTA_vW1EZ0RniECf6ybJiJxO7KNuVHb_TZFQU,3987
12
12
  blindscrambler/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- blindscrambler-0.1.5.dist-info/RECORD,,
13
+ blindscrambler-0.1.6.dist-info/RECORD,,