bisheng-langchain 0.3.7.1__py3-none-any.whl → 0.4.0.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. bisheng_langchain/document_loaders/custom_kv.py +2 -2
  2. bisheng_langchain/document_loaders/elem_pdf.py +3 -3
  3. bisheng_langchain/document_loaders/elem_unstrcutured_loader.py +2 -2
  4. bisheng_langchain/document_loaders/parsers/image.py +1 -1
  5. bisheng_langchain/document_loaders/universal_kv.py +2 -2
  6. bisheng_langchain/gpts/agent_types/llm_functions_agent.py +35 -5
  7. bisheng_langchain/gpts/agent_types/llm_react_agent.py +27 -39
  8. bisheng_langchain/gpts/assistant.py +24 -24
  9. bisheng_langchain/gpts/tools/api_tools/base.py +1 -1
  10. bisheng_langchain/gpts/tools/api_tools/openapi.py +59 -32
  11. bisheng_langchain/rag/bisheng_rag_chain.py +26 -32
  12. bisheng_langchain/rag/bisheng_rag_tool.py +98 -98
  13. bisheng_langchain/rag/extract_info.py +0 -2
  14. bisheng_langchain/rag/init_retrievers/baseline_vector_retriever.py +8 -12
  15. bisheng_langchain/rag/init_retrievers/keyword_retriever.py +8 -16
  16. bisheng_langchain/rag/init_retrievers/mix_retriever.py +16 -17
  17. bisheng_langchain/rag/init_retrievers/smaller_chunks_retriever.py +8 -8
  18. bisheng_langchain/sql/base.py +1 -1
  19. bisheng_langchain/vectorstores/elastic_keywords_search.py +17 -2
  20. bisheng_langchain/vectorstores/milvus.py +76 -69
  21. {bisheng_langchain-0.3.7.1.dist-info → bisheng_langchain-0.4.0.dev1.dist-info}/METADATA +6 -6
  22. {bisheng_langchain-0.3.7.1.dist-info → bisheng_langchain-0.4.0.dev1.dist-info}/RECORD +24 -24
  23. {bisheng_langchain-0.3.7.1.dist-info → bisheng_langchain-0.4.0.dev1.dist-info}/WHEEL +0 -0
  24. {bisheng_langchain-0.3.7.1.dist-info → bisheng_langchain-0.4.0.dev1.dist-info}/top_level.txt +0 -0
@@ -1,16 +1,14 @@
1
1
  import uuid
2
- from typing import List, Optional
2
+ from typing import Any, List, Optional
3
3
 
4
- from bisheng_langchain.vectorstores.milvus import Milvus
4
+ from langchain.text_splitter import TextSplitter
5
5
  from langchain_core.documents import Document
6
6
  from langchain_core.pydantic_v1 import Field
7
7
  from langchain_core.retrievers import BaseRetriever
8
8
 
9
- from langchain.text_splitter import TextSplitter
10
-
11
9
 
12
10
  class SmallerChunksVectorRetriever(BaseRetriever):
13
- vector_store: Milvus
11
+ vector_store: Any
14
12
  child_search_kwargs: dict = Field(default_factory=dict)
15
13
  """Keyword arguments to pass to the search function."""
16
14
  child_splitter: TextSplitter
@@ -33,7 +31,8 @@ class SmallerChunksVectorRetriever(BaseRetriever):
33
31
  split_doc.metadata.pop('chunk_bboxes')
34
32
  split_doc.metadata['chunk_index'] = chunk_index
35
33
  if kwargs.get('add_aux_info', False):
36
- split_doc.page_content = split_doc.metadata["source"] + '\n' + split_doc.metadata["title"] + '\n' + split_doc.page_content
34
+ split_doc.page_content = split_doc.metadata['source'] + '\n' + split_doc.metadata[
35
+ 'title'] + '\n' + split_doc.page_content
37
36
  doc_ids = [str(uuid.uuid4()) for _ in documents]
38
37
 
39
38
  par_docs = []
@@ -45,10 +44,11 @@ class SmallerChunksVectorRetriever(BaseRetriever):
45
44
  for _doc in sub_docs:
46
45
  _doc.metadata[self.id_key] = _id
47
46
  if kwargs.get('add_aux_info', False):
48
- _doc.page_content = _doc.metadata["source"] + '\n' + _doc.metadata["title"] + '\n' + _doc.page_content
47
+ _doc.page_content = _doc.metadata['source'] + '\n' + _doc.metadata[
48
+ 'title'] + '\n' + _doc.page_content
49
49
  par_docs.append(par_doc)
50
50
  child_docs.extend(sub_docs)
51
-
51
+
52
52
  self.vector_store.from_documents(
53
53
  par_docs,
54
54
  embedding=self.vector_store.embedding_func,
@@ -6,7 +6,7 @@ from typing import Any, Dict, List, Optional
6
6
  from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun
7
7
  from langchain.chains.llm import LLMChain
8
8
  from langchain.prompts.prompt import PromptTemplate
9
- from langchain.tools.sql_database.prompt import QUERY_CHECKER
9
+ from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
10
10
  from langchain_experimental.sql import SQLDatabaseChain as SQLDatabaseChainExperimental
11
11
 
12
12
  INTERMEDIATE_STEPS_KEY = 'intermediate_steps'
@@ -107,6 +107,7 @@ class ElasticKeywordsSearch(VectorStore, ABC):
107
107
  elasticsearch_url: str,
108
108
  index_name: str,
109
109
  drop_old: Optional[bool] = False,
110
+ post_filter: Optional[Any] = None,
110
111
  *,
111
112
  ssl_verify: Optional[Dict[str, Any]] = None,
112
113
  llm_chain: Optional[LLMChain] = None,
@@ -120,6 +121,7 @@ class ElasticKeywordsSearch(VectorStore, ABC):
120
121
  self.index_name = index_name
121
122
  self.llm_chain = llm_chain
122
123
  self.drop_old = drop_old
124
+ self.post_filter = post_filter
123
125
  _ssl_verify = ssl_verify or {}
124
126
  self.elasticsearch_url = elasticsearch_url
125
127
  self.ssl_verify = _ssl_verify
@@ -322,9 +324,22 @@ class ElasticKeywordsSearch(VectorStore, ABC):
322
324
  version_num = client.info()['version']['number'][0]
323
325
  version_num = int(version_num)
324
326
  if version_num >= 8:
325
- response = client.search(index=index_name, query=script_query, size=size)
327
+ params = {
328
+ "index": index_name,
329
+ "query": script_query,
330
+ "size": size
331
+ }
332
+ if self.post_filter:
333
+ params["post_filter"] = self.post_filter
334
+ response = client.search(**params)
326
335
  else:
327
- response = client.search(index=index_name, body={'query': script_query, 'size': size})
336
+ body = {
337
+ 'query': script_query,
338
+ 'size': size
339
+ }
340
+ if self.post_filter:
341
+ body["post_filter"] = self.post_filter
342
+ response = client.search(index=index_name, body=body)
328
343
  return response
329
344
 
330
345
  def delete_index(self, **kwargs: Any) -> None:
@@ -8,8 +8,8 @@ from uuid import uuid4
8
8
  import numpy as np
9
9
  from langchain.docstore.document import Document
10
10
  from langchain.embeddings.base import Embeddings
11
- from langchain.vectorstores.utils import maximal_marginal_relevance
12
11
  from langchain_community.vectorstores.milvus import Milvus as MilvusLangchain
12
+ from langchain_community.vectorstores.utils import maximal_marginal_relevance
13
13
  from pymilvus.exceptions import ConnectionNotExistException
14
14
 
15
15
  logger = logging.getLogger(__name__)
@@ -107,6 +107,7 @@ class Milvus(MilvusLangchain):
107
107
  search_params: Optional[dict] = None,
108
108
  drop_old: Optional[bool] = False,
109
109
  partition_key: Optional[str] = None,
110
+ metadata_expr: Optional[str] = None,
110
111
  *,
111
112
  primary_field: str = 'pk',
112
113
  text_field: str = 'text',
@@ -199,6 +200,8 @@ class Milvus(MilvusLangchain):
199
200
  self._partition_field = partition_field
200
201
  self.partition_key = partition_key
201
202
 
203
+ self.metadata_expr = metadata_expr
204
+
202
205
  self.fields: list[str] = []
203
206
  # Create the connection to the server
204
207
  if connection_args is None:
@@ -444,13 +447,13 @@ class Milvus(MilvusLangchain):
444
447
  self.col.load()
445
448
 
446
449
  def add_texts(
447
- self,
448
- texts: Iterable[str],
449
- metadatas: Optional[List[dict]] = None,
450
- timeout: Optional[int] = None,
451
- batch_size: int = 1000,
452
- no_embedding: bool = False,
453
- **kwargs: Any,
450
+ self,
451
+ texts: Iterable[str],
452
+ metadatas: Optional[List[dict]] = None,
453
+ timeout: Optional[int] = None,
454
+ batch_size: int = 1000,
455
+ no_embedding: bool = False,
456
+ **kwargs: Any,
454
457
  ) -> List[str]:
455
458
  """Insert text data into Milvus.
456
459
 
@@ -529,7 +532,7 @@ class Milvus(MilvusLangchain):
529
532
  res = self.col.insert(insert_list, timeout=timeout, **kwargs)
530
533
  pks.extend(res.primary_keys)
531
534
  except ConnectionNotExistException as e:
532
- logger.warning("retrying connection to milvus")
535
+ logger.warning(f'retrying connection to milvus {e}')
533
536
  # reconnect to milvus
534
537
  self._create_connection_alias(self.connection_args, self.alias)
535
538
 
@@ -542,13 +545,13 @@ class Milvus(MilvusLangchain):
542
545
  return pks
543
546
 
544
547
  def similarity_search(
545
- self,
546
- query: str,
547
- k: int = 4,
548
- param: Optional[dict] = None,
549
- expr: Optional[str] = None,
550
- timeout: Optional[int] = None,
551
- **kwargs: Any,
548
+ self,
549
+ query: str,
550
+ k: int = 4,
551
+ param: Optional[dict] = None,
552
+ expr: Optional[str] = None,
553
+ timeout: Optional[int] = None,
554
+ **kwargs: Any,
552
555
  ) -> List[Document]:
553
556
  """Perform a similarity search against the query string.
554
557
 
@@ -580,13 +583,13 @@ class Milvus(MilvusLangchain):
580
583
  return [doc for doc, _ in res]
581
584
 
582
585
  def similarity_search_by_vector(
583
- self,
584
- embedding: List[float],
585
- k: int = 4,
586
- param: Optional[dict] = None,
587
- expr: Optional[str] = None,
588
- timeout: Optional[int] = None,
589
- **kwargs: Any,
586
+ self,
587
+ embedding: List[float],
588
+ k: int = 4,
589
+ param: Optional[dict] = None,
590
+ expr: Optional[str] = None,
591
+ timeout: Optional[int] = None,
592
+ **kwargs: Any,
590
593
  ) -> List[Document]:
591
594
  """Perform a similarity search against the query string.
592
595
 
@@ -618,13 +621,13 @@ class Milvus(MilvusLangchain):
618
621
  return [doc for doc, _ in res]
619
622
 
620
623
  def similarity_search_with_score(
621
- self,
622
- query: str,
623
- k: int = 4,
624
- param: Optional[dict] = None,
625
- expr: Optional[str] = None,
626
- timeout: Optional[int] = None,
627
- **kwargs: Any,
624
+ self,
625
+ query: str,
626
+ k: int = 4,
627
+ param: Optional[dict] = None,
628
+ expr: Optional[str] = None,
629
+ timeout: Optional[int] = None,
630
+ **kwargs: Any,
628
631
  ) -> List[Tuple[Document, float]]:
629
632
  """Perform a search on a query string and return results with score.
630
633
 
@@ -664,13 +667,13 @@ class Milvus(MilvusLangchain):
664
667
  return res
665
668
 
666
669
  def similarity_search_with_score_by_vector(
667
- self,
668
- embedding: List[float],
669
- k: int = 4,
670
- param: Optional[dict] = None,
671
- expr: Optional[str] = None,
672
- timeout: Optional[int] = None,
673
- **kwargs: Any,
670
+ self,
671
+ embedding: List[float],
672
+ k: int = 4,
673
+ param: Optional[dict] = None,
674
+ expr: Optional[str] = None,
675
+ timeout: Optional[int] = None,
676
+ **kwargs: Any,
674
677
  ) -> List[Tuple[Document, float]]:
675
678
  """Perform a search on a query string and return results with score.
676
679
 
@@ -711,6 +714,10 @@ class Milvus(MilvusLangchain):
711
714
  expr = f"{expr} and {self._partition_field}==\"{self.partition_key}\""
712
715
  else:
713
716
  expr = f"{self._partition_field}==\"{self.partition_key}\""
717
+ if expr and self.metadata_expr:
718
+ expr = f'{expr} and {self.metadata_expr}'
719
+ elif self.metadata_expr and not expr:
720
+ expr = self.metadata_expr
714
721
 
715
722
  # Perform the search.
716
723
  res = self.col.search(
@@ -734,15 +741,15 @@ class Milvus(MilvusLangchain):
734
741
  return ret
735
742
 
736
743
  def max_marginal_relevance_search(
737
- self,
738
- query: str,
739
- k: int = 4,
740
- fetch_k: int = 20,
741
- lambda_mult: float = 0.5,
742
- param: Optional[dict] = None,
743
- expr: Optional[str] = None,
744
- timeout: Optional[int] = None,
745
- **kwargs: Any,
744
+ self,
745
+ query: str,
746
+ k: int = 4,
747
+ fetch_k: int = 20,
748
+ lambda_mult: float = 0.5,
749
+ param: Optional[dict] = None,
750
+ expr: Optional[str] = None,
751
+ timeout: Optional[int] = None,
752
+ **kwargs: Any,
746
753
  ) -> List[Document]:
747
754
  """Perform a search and return results that are reordered by MMR.
748
755
 
@@ -787,15 +794,15 @@ class Milvus(MilvusLangchain):
787
794
  )
788
795
 
789
796
  def max_marginal_relevance_search_by_vector(
790
- self,
791
- embedding: list[float],
792
- k: int = 4,
793
- fetch_k: int = 20,
794
- lambda_mult: float = 0.5,
795
- param: Optional[dict] = None,
796
- expr: Optional[str] = None,
797
- timeout: Optional[int] = None,
798
- **kwargs: Any,
797
+ self,
798
+ embedding: list[float],
799
+ k: int = 4,
800
+ fetch_k: int = 20,
801
+ lambda_mult: float = 0.5,
802
+ param: Optional[dict] = None,
803
+ expr: Optional[str] = None,
804
+ timeout: Optional[int] = None,
805
+ **kwargs: Any,
799
806
  ) -> List[Document]:
800
807
  """Perform a search and return results that are reordered by MMR.
801
808
 
@@ -882,18 +889,18 @@ class Milvus(MilvusLangchain):
882
889
 
883
890
  @classmethod
884
891
  def from_texts(
885
- cls,
886
- texts: List[str],
887
- embedding: Embeddings,
888
- metadatas: Optional[List[dict]] = None,
889
- collection_name: str = 'LangChainCollection',
890
- connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION,
891
- consistency_level: str = 'Session',
892
- index_params: Optional[dict] = None,
893
- search_params: Optional[dict] = None,
894
- drop_old: bool = False,
895
- no_embedding: bool = False,
896
- **kwargs: Any,
892
+ cls,
893
+ texts: List[str],
894
+ embedding: Embeddings,
895
+ metadatas: Optional[List[dict]] = None,
896
+ collection_name: str = 'LangChainCollection',
897
+ connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION,
898
+ consistency_level: str = 'Session',
899
+ index_params: Optional[dict] = None,
900
+ search_params: Optional[dict] = None,
901
+ drop_old: bool = False,
902
+ no_embedding: bool = False,
903
+ **kwargs: Any,
897
904
  ) -> Milvus:
898
905
  """Create a Milvus collection, indexes it with HNSW, and insert data.
899
906
 
@@ -934,8 +941,8 @@ class Milvus(MilvusLangchain):
934
941
  @staticmethod
935
942
  def _relevance_score_fn(distance: float) -> float:
936
943
  """Normalize the distance to a score on a scale [0, 1]."""
937
- # Todo: normalize the es score on a scale [0, 1]
938
- return 1 - distance
944
+ # normalize l2 distance
945
+ return 1 - distance / 2
939
946
 
940
947
  def _select_relevance_score_fn(self) -> Callable[[float], float]:
941
948
  return self._relevance_score_fn
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: bisheng-langchain
3
- Version: 0.3.7.1
3
+ Version: 0.4.0.dev1
4
4
  Summary: bisheng langchain modules
5
5
  Home-page: https://github.com/dataelement/bisheng
6
6
  Author: DataElem
@@ -16,7 +16,7 @@ Classifier: License :: OSI Approved :: Apache Software License
16
16
  Classifier: Operating System :: OS Independent
17
17
  Requires-Python: >=3.6
18
18
  Description-Content-Type: text/markdown
19
- Requires-Dist: langchain==0.1.12
19
+ Requires-Dist: langchain==0.2.*
20
20
  Requires-Dist: zhipuai
21
21
  Requires-Dist: websocket-client
22
22
  Requires-Dist: elasticsearch
@@ -24,13 +24,13 @@ Requires-Dist: opencv-python==4.5.5.64
24
24
  Requires-Dist: Pillow==9.5.0
25
25
  Requires-Dist: bisheng-pyautogen
26
26
  Requires-Dist: jieba==0.42.1
27
- Requires-Dist: pydantic==1.10.13
27
+ Requires-Dist: pydantic
28
28
  Requires-Dist: pymupdf==1.23.8
29
29
  Requires-Dist: shapely==2.0.2
30
30
  Requires-Dist: filetype==1.2.0
31
- Requires-Dist: langgraph==0.0.50
32
- Requires-Dist: openai==1.14.3
33
- Requires-Dist: langchain-openai==0.1.5
31
+ Requires-Dist: langgraph==0.2.*
32
+ Requires-Dist: openai==1.51.*
33
+ Requires-Dist: langchain-openai>=0.1.25
34
34
  Requires-Dist: llama-index==0.9.48
35
35
  Requires-Dist: bisheng-ragas==1.0.0
36
36
 
@@ -50,15 +50,15 @@ bisheng_langchain/chat_models/interface/wenxin.py,sha256=z_K1Nj78dDYYgiVIzc5sGkO
50
50
  bisheng_langchain/chat_models/interface/xunfei.py,sha256=DPHAZM_uHg0A8GnebgkRbLENhBW7bBtRHzKC0gFKZgc,7514
51
51
  bisheng_langchain/chat_models/interface/zhipuai.py,sha256=67Ej6DRk-IlXUfEZPg-pjcYPyqZb32ClrBP-9k-3EEs,2636
52
52
  bisheng_langchain/document_loaders/__init__.py,sha256=LuQ-zMYxde2FeiEcvVtjQqnHozki5pF_pDDa88_fBdg,366
53
- bisheng_langchain/document_loaders/custom_kv.py,sha256=xWUPhcr1hjbdya4zgEHG4Fl0sI4RNQ6D2vqFo0c24G8,6656
53
+ bisheng_langchain/document_loaders/custom_kv.py,sha256=-7h7QqGUFPhpNYAUZBDmkr_pDSZvyOFHRtlGpDP93Lc,6676
54
54
  bisheng_langchain/document_loaders/elem_html.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
55
  bisheng_langchain/document_loaders/elem_image.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- bisheng_langchain/document_loaders/elem_pdf.py,sha256=K-TXILGNFLFjavhun_MFbUF4t2_WGA3Z-kbnr75lmW8,22243
57
- bisheng_langchain/document_loaders/elem_unstrcutured_loader.py,sha256=JW87AhzCY_KS_YYszyxU3GgPjxP4vWOHDfifJEpP5CI,8055
58
- bisheng_langchain/document_loaders/universal_kv.py,sha256=ZdIgFIc2fH2kkvJNb7j2wi6FLS_PaaatVy6z_YNV2hw,4114
56
+ bisheng_langchain/document_loaders/elem_pdf.py,sha256=WpRIStBl1DUDa0NCd594gKU2NsgURRv5jnKSM71ZPI8,22273
57
+ bisheng_langchain/document_loaders/elem_unstrcutured_loader.py,sha256=SA02ClxYb7DSfBdAA9bYT8oxMETTsp5GdHPkAH1Wkk8,8075
58
+ bisheng_langchain/document_loaders/universal_kv.py,sha256=7z19Z_NwtILmtkbIURf4qMyEJGjlE-5CkhqF2KFGc7I,4134
59
59
  bisheng_langchain/document_loaders/parsers/__init__.py,sha256=OOM_FJkwaU-zNS58fASw0TH8FNT6VXKb0VrvisgdrII,171
60
60
  bisheng_langchain/document_loaders/parsers/ellm_client.py,sha256=Y_CRYwBr-gFArOirF1b76KyI5N8eVpsLeDiIsKtYkpU,1641
61
- bisheng_langchain/document_loaders/parsers/image.py,sha256=7Vx4dD_WiSTojS4TMIJFxfE8nvze0kwNnwTd6f1cLds,938
61
+ bisheng_langchain/document_loaders/parsers/image.py,sha256=I5l33eV2mxOpSclxjc5qoIIg-fLae6fdpoLtRqBZjok,948
62
62
  bisheng_langchain/document_loaders/parsers/ocr_client.py,sha256=rRh1coJYn24n7FaINBZH5yO6Edm9TRywY6UOXpcerVo,1612
63
63
  bisheng_langchain/document_loaders/parsers/test_image.py,sha256=EJHozq5oFfLBlLL5Lr6XFkrkvSttPpohprs9OjDzAKM,8685
64
64
  bisheng_langchain/embeddings/__init__.py,sha256=_zLLb9cH4Ct4UpKQhtXr7V2IQ7LUnlCKkKTroTE_Enk,534
@@ -70,15 +70,15 @@ bisheng_langchain/embeddings/interface/__init__.py,sha256=GNY3tibpRxpAdAfSvQmXBK
70
70
  bisheng_langchain/embeddings/interface/types.py,sha256=VdurbtsnjCPdlOjPFcK2Mg6r9bJYYHb3tepvkk-y3nM,461
71
71
  bisheng_langchain/embeddings/interface/wenxin.py,sha256=5d9gI4enmfkD80s0FHKiDt33O0mwM8Xc5WTubnMUy8c,3104
72
72
  bisheng_langchain/gpts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
73
- bisheng_langchain/gpts/assistant.py,sha256=jPGVjPhqx-z4nvEHVsprWLqAVbO99Uus_GADAPASXQE,5438
73
+ bisheng_langchain/gpts/assistant.py,sha256=Xx5sNVJzB9chUHf9jYigNugWw-gyEIb6GpLOnrMWDXU,5552
74
74
  bisheng_langchain/gpts/auto_optimization.py,sha256=WNsC19rgvuDYQlSIaYThq5RqCbuobDbzCwAJW4Ksw0c,3626
75
75
  bisheng_langchain/gpts/auto_tool_selected.py,sha256=21WETf9o0YS-QEBwv3mmZRObKWszefQkXEqAA6KzoaM,1582
76
76
  bisheng_langchain/gpts/load_tools.py,sha256=U0DTN53bCXWZ26dlx9ZEPXO42Uvt72Q8mqKWcaBVQYo,8488
77
77
  bisheng_langchain/gpts/message_types.py,sha256=7EJOx62j9E1U67jxWgxE_I7a8IjAvvKANknXkD2gFm0,213
78
78
  bisheng_langchain/gpts/utils.py,sha256=t3YDxaJ0OYd6EKsek7PJFRYnsezwzEFK5oVU-PRbu5g,6671
79
79
  bisheng_langchain/gpts/agent_types/__init__.py,sha256=88tFt1GfrfIqa4hCg0cMJk7rTeUmCSSdiVhR41CW4rM,381
80
- bisheng_langchain/gpts/agent_types/llm_functions_agent.py,sha256=IXg5u8dSk-FcLvjrvvLcN5revGccXylXkD73ZWhaDWs,8715
81
- bisheng_langchain/gpts/agent_types/llm_react_agent.py,sha256=W6IJMwoFUj_a2cXZ_nXOpzaHBjP5IBrFxRTSejNVi9A,6678
80
+ bisheng_langchain/gpts/agent_types/llm_functions_agent.py,sha256=A2p7-v2DLirSZ1KlkAwcR8UXkV-Tk7bkJCZ_w-_4Em4,9995
81
+ bisheng_langchain/gpts/agent_types/llm_react_agent.py,sha256=lo8Neo346aZP8tve56yiDfy6xQbtF3o_lJLIAPPgBM0,6623
82
82
  bisheng_langchain/gpts/prompts/__init__.py,sha256=pOnXvk6_PjqAoLrh68sI9o3o6znKGxoLMVFP-0XTCJo,704
83
83
  bisheng_langchain/gpts/prompts/assistant_prompt_base.py,sha256=Yp9M1XbZb5jHeBG_txcwWA84Euvl89t0g-GbJMa5Ur0,1133
84
84
  bisheng_langchain/gpts/prompts/assistant_prompt_cohere.py,sha256=GLQ77oXqSlE7Xes2ObsFsNon5nOJOCRhQOKE5bUpgaI,2421
@@ -89,10 +89,10 @@ bisheng_langchain/gpts/prompts/react_agent_prompt.py,sha256=MA5FReipAYfe6ypOvg_S
89
89
  bisheng_langchain/gpts/prompts/select_tools_prompt.py,sha256=AyvVnrLEsQy7RHuGTPkcrMUxgA98Q0TzF-xweoc7GyY,1400
90
90
  bisheng_langchain/gpts/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
91
91
  bisheng_langchain/gpts/tools/api_tools/__init__.py,sha256=CkEjgIFM4GIv86V1B7SsFLaB6M86c54QuO8wIRizUZ8,1608
92
- bisheng_langchain/gpts/tools/api_tools/base.py,sha256=fWQSDIOVb4JZrtJ9ML9q2ycsAa-_61gXTD0MT19J1LM,3618
92
+ bisheng_langchain/gpts/tools/api_tools/base.py,sha256=zPUCM_mOM9ygsc8pwejZvngEfEvGtiWTKbavfza7Eqg,3593
93
93
  bisheng_langchain/gpts/tools/api_tools/flow.py,sha256=ot2YAYgQGWgUpb2nCECAmpqHY6m0SgzwkupF9kDT3lU,2461
94
94
  bisheng_langchain/gpts/tools/api_tools/macro_data.py,sha256=FyG-qtl2ECS1CDKt6olN0eDTDM91d-UvDkMDBiVLgYQ,27429
95
- bisheng_langchain/gpts/tools/api_tools/openapi.py,sha256=CzKt9FRkgngBcWgabD4emPqAXkAgagkD-pMjG680MTE,3903
95
+ bisheng_langchain/gpts/tools/api_tools/openapi.py,sha256=_mvmtuWWLWYSzTsMy5K7E6zWGzpGDX3XtPrGLtTh_aU,5134
96
96
  bisheng_langchain/gpts/tools/api_tools/sina.py,sha256=4KpK7_HUUtjpdJ-K4LjPlb-occyAZcRtmmCWqJ2BotE,9708
97
97
  bisheng_langchain/gpts/tools/api_tools/tianyancha.py,sha256=abDAz-yAH1-2rKiSmZ6TgnrNUnpgAZpDY8oDiWfWapc,6684
98
98
  bisheng_langchain/gpts/tools/bing_search/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -111,11 +111,11 @@ bisheng_langchain/input_output/output.py,sha256=6U-az6-Cwz665C2YmcH3SYctWVjPFjmW
111
111
  bisheng_langchain/memory/__init__.py,sha256=TNqe5l5BqUv4wh3_UH28fYPWQXGLBUYn6QJHsr7vanI,82
112
112
  bisheng_langchain/memory/redis.py,sha256=paz72ic5BfLXY6lj2cEbCxrTb8KVMnKMZmG9q7uh_9s,4291
113
113
  bisheng_langchain/rag/__init__.py,sha256=Rm_cDxOJINt0H4bOeUo3JctPxaI6xKKXZcS-R_wkoGs,198
114
- bisheng_langchain/rag/bisheng_rag_chain.py,sha256=2GMDUPJaW-D7tpOQ9qPt2vGZwmcXBS0UrcibO7J2S1g,5999
114
+ bisheng_langchain/rag/bisheng_rag_chain.py,sha256=yCgbRJ9hHOAF4lsAL2kjX-YX9J7nduIV7lsoYnuTXL4,6251
115
115
  bisheng_langchain/rag/bisheng_rag_pipeline.py,sha256=neoBK3TtuQ07_WeuJCzYlvtsDQNepUa_68NT8VCgytw,13749
116
116
  bisheng_langchain/rag/bisheng_rag_pipeline_v2.py,sha256=iOoF7mbLp9qDGPsV0fEmgph_Ba8VnECYvCPebXk8xmo,16144
117
- bisheng_langchain/rag/bisheng_rag_tool.py,sha256=8M59rQqUGS7b1GH_pjNwcqJa2HikK3B4ZqWl59ZCUJY,13113
118
- bisheng_langchain/rag/extract_info.py,sha256=emrdvzU9EfdTQU_IBF4RkwaTXmYLk1MOJgdfYhw6VtA,1753
117
+ bisheng_langchain/rag/bisheng_rag_tool.py,sha256=_nTdp60_HPZmu35VmXSRoHEJyohBocUCzlAej2nHqyY,13560
118
+ bisheng_langchain/rag/extract_info.py,sha256=jtZ4Bchjv4tOaayC2MnkV-lLu3vDA0Hsk_S-ATni34g,1695
119
119
  bisheng_langchain/rag/run_qa_gen_web.py,sha256=-fIvHNnD3lD0iNU5m0Me1GDwRjlcsB8tE5RnPtFRG2s,1840
120
120
  bisheng_langchain/rag/run_rag_evaluate_web.py,sha256=a9vMhq-ZhEiHHr43uKUzKtjdk280uAP_UHQW_eOaQMw,2224
121
121
  bisheng_langchain/rag/utils.py,sha256=ecl4sDR8iUrVCBRPAAT0hZOHkH50-TLS3567GLP1sRM,7122
@@ -127,10 +127,10 @@ bisheng_langchain/rag/config/baseline_demo_v2.yaml,sha256=hCa7bZMCcOWpu6bsAFX4DU
127
127
  bisheng_langchain/rag/config/baseline_s2b_mix.yaml,sha256=rkPfzU2-mvjRrZ0zMHaQsncPhq8DrdvVFsw4Sg_jeKc,2398
128
128
  bisheng_langchain/rag/config/baseline_v2.yaml,sha256=RP-DwIRIS_ZK8ixbXi2Z28rKqHD56pWmr2o2WWIwq3Y,2382
129
129
  bisheng_langchain/rag/init_retrievers/__init__.py,sha256=qpLLAuqZPtumTlJj17Ie5AbDDmiUiDxYefg_pumqu-c,218
130
- bisheng_langchain/rag/init_retrievers/baseline_vector_retriever.py,sha256=oRKZZpxlLQAtsubIcAXeXpf1a9h6Pt6uOtNTLeD2jps,2362
131
- bisheng_langchain/rag/init_retrievers/keyword_retriever.py,sha256=NRT0fBx6HFR7j9IbRl_NBuqF7hnL-9v5GCqHpgnrfPQ,2523
132
- bisheng_langchain/rag/init_retrievers/mix_retriever.py,sha256=Whxq4kjNPLsxnHcVo60usdFFwLTCD-1jO38q08LXkVQ,4653
133
- bisheng_langchain/rag/init_retrievers/smaller_chunks_retriever.py,sha256=RQ7QLEOOhBrkw-EimXVJqIGa96D-KkNDik2h9hzg9fU,3805
130
+ bisheng_langchain/rag/init_retrievers/baseline_vector_retriever.py,sha256=ULDKFEEQMsclpUMoxxcqebpVGZkX86khj30tEpwjx0o,2162
131
+ bisheng_langchain/rag/init_retrievers/keyword_retriever.py,sha256=Y6r65c8QAJmqWXOkKeJFgtdURw3mORPj5tCo6R_HpKg,2195
132
+ bisheng_langchain/rag/init_retrievers/mix_retriever.py,sha256=MVPd5QiLIA2FRTlZHy3kcpUJaGjtST45b347qhxXQW8,4634
133
+ bisheng_langchain/rag/init_retrievers/smaller_chunks_retriever.py,sha256=es0fbaXx6MSrOejXCojqUuZdOCSSvwaMgO0zzsaFRjQ,3787
134
134
  bisheng_langchain/rag/prompts/__init__.py,sha256=IUCq9gzqGQN_6IDk0D_F5t3mOUI_KbmSzYnnXoX4VKE,223
135
135
  bisheng_langchain/rag/prompts/extract_key_prompt.py,sha256=THdcwolRzaKkddgEhabUDytn-caHs9UwECPkPxijWAs,1456
136
136
  bisheng_langchain/rag/prompts/prompt.py,sha256=VdRJ5V8zysFALPwA1Ge98aLmk6hnuySegVtL6twMJaI,1916
@@ -147,15 +147,15 @@ bisheng_langchain/retrievers/__init__.py,sha256=XqBeNyPyNCJf-SzNBiFlkxtjrtHUFTTi
147
147
  bisheng_langchain/retrievers/ensemble.py,sha256=umjBaZYBEdhJ2F7GlzQgXVLYjSfpybTptiJJbUgryZE,5975
148
148
  bisheng_langchain/retrievers/mix_es_vector.py,sha256=dSrrsuMPSgGiu181EOzACyIKiDXR0qNBQz_914USD3E,4465
149
149
  bisheng_langchain/sql/__init__.py,sha256=2arRtNQ-kUvIsy_8v_PrLxf5r9W-S7mbqptG_l4_1RE,88
150
- bisheng_langchain/sql/base.py,sha256=WNHCy16UoxvDbroHnJq8CsZ9ot4NGflCm8Bgiv45kks,6152
150
+ bisheng_langchain/sql/base.py,sha256=RQq7BdWroTp2aKzKr_5AMMUaSTxefMJ1DF3r1Rsi0EQ,6162
151
151
  bisheng_langchain/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
152
152
  bisheng_langchain/utils/azure_dalle_image_generator.py,sha256=96-_nO4hDSwyPE4rSYop5SgJ-U9CE2un4bTdW0E5RGU,6582
153
153
  bisheng_langchain/utils/requests.py,sha256=vWGKyNTxApVeaVdKxqACfIT1Q8wMy-jC3kUv2Ce9Mzc,8688
154
154
  bisheng_langchain/vectorstores/__init__.py,sha256=zCZgDe7LyQ0iDkfcm5UJ5NxwKQSRHnqrsjx700Fy11M,213
155
- bisheng_langchain/vectorstores/elastic_keywords_search.py,sha256=inZarhahRaesrvLqyeRCMQvHGAASY53opEVA0_o8S14,14901
156
- bisheng_langchain/vectorstores/milvus.py,sha256=xh7NokraKg_Xc9ofz0RVfJ_I36ftnprLJtV-1NfaeyQ,37162
155
+ bisheng_langchain/vectorstores/elastic_keywords_search.py,sha256=sIMbud4UfbfLTLf_pIIfcVC2lHbaTWCTTABTFP5mXkE,15334
156
+ bisheng_langchain/vectorstores/milvus.py,sha256=jWq_lce-ihOz07D1kwj5ctPzElYexNCjJ-xSv-pK1CI,37172
157
157
  bisheng_langchain/vectorstores/retriever.py,sha256=hj4nAAl352EV_ANnU2OHJn7omCH3nBK82ydo14KqMH4,4353
158
- bisheng_langchain-0.3.7.1.dist-info/METADATA,sha256=pqdcVAxm2tNZv4VPQNAVot0KVfj88YrIQur6FXMxsn0,2473
159
- bisheng_langchain-0.3.7.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- bisheng_langchain-0.3.7.1.dist-info/top_level.txt,sha256=Z6pPNyCo4ihyr9iqGQbH8sJiC4dAUwA_mAyGRQB5_Fs,18
161
- bisheng_langchain-0.3.7.1.dist-info/RECORD,,
158
+ bisheng_langchain-0.4.0.dev1.dist-info/METADATA,sha256=rL3CPjFijR7QY10vULb81mpb3n80m5aWLW3Iz50b5Yo,2466
159
+ bisheng_langchain-0.4.0.dev1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ bisheng_langchain-0.4.0.dev1.dist-info/top_level.txt,sha256=Z6pPNyCo4ihyr9iqGQbH8sJiC4dAUwA_mAyGRQB5_Fs,18
161
+ bisheng_langchain-0.4.0.dev1.dist-info/RECORD,,