blindscrambler 0.1.4__cp39-abi3-macosx_11_0_arm64.whl → 0.1.6__cp39-abi3-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,6 +6,7 @@
6
6
  import secrets
7
7
  import numpy as np
8
8
 
9
+
9
10
  def uniform(a: float = 0.0, b: float = 1.0) -> float:
10
11
  """
11
12
  Cryptographically secure sample
@@ -22,7 +23,7 @@ def exponentialdist(lam):
22
23
  The number lambda that will be used to generate samples of the exponential distributions
23
24
 
24
25
  Returns:
25
- (2) ran : double
26
+ (2) x : double
26
27
  A random sample that is exponentially distributed
27
28
 
28
29
  Function description: Basically, this function performs Inverse Transform Sampling. You take a random number generated between [0, 1]
@@ -41,7 +42,35 @@ def exponentialdist(lam):
41
42
  # return this sample :)
42
43
  return x
43
44
 
45
+ def poissondist(lam):
46
+ """
47
+ Params:
48
+ (1) lam : double
49
+ The number lambda that will be used to generate samples of the poisson distributions
50
+
51
+ Returns:
52
+ (2) x : double
53
+ A random sample that is poisson distributed
54
+ """
55
+ # make cumulative function and k
56
+ cum = 0
57
+ x = 0
58
+
59
+ # make a random sample between (0, 1)
60
+ u = uniform()
61
+
62
+ # start with first probability mass
63
+ p = np.exp(-lam)
64
+ cum += p
44
65
 
66
+ # keep adding probabilities unyil condition is met
67
+ while cum < u:
68
+ x += 1
69
+ p *= lam / x
70
+ cum += p
71
+
72
+ return x
45
73
 
46
74
  if __name__ == "__main__":
47
- print("This is main!")
75
+ print("testing")
76
+
@@ -1,6 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: blindscrambler
3
- Version: 0.1.4
3
+ Version: 0.1.6
4
+ Requires-Dist: matplotlib>=3.10.6
4
5
  Requires-Dist: numpy>=2.3.3
5
6
  Requires-Dist: torch>=2.8.0
6
7
  Requires-Dist: twine>=6.1.0
@@ -1,13 +1,13 @@
1
- blindscrambler-0.1.4.dist-info/METADATA,sha256=o6pOaOFD3kb2ZvE2H5GN-9ZnJH5dmxxo6lFQLK36DIM,373
2
- blindscrambler-0.1.4.dist-info/WHEEL,sha256=DLqF2HZq4W_umZdP6RnfAuqhmtX_UrV4mkqrSIMhipE,102
1
+ blindscrambler-0.1.6.dist-info/METADATA,sha256=FuF5WPP-3OT7RMzQQttXRQafPUu3sOtJE7lxpYEMT4s,407
2
+ blindscrambler-0.1.6.dist-info/WHEEL,sha256=DLqF2HZq4W_umZdP6RnfAuqhmtX_UrV4mkqrSIMhipE,102
3
3
  blindscrambler/__init__.py,sha256=N6o-PTyGSlQ4ny1UA4ByeNenVF-wCTALnyP4WJ8PGas,98
4
4
  blindscrambler/_core.abi3.so,sha256=4uKUtCwAO1Hbvzv0FXAt38rEHYbg-Quio8CdkJ_UMrk,440112
5
5
  blindscrambler/_core.pyi,sha256=b6oJaUXUzEzqUE5rpqefV06hl8o_JCU8pgKgIIzQgmc,33
6
6
  blindscrambler/differential/__init__.py,sha256=INnk5rX2ae6mG5yynAQYKzpQ0BYsHquUhA9ZzbPVLm8,45
7
7
  blindscrambler/differential/discrete.py,sha256=mPJg6YrDVuXK-dLXgb_VDqKl1IvKfSKahMA_rRTVKQY,369
8
8
  blindscrambler/distributions/__init__.py,sha256=8O4VQvymecRFRP1njwAfbD4yUACA25RcLqn0QtZEjaE,58
9
- blindscrambler/distributions/cvdistributions.py,sha256=60RQeOgZ5t4oRwCU6CSOIha04D2KJNotXq_yqjq_mOM,1435
9
+ blindscrambler/distributions/cvdistributions.py,sha256=lgZnlYdlCJEhk6K4cAkZmtIED81156ZnaJAQQbHx96c,2025
10
10
  blindscrambler/matrix/__init__.py,sha256=qlItVU8AVj_mP2NUJ3gor-lsovxk3Wxf5tUfKynoUbg,157
11
11
  blindscrambler/matrix/elementary.py,sha256=hArZLiBTA_vW1EZ0RniECf6ybJiJxO7KNuVHb_TZFQU,3987
12
12
  blindscrambler/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- blindscrambler-0.1.4.dist-info/RECORD,,
13
+ blindscrambler-0.1.6.dist-info/RECORD,,