bisheng-langchain 1.2.1__py3-none-any.whl → 1.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -64,6 +64,10 @@ class ElemUnstructuredLoader(BasePDFLoader):
64
64
  file_path: str,
65
65
  unstructured_api_key: str = None,
66
66
  unstructured_api_url: str = None,
67
+ force_ocr: bool = False,
68
+ enable_formular: bool = True,
69
+ filter_page_header_footer: bool = False,
70
+ ocr_sdk_url: str = None,
67
71
  start: int = 0,
68
72
  n: int = None,
69
73
  verbose: bool = False,
@@ -71,6 +75,10 @@ class ElemUnstructuredLoader(BasePDFLoader):
71
75
  """Initialize with a file path."""
72
76
  self.unstructured_api_url = unstructured_api_url
73
77
  self.unstructured_api_key = unstructured_api_key
78
+ self.force_ocr = force_ocr
79
+ self.enable_formular = enable_formular
80
+ self.filter_page_header_footer = filter_page_header_footer
81
+ self.ocr_sdk_url = ocr_sdk_url,
74
82
  self.headers = {'Content-Type': 'application/json'}
75
83
  self.file_name = file_name
76
84
  self.start = start
@@ -84,9 +92,13 @@ class ElemUnstructuredLoader(BasePDFLoader):
84
92
  b64_data = base64.b64encode(open(self.file_path, 'rb').read()).decode()
85
93
  parameters = {'start': self.start, 'n': self.n}
86
94
  parameters.update(self.extra_kwargs)
95
+ # TODO: add filter_page_header_footer into payload when elt4llm is ready.
87
96
  payload = dict(filename=os.path.basename(self.file_name),
88
97
  b64_data=[b64_data],
89
98
  mode='partition',
99
+ force_ocr=self.force_ocr,
100
+ enable_formula=self.enable_formular,
101
+ ocr_sdk_url=self.ocr_sdk_url,
90
102
  parameters=parameters)
91
103
 
92
104
  resp = requests.post(self.unstructured_api_url, headers=self.headers, json=payload)
@@ -64,7 +64,7 @@ def create_agent_executor(agent_runnable, tools, input_schema=None) -> CompiledS
64
64
  The `CompiledStateGraph` object.
65
65
  """
66
66
 
67
- tool_executor = ToolNode(tools=tools)
67
+ tool_executor = {one.name: one for one in tools}
68
68
 
69
69
  state = _get_agent_state(input_schema)
70
70
 
@@ -95,7 +95,18 @@ def create_agent_executor(agent_runnable, tools, input_schema=None) -> CompiledS
95
95
  agent_action = data['agent_outcome']
96
96
  if not isinstance(agent_action, list):
97
97
  agent_action = [agent_action]
98
- output = tool_executor.batch(agent_action, config, return_exceptions=True)
98
+
99
+ output = []
100
+ for action in agent_action:
101
+ if action.tool not in tool_executor:
102
+ output.append(f"Tool {action.tool} not found in tool executor.")
103
+ continue
104
+ try:
105
+ result = tool_executor[action.tool].invoke(action.tool_input, config)
106
+ output.append(result)
107
+ except Exception as e:
108
+ output.append(f"invoke tool {action.tool} failed: {str(e)[-50:]}")
109
+
99
110
  return {
100
111
  'intermediate_steps': [(action, str(out)) for action, out in zip(agent_action, output)]
101
112
  }
@@ -105,7 +116,17 @@ def create_agent_executor(agent_runnable, tools, input_schema=None) -> CompiledS
105
116
  agent_action = data['agent_outcome']
106
117
  if not isinstance(agent_action, list):
107
118
  agent_action = [agent_action]
108
- output = await tool_executor.abatch(agent_action, config, return_exceptions=True)
119
+ output = []
120
+ for action in agent_action:
121
+ if action.tool not in tool_executor:
122
+ output.append(f"Tool {action.tool} not found in tool executor.")
123
+ continue
124
+ try:
125
+ result = await tool_executor[action.tool].ainvoke(action.tool_input, config)
126
+ output.append(result)
127
+ except Exception as e:
128
+ output.append(f"invoke tool {action.tool} failed: {str(e)[-50:]}")
129
+
109
130
  return {
110
131
  'intermediate_steps': [(action, str(out)) for action, out in zip(agent_action, output)]
111
132
  }
@@ -183,19 +183,20 @@ def upload_minio(
183
183
  import minio
184
184
 
185
185
  minio_client = minio.Minio(
186
- endpoint=param.get('MINIO_ENDPOINT'),
187
- access_key=param.get('MINIO_ACCESS_KEY'),
188
- secret_key=param.get('MINIO_SECRET_KEY'),
189
- secure=param.get('SCHEMA'),
190
- cert_check=param.get('CERT_CHECK'),
186
+ endpoint=param.get('endpoint'),
187
+ access_key=param.get('access_key'),
188
+ secret_key=param.get('secret_key'),
189
+ secure=param.get('schema'),
190
+ cert_check=param.get('cert_check'),
191
191
  )
192
192
  minio_share = minio.Minio(
193
- endpoint=param.get('MINIO_SHAREPOIN'),
194
- access_key=param.get('MINIO_ACCESS_KEY'),
195
- secret_key=param.get('MINIO_SECRET_KEY'),
196
- secure=param.get('SCHEMA'),
197
- cert_check=param.get('CERT_CHECK'),
193
+ endpoint=param.get('sharepoint'),
194
+ access_key=param.get('access_key'),
195
+ secret_key=param.get('secret_key'),
196
+ secure=param.get('schema'),
197
+ cert_check=param.get('cert_check'),
198
198
  )
199
+ bucket = param.get('tmp_bucket', 'tmp-dir')
199
200
  logger.debug(
200
201
  'upload_file obj={} bucket={} file_paht={}',
201
202
  object_name,
@@ -301,8 +301,9 @@ if __name__ == '__main__':
301
301
  description='金融年报财报知识库问答',
302
302
  vector_store=vector_store,
303
303
  keyword_store=keyword_store,
304
- llm=llm)
305
- print(tool.run('能否根据2020年金宇生物技术股份有限公司的年报,给我简要介绍一下报告期内公司的社会责任工作情况?'))
304
+ llm=llm,
305
+ max_content=15000)
306
+ print(tool.run('能否根据2020年金宇生物技术股份有限公司的年报,给我简要介绍一下报告期内公司的社会责任工作情况?', return_only_outputs=False))
306
307
 
307
308
  # tool = BishengRAGTool.get_rag_tool(
308
309
  # name='rag_knowledge_retrieve',
@@ -1,5 +1,5 @@
1
1
  from bisheng_langchain.chat_models import ChatQWen
2
- from langchain.chains import LLMChain
2
+ from langchain.chains.llm import LLMChain
3
3
  from langchain.prompts.chat import (
4
4
  ChatPromptTemplate,
5
5
  SystemMessagePromptTemplate,
@@ -15,22 +15,32 @@ human_template = """
15
15
  """
16
16
 
17
17
  messages = [
18
- SystemMessagePromptTemplate.from_template(system_template),
19
- HumanMessagePromptTemplate.from_template(human_template),
20
- ]
18
+ SystemMessagePromptTemplate.from_template(system_template),
19
+ HumanMessagePromptTemplate.from_template(human_template),
20
+ ]
21
21
  title_extract_prompt = ChatPromptTemplate.from_messages(messages)
22
22
 
23
23
 
24
- def extract_title(llm, text, max_length=7000) -> str:
25
- chain = LLMChain(llm=llm, prompt=title_extract_prompt)
24
+ def extract_title(llm, text, max_length=7000, abstract_prompt: str = None) -> str:
25
+ """
26
+ 此方法在bisheng_langchain模型的还有两处调用用,在不能提供abstract_propmpt的情况下
27
+ 使用原来现有提示词.
28
+ """
29
+ if abstract_prompt:
30
+ updated_messages = [
31
+ SystemMessagePromptTemplate.from_template(abstract_prompt),
32
+ HumanMessagePromptTemplate.from_template(human_template),
33
+ ]
34
+ updated_title_extract_prompt = ChatPromptTemplate.from_messages(updated_messages)
35
+ chain = LLMChain(llm=llm, prompt=updated_title_extract_prompt)
36
+ else:
37
+ chain = LLMChain(llm=llm, prompt=title_extract_prompt)
26
38
  ans = chain.run(context=text[:max_length])
27
- return ans
39
+ return ans
28
40
 
29
41
 
30
- if __name__ == '__main__':
31
- llm = ChatQWen(model_name='qwen1.5-72b-chat',
32
- api_key='',
33
- temperature=0.01)
42
+ if __name__ == "__main__":
43
+ llm = ChatQWen(model_name="qwen1.5-72b-chat", api_key="", temperature=0.01)
34
44
  text = "江苏蔚蓝锂芯股份有限公司\n2021 年年度报告 \n2022 年 03 月\n\n 第一节 重要提示、目录和释义\n公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实、准确、完整,不存在虚假记载、误导性陈述或重大遗漏,并承担个别和连带的法律责任。\n公司负责人 CHEN KAI、主管会计工作负责人林文华及会计机构负责人(会计主管人员)张宗红声明:保证本年度报告中财务报告的真实、准确、完整。\n所有董事均已出席了审议本报告的董事会会议。"
35
45
  ans = extract_title(llm, text)
36
- print(ans)
46
+ print(ans)
@@ -17,9 +17,15 @@ BASE_PROMPT = PromptTemplate(
17
17
  )
18
18
 
19
19
 
20
- system_template = """Use the following pieces of context to answer the user's question.
21
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
22
- ----------------
20
+ system_template = """# 任务
21
+ 你是一位知识库问答助手,遵守以下规则回答问题:
22
+ 1. 严谨、专业地回答用户的问题。
23
+ 2. 回答时须严格基于【参考文本】中的内容:
24
+ - 如果【参考文本】中有明确与用户问题相关的文字内容,请依据相关内容进行回答;如果【参考文本】中没有任何与用户问题相关的内容,则直接回复:“没有找到相关内容”。
25
+ - 如果相关内容中包含 markdown 格式的图片(例如 ![image](路径/IMAGE_1.png)),必须严格保留其原始 markdown 格式,不得添加引号、代码块(`或```)或其他特殊符号,也不得修改图片路径,保证可以正常渲染 markdown 图片。
26
+ 3. 当【参考文本】中的内容来源于多个不同的信息源时,若相关内容存在明显差异或冲突,请分别列出这些差异或冲突的答案;若无差异或冲突,只给出一个统一的回答即可。
27
+
28
+ # 参考文本
23
29
  {context}"""
24
30
  messages = [
25
31
  SystemMessagePromptTemplate.from_template(system_template),
@@ -106,6 +106,7 @@ class ElemCharacterTextSplitter(RecursiveCharacterTextSplitter):
106
106
  self._separator_rule = separator_rule or ['after' for _ in range(4)]
107
107
  self.separator_rule = {one: self._separator_rule[index] for index, one in enumerate(separators)}
108
108
  self._is_separator_regex = is_separator_regex
109
+ self._chunk_overlap = kwargs.get('chunk_overlap', 0)
109
110
 
110
111
  def split_documents(self, documents: Iterable[Document]) -> List[Document]:
111
112
  texts, metadatas = [], []
@@ -167,7 +168,6 @@ class ElemCharacterTextSplitter(RecursiveCharacterTextSplitter):
167
168
  documents = []
168
169
  for i, text in enumerate(texts):
169
170
  index = -1
170
- # metadata = copy.deepcopy(_metadatas[i])
171
171
  indexes = metadatas[i].get('indexes', [])
172
172
  pages = metadatas[i].get('pages', [])
173
173
  types = metadatas[i].get('types', [])
@@ -215,7 +215,7 @@ class ElemCharacterTextSplitter(RecursiveCharacterTextSplitter):
215
215
  # for elem in box_no_duplicates:
216
216
  # new_metadata['chunk_bboxes'].append(
217
217
  # {'page': elem[0], 'bbox': new_metadata['bboxes'][elem[1]]})
218
-
219
218
  new_doc = Document(page_content=chunk, metadata=new_metadata)
219
+ prev_document = new_doc
220
220
  documents.append(new_doc)
221
221
  return documents
@@ -60,73 +60,7 @@ class AzureDallEWrapper(DallEAPIWrapper):
60
60
  @classmethod
61
61
  def validate_environment(cls, values: Dict) -> Dict:
62
62
  """Validate that api key and python package exists in environment."""
63
- # Check OPENAI_KEY for backwards compatibility.
64
- # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
65
- # other forms of azure credentials.
66
- openai_api_key = (values['openai_api_key'] or os.getenv('AZURE_OPENAI_API_KEY')
67
- or os.getenv('OPENAI_API_KEY'))
68
- values['openai_api_key'] = (convert_to_secret_str(openai_api_key)
69
- if openai_api_key else None)
70
- values['openai_api_base'] = (values['openai_api_base'] if 'openai_api_base' in values else
71
- os.getenv('OPENAI_API_BASE'))
72
- values['openai_api_version'] = values['openai_api_version'] or os.getenv(
73
- 'OPENAI_API_VERSION', default='2023-05-15')
74
- values['openai_api_type'] = get_from_dict_or_env(values,
75
- 'openai_api_type',
76
- 'OPENAI_API_TYPE',
77
- default='azure')
78
- values['openai_organization'] = (values['openai_organization']
79
- or os.getenv('OPENAI_ORG_ID')
80
- or os.getenv('OPENAI_ORGANIZATION'))
81
- values['openai_proxy'] = get_from_dict_or_env(values,
82
- 'openai_proxy',
83
- 'OPENAI_PROXY',
84
- default='')
85
- values['azure_endpoint'] = values['azure_endpoint'] or os.getenv('AZURE_OPENAI_ENDPOINT')
86
- azure_ad_token = values['azure_ad_token'] or os.getenv('AZURE_OPENAI_AD_TOKEN')
87
- values['azure_ad_token'] = (convert_to_secret_str(azure_ad_token)
88
- if azure_ad_token else None)
89
- # For backwards compatibility. Before openai v1, no distinction was made
90
- # between azure_endpoint and base_url (openai_api_base).
91
- openai_api_base = values['openai_api_base']
92
- if openai_api_base and values['validate_base_url']:
93
- if '/openai' not in openai_api_base:
94
- values['openai_api_base'] += '/openai'
95
- raise ValueError('As of openai>=1.0.0, Azure endpoints should be specified via '
96
- 'the `azure_endpoint` param not `openai_api_base` '
97
- '(or alias `base_url`). ')
98
- if values['deployment']:
99
- raise ValueError('As of openai>=1.0.0, if `deployment` (or alias '
100
- '`azure_deployment`) is specified then '
101
- '`openai_api_base` (or alias `base_url`) should not be. '
102
- 'Instead use `deployment` (or alias `azure_deployment`) '
103
- 'and `azure_endpoint`.')
104
- client_params = {
105
- 'api_version':
106
- values['openai_api_version'],
107
- 'azure_endpoint':
108
- values['azure_endpoint'],
109
- 'azure_deployment':
110
- values['deployment'],
111
- 'api_key':
112
- (values['openai_api_key'].get_secret_value() if values['openai_api_key'] else None),
113
- 'azure_ad_token':
114
- (values['azure_ad_token'].get_secret_value() if values['azure_ad_token'] else None),
115
- 'azure_ad_token_provider':
116
- values['azure_ad_token_provider'],
117
- 'organization':
118
- values['openai_organization'],
119
- 'base_url':
120
- values['openai_api_base'],
121
- 'timeout':
122
- values['request_timeout'],
123
- 'max_retries':
124
- values['max_retries'],
125
- 'default_headers':
126
- values['default_headers'],
127
- 'default_query':
128
- values['default_query'],
129
- }
63
+ client_params = values.copy()
130
64
  if not values.get('client'):
131
65
  values['client'] = openai.AzureOpenAI(**client_params).images
132
66
  if not values.get('async_client'):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bisheng-langchain
3
- Version: 1.2.1
3
+ Version: 1.3.1
4
4
  Summary: bisheng langchain modules
5
5
  Home-page: https://github.com/dataelement/bisheng
6
6
  Author: DataElem
@@ -24,7 +24,7 @@ Requires-Dist: Pillow==9.5.0
24
24
  Requires-Dist: bisheng-pyautogen
25
25
  Requires-Dist: jieba==0.42.1
26
26
  Requires-Dist: pydantic
27
- Requires-Dist: pymupdf==1.23.8
27
+ Requires-Dist: pymupdf==1.26.*
28
28
  Requires-Dist: shapely==2.0.2
29
29
  Requires-Dist: filetype==1.2.0
30
30
  Requires-Dist: langgraph==0.3.*
@@ -1,5 +1,5 @@
1
1
  bisheng_langchain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- bisheng_langchain/text_splitter.py,sha256=yYpzMa0c1tRZNGyuFFJsLvSeqberYHV2-BR28pQim8I,8794
2
+ bisheng_langchain/text_splitter.py,sha256=HJFGo6g_JGxWCAat98VIlKAKfaIYaR6f-g7SJwvhcRM,8840
3
3
  bisheng_langchain/agents/__init__.py,sha256=ctsKj77fS8qlkhz_9sS_AhCjFvFNxEpJ9KBYVrApLRg,226
4
4
  bisheng_langchain/agents/chatglm_functions_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  bisheng_langchain/agents/chatglm_functions_agent/base.py,sha256=IxPf9_atUKy8UMgIDYrgmWBkrVfOLdyJSDfVcD_rsDg,13724
@@ -54,7 +54,7 @@ bisheng_langchain/document_loaders/custom_kv.py,sha256=-7h7QqGUFPhpNYAUZBDmkr_pD
54
54
  bisheng_langchain/document_loaders/elem_html.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
55
  bisheng_langchain/document_loaders/elem_image.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
56
  bisheng_langchain/document_loaders/elem_pdf.py,sha256=WpRIStBl1DUDa0NCd594gKU2NsgURRv5jnKSM71ZPI8,22273
57
- bisheng_langchain/document_loaders/elem_unstrcutured_loader.py,sha256=SA02ClxYb7DSfBdAA9bYT8oxMETTsp5GdHPkAH1Wkk8,8075
57
+ bisheng_langchain/document_loaders/elem_unstrcutured_loader.py,sha256=AIKnApzovohheEJFMolE7J-tGY_ClUfiGBb-SwYuC60,8697
58
58
  bisheng_langchain/document_loaders/universal_kv.py,sha256=7z19Z_NwtILmtkbIURf4qMyEJGjlE-5CkhqF2KFGc7I,4134
59
59
  bisheng_langchain/document_loaders/parsers/__init__.py,sha256=OOM_FJkwaU-zNS58fASw0TH8FNT6VXKb0VrvisgdrII,171
60
60
  bisheng_langchain/document_loaders/parsers/ellm_client.py,sha256=Y_CRYwBr-gFArOirF1b76KyI5N8eVpsLeDiIsKtYkpU,1641
@@ -78,7 +78,7 @@ bisheng_langchain/gpts/message_types.py,sha256=7EJOx62j9E1U67jxWgxE_I7a8IjAvvKAN
78
78
  bisheng_langchain/gpts/utils.py,sha256=t3YDxaJ0OYd6EKsek7PJFRYnsezwzEFK5oVU-PRbu5g,6671
79
79
  bisheng_langchain/gpts/agent_types/__init__.py,sha256=88tFt1GfrfIqa4hCg0cMJk7rTeUmCSSdiVhR41CW4rM,381
80
80
  bisheng_langchain/gpts/agent_types/llm_functions_agent.py,sha256=RgWSeeWl5JxEzzyF-336rq9NUDjJcF18LquZe4a-PPY,7126
81
- bisheng_langchain/gpts/agent_types/llm_react_agent.py,sha256=rMddCaNVN0dXLVirvpxhXoqeLBDadf9xK3rnOU0uKL0,6523
81
+ bisheng_langchain/gpts/agent_types/llm_react_agent.py,sha256=9StjcRByFIFhaQMgOt0lN9jG0Ne33vCPz2iHVEIJYyg,7311
82
82
  bisheng_langchain/gpts/prompts/__init__.py,sha256=pOnXvk6_PjqAoLrh68sI9o3o6znKGxoLMVFP-0XTCJo,704
83
83
  bisheng_langchain/gpts/prompts/assistant_prompt_base.py,sha256=Yp9M1XbZb5jHeBG_txcwWA84Euvl89t0g-GbJMa5Ur0,1133
84
84
  bisheng_langchain/gpts/prompts/assistant_prompt_cohere.py,sha256=GLQ77oXqSlE7Xes2ObsFsNon5nOJOCRhQOKE5bUpgaI,2421
@@ -104,7 +104,7 @@ bisheng_langchain/gpts/tools/bing_search/tool.py,sha256=FlaeNEiOO52YjxpXu62efaMH
104
104
  bisheng_langchain/gpts/tools/calculator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
105
105
  bisheng_langchain/gpts/tools/calculator/tool.py,sha256=5FFL3YAYGQqC2L7zFP3LK6zApZ4GFI9MjUa5VdQ9nvY,695
106
106
  bisheng_langchain/gpts/tools/code_interpreter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- bisheng_langchain/gpts/tools/code_interpreter/tool.py,sha256=WK8FX1wLS8896rResE8jSZ7L5SyjAuaGiw3SWRocdQM,11428
107
+ bisheng_langchain/gpts/tools/code_interpreter/tool.py,sha256=oUhlJzn5sQzk-GTxyzq_i89Is2IYaO4hoIYcoo9N_e4,11441
108
108
  bisheng_langchain/gpts/tools/dalle_image_generator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
109
  bisheng_langchain/gpts/tools/dalle_image_generator/tool.py,sha256=m1c_1pVJ3cM8Qrp0wDXEgEQ_9XJo_CyCmcwRayBsIYE,7492
110
110
  bisheng_langchain/gpts/tools/get_current_time/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -125,8 +125,8 @@ bisheng_langchain/rag/__init__.py,sha256=Rm_cDxOJINt0H4bOeUo3JctPxaI6xKKXZcS-R_w
125
125
  bisheng_langchain/rag/bisheng_rag_chain.py,sha256=75HCIkUAMGrD1E6BaSA9dhnug137PZvDnKUZxihStIE,6149
126
126
  bisheng_langchain/rag/bisheng_rag_pipeline.py,sha256=neoBK3TtuQ07_WeuJCzYlvtsDQNepUa_68NT8VCgytw,13749
127
127
  bisheng_langchain/rag/bisheng_rag_pipeline_v2.py,sha256=iOoF7mbLp9qDGPsV0fEmgph_Ba8VnECYvCPebXk8xmo,16144
128
- bisheng_langchain/rag/bisheng_rag_tool.py,sha256=JAxsoASwaCaGHrFlAylYOZQZ9ZdnMcfYvAaZZKvIz0g,13676
129
- bisheng_langchain/rag/extract_info.py,sha256=jtZ4Bchjv4tOaayC2MnkV-lLu3vDA0Hsk_S-ATni34g,1695
128
+ bisheng_langchain/rag/bisheng_rag_tool.py,sha256=MqhGWphTmXsQdTm3QCy0zxJ64I38z1Trz5FFMtQTSh4,13761
129
+ bisheng_langchain/rag/extract_info.py,sha256=QEFlAaC_9-87dl4BtTz9ciQaQhfE_XjWUnQrwnUfRiw,2215
130
130
  bisheng_langchain/rag/run_qa_gen_web.py,sha256=-fIvHNnD3lD0iNU5m0Me1GDwRjlcsB8tE5RnPtFRG2s,1840
131
131
  bisheng_langchain/rag/run_rag_evaluate_web.py,sha256=a9vMhq-ZhEiHHr43uKUzKtjdk280uAP_UHQW_eOaQMw,2224
132
132
  bisheng_langchain/rag/utils.py,sha256=ecl4sDR8iUrVCBRPAAT0hZOHkH50-TLS3567GLP1sRM,7122
@@ -144,7 +144,7 @@ bisheng_langchain/rag/init_retrievers/mix_retriever.py,sha256=t65WLFMDEQ8LlbUEG4
144
144
  bisheng_langchain/rag/init_retrievers/smaller_chunks_retriever.py,sha256=a_IWcU1zZUndwQW2nXy3DjQA0ct6_7VDGWflY2UEXTI,3774
145
145
  bisheng_langchain/rag/prompts/__init__.py,sha256=IUCq9gzqGQN_6IDk0D_F5t3mOUI_KbmSzYnnXoX4VKE,223
146
146
  bisheng_langchain/rag/prompts/extract_key_prompt.py,sha256=THdcwolRzaKkddgEhabUDytn-caHs9UwECPkPxijWAs,1456
147
- bisheng_langchain/rag/prompts/prompt.py,sha256=VdRJ5V8zysFALPwA1Ge98aLmk6hnuySegVtL6twMJaI,1916
147
+ bisheng_langchain/rag/prompts/prompt.py,sha256=XhMDIrgTwp3pfgMxftxc3XUo7wOjb-3hl_JQfNAMjrI,2695
148
148
  bisheng_langchain/rag/prompts/prompt_cohere.py,sha256=FhW-RCIVnIfKtEqV_-7aQav1riIJmA0jV2hGxCSoysk,8151
149
149
  bisheng_langchain/rag/qa_corpus/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
150
150
  bisheng_langchain/rag/qa_corpus/qa_generator.py,sha256=M8B739ZwwTfF1HXlfTss_pGH38KncJoL9xU0OvEGKCA,6100
@@ -160,13 +160,13 @@ bisheng_langchain/retrievers/mix_es_vector.py,sha256=dSrrsuMPSgGiu181EOzACyIKiDX
160
160
  bisheng_langchain/sql/__init__.py,sha256=2arRtNQ-kUvIsy_8v_PrLxf5r9W-S7mbqptG_l4_1RE,88
161
161
  bisheng_langchain/sql/base.py,sha256=RQq7BdWroTp2aKzKr_5AMMUaSTxefMJ1DF3r1Rsi0EQ,6162
162
162
  bisheng_langchain/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
163
- bisheng_langchain/utils/azure_dalle_image_generator.py,sha256=Aok-YOBmULhlsjkUm7DmRHtYg-mwyyWyl8u3n-jSOHc,6596
163
+ bisheng_langchain/utils/azure_dalle_image_generator.py,sha256=QkLXnXYl_onR-uNuMDIcwLx9r4Snn4WuIkyfNFFCLes,2753
164
164
  bisheng_langchain/utils/requests.py,sha256=QSvZQeqL-vfW8dPanJNkeclHt2Gx-Wl9cu7XGaRQzbM,8625
165
165
  bisheng_langchain/vectorstores/__init__.py,sha256=zCZgDe7LyQ0iDkfcm5UJ5NxwKQSRHnqrsjx700Fy11M,213
166
166
  bisheng_langchain/vectorstores/elastic_keywords_search.py,sha256=BxvT9FUTju4AZPtQFTbYLmIIKKw8bqcact5Cav_5H2I,15357
167
167
  bisheng_langchain/vectorstores/milvus.py,sha256=jWq_lce-ihOz07D1kwj5ctPzElYexNCjJ-xSv-pK1CI,37172
168
168
  bisheng_langchain/vectorstores/retriever.py,sha256=fNtk8qSwBo2Qrlt1NpZVXaNATW2tBywkyS0q0NtN5MI,4326
169
- bisheng_langchain-1.2.1.dist-info/METADATA,sha256=DFifMhbexNo46m3h6BXMn9LwUnpndls5v_X51yyu7Yk,2435
170
- bisheng_langchain-1.2.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
171
- bisheng_langchain-1.2.1.dist-info/top_level.txt,sha256=Z6pPNyCo4ihyr9iqGQbH8sJiC4dAUwA_mAyGRQB5_Fs,18
172
- bisheng_langchain-1.2.1.dist-info/RECORD,,
169
+ bisheng_langchain-1.3.1.dist-info/METADATA,sha256=AMeyOnK3Iam_Jo-c1fJHu0hFOcw2xseOKREu11xeKVQ,2435
170
+ bisheng_langchain-1.3.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
171
+ bisheng_langchain-1.3.1.dist-info/top_level.txt,sha256=Z6pPNyCo4ihyr9iqGQbH8sJiC4dAUwA_mAyGRQB5_Fs,18
172
+ bisheng_langchain-1.3.1.dist-info/RECORD,,