birder 0.4.1__py3-none-any.whl → 0.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- birder/common/training_cli.py +6 -1
- birder/common/training_utils.py +69 -12
- birder/net/_vit_configs.py +5 -0
- birder/net/cait.py +3 -3
- birder/net/coat.py +3 -3
- birder/net/deit.py +1 -1
- birder/net/deit3.py +1 -1
- birder/net/detection/__init__.py +2 -0
- birder/net/detection/deformable_detr.py +12 -12
- birder/net/detection/detr.py +7 -7
- birder/net/detection/lw_detr.py +1181 -0
- birder/net/detection/plain_detr.py +7 -5
- birder/net/detection/retinanet.py +1 -1
- birder/net/detection/rt_detr_v1.py +10 -10
- birder/net/detection/rt_detr_v2.py +47 -64
- birder/net/detection/ssdlite.py +2 -2
- birder/net/edgevit.py +3 -3
- birder/net/efficientvit_msft.py +1 -1
- birder/net/flexivit.py +1 -1
- birder/net/hieradet.py +2 -2
- birder/net/mnasnet.py +2 -2
- birder/net/resnext.py +2 -2
- birder/net/rope_deit3.py +1 -1
- birder/net/rope_flexivit.py +1 -1
- birder/net/rope_vit.py +1 -1
- birder/net/simple_vit.py +1 -1
- birder/net/vit.py +21 -3
- birder/net/vit_parallel.py +1 -1
- birder/net/vit_sam.py +62 -16
- birder/scripts/train.py +12 -8
- birder/scripts/train_capi.py +13 -10
- birder/scripts/train_detection.py +2 -1
- birder/scripts/train_kd.py +12 -8
- birder/version.py +1 -1
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/METADATA +3 -3
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/RECORD +40 -39
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/WHEEL +1 -1
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/entry_points.txt +0 -0
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/licenses/LICENSE +0 -0
- {birder-0.4.1.dist-info → birder-0.4.2.dist-info}/top_level.txt +0 -0
birder/net/vit_sam.py
CHANGED
|
@@ -29,7 +29,9 @@ from birder.net._vit_configs import BASE
|
|
|
29
29
|
from birder.net._vit_configs import HUGE
|
|
30
30
|
from birder.net._vit_configs import LARGE
|
|
31
31
|
from birder.net._vit_configs import MEDIUM
|
|
32
|
+
from birder.net._vit_configs import SMALL
|
|
32
33
|
from birder.net.base import DetectorBackbone
|
|
34
|
+
from birder.net.base import normalize_out_indices
|
|
33
35
|
from birder.net.vit import EncoderBlock as MAEDecoderBlock
|
|
34
36
|
|
|
35
37
|
|
|
@@ -72,7 +74,7 @@ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor
|
|
|
72
74
|
|
|
73
75
|
# Interpolate rel pos if needed
|
|
74
76
|
if rel_pos.shape[0] != max_rel_dist:
|
|
75
|
-
#
|
|
77
|
+
# Only reached in dynamic-size mode (rel-pos table resized on the fly)
|
|
76
78
|
rel_pos_resized = F.interpolate(
|
|
77
79
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear"
|
|
78
80
|
)
|
|
@@ -242,6 +244,7 @@ class EncoderBlock(nn.Module):
|
|
|
242
244
|
class ViT_SAM(DetectorBackbone):
|
|
243
245
|
block_group_regex = r"body\.(\d+)"
|
|
244
246
|
|
|
247
|
+
# pylint: disable=too-many-locals
|
|
245
248
|
def __init__(
|
|
246
249
|
self,
|
|
247
250
|
input_channels: int,
|
|
@@ -266,6 +269,7 @@ class ViT_SAM(DetectorBackbone):
|
|
|
266
269
|
window_size: int = self.config["window_size"]
|
|
267
270
|
global_attn_indexes: list[int] = self.config["global_attn_indexes"]
|
|
268
271
|
neck_channels: Optional[int] = self.config.get("neck_channels", None)
|
|
272
|
+
out_indices: Optional[list[int]] = self.config.get("out_indices", None)
|
|
269
273
|
drop_path_rate: float = self.config["drop_path_rate"]
|
|
270
274
|
|
|
271
275
|
if norm_layer_type == "LayerNorm":
|
|
@@ -292,6 +296,7 @@ class ViT_SAM(DetectorBackbone):
|
|
|
292
296
|
self.hidden_dim = hidden_dim
|
|
293
297
|
self.global_attn_indexes = global_attn_indexes
|
|
294
298
|
self.num_special_tokens = 0
|
|
299
|
+
self.out_indices = normalize_out_indices(out_indices, num_layers)
|
|
295
300
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)] # Stochastic depth decay rule
|
|
296
301
|
|
|
297
302
|
self.patch_embed = PatchEmbed(
|
|
@@ -356,8 +361,10 @@ class ViT_SAM(DetectorBackbone):
|
|
|
356
361
|
nn.Flatten(1),
|
|
357
362
|
)
|
|
358
363
|
|
|
359
|
-
self.
|
|
360
|
-
self.
|
|
364
|
+
num_return_stages = len(self.out_indices) if self.out_indices is not None else 1
|
|
365
|
+
self.return_stages = [f"stage{stage_idx + 1}" for stage_idx in range(num_return_stages)]
|
|
366
|
+
self.return_channels = [hidden_dim] * num_return_stages
|
|
367
|
+
self.return_channels[-1] = neck_channels
|
|
361
368
|
self.embedding_size = neck_channels
|
|
362
369
|
self.classifier = self.create_classifier()
|
|
363
370
|
|
|
@@ -372,13 +379,54 @@ class ViT_SAM(DetectorBackbone):
|
|
|
372
379
|
activation_layer=nn.GELU,
|
|
373
380
|
)
|
|
374
381
|
|
|
382
|
+
def _get_pos_embed(self, H: int, W: int) -> torch.Tensor:
|
|
383
|
+
if self.dynamic_size is False:
|
|
384
|
+
return self.pos_embedding
|
|
385
|
+
|
|
386
|
+
if H == self.size[0] and W == self.size[1]:
|
|
387
|
+
return self.pos_embedding
|
|
388
|
+
|
|
389
|
+
base_h = H // self.patch_size
|
|
390
|
+
base_w = W // self.patch_size
|
|
391
|
+
orig_dtype = self.pos_embedding.dtype
|
|
392
|
+
pos_embedding = self.pos_embedding.float()
|
|
393
|
+
pos_embedding = pos_embedding.permute(0, 3, 1, 2)
|
|
394
|
+
pos_embedding = F.interpolate(pos_embedding, size=(base_h, base_w), mode="bicubic", antialias=True)
|
|
395
|
+
pos_embedding = pos_embedding.permute(0, 2, 3, 1)
|
|
396
|
+
|
|
397
|
+
return pos_embedding.to(orig_dtype)
|
|
398
|
+
|
|
399
|
+
def set_causal_attention(self, is_causal: bool = True) -> None:
|
|
400
|
+
for b in self.body:
|
|
401
|
+
b.set_causal_attention(is_causal)
|
|
402
|
+
|
|
375
403
|
def detection_features(self, x: torch.Tensor) -> dict[str, torch.Tensor]:
|
|
404
|
+
H, W = x.shape[-2:]
|
|
376
405
|
x = self.patch_embed(x)
|
|
377
|
-
x = x + self.
|
|
406
|
+
x = x + self._get_pos_embed(H, W)
|
|
378
407
|
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
408
|
+
if self.out_indices is None:
|
|
409
|
+
x = self.body(x)
|
|
410
|
+
x = self.neck(x.permute(0, 3, 1, 2))
|
|
411
|
+
return {self.return_stages[0]: x}
|
|
412
|
+
|
|
413
|
+
out_indices_set = set(self.out_indices)
|
|
414
|
+
last_out_idx = max(out_indices_set)
|
|
415
|
+
out: dict[str, torch.Tensor] = {}
|
|
416
|
+
stage_idx = 0
|
|
417
|
+
for idx, blk in enumerate(self.body):
|
|
418
|
+
x = blk(x)
|
|
419
|
+
if idx not in out_indices_set:
|
|
420
|
+
continue
|
|
421
|
+
|
|
422
|
+
stage_x = x.permute(0, 3, 1, 2)
|
|
423
|
+
if idx == last_out_idx:
|
|
424
|
+
stage_x = self.neck(stage_x)
|
|
425
|
+
|
|
426
|
+
out[self.return_stages[stage_idx]] = stage_x
|
|
427
|
+
stage_idx += 1
|
|
428
|
+
|
|
429
|
+
return out
|
|
382
430
|
|
|
383
431
|
def freeze_stages(self, up_to_stage: int) -> None:
|
|
384
432
|
for param in self.patch_embed.parameters():
|
|
@@ -393,13 +441,10 @@ class ViT_SAM(DetectorBackbone):
|
|
|
393
441
|
for param in module.parameters():
|
|
394
442
|
param.requires_grad_(False)
|
|
395
443
|
|
|
396
|
-
def set_causal_attention(self, is_causal: bool = True) -> None:
|
|
397
|
-
for b in self.body:
|
|
398
|
-
b.set_causal_attention(is_causal)
|
|
399
|
-
|
|
400
444
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
|
445
|
+
H, W = x.shape[-2:]
|
|
401
446
|
x = self.patch_embed(x)
|
|
402
|
-
x = x + self.
|
|
447
|
+
x = x + self._get_pos_embed(H, W)
|
|
403
448
|
|
|
404
449
|
x = self.body(x)
|
|
405
450
|
x = self.neck(x.permute(0, 3, 1, 2))
|
|
@@ -410,9 +455,6 @@ class ViT_SAM(DetectorBackbone):
|
|
|
410
455
|
x = self.forward_features(x)
|
|
411
456
|
return self.features(x)
|
|
412
457
|
|
|
413
|
-
def set_dynamic_size(self, dynamic_size: bool = True) -> None:
|
|
414
|
-
assert dynamic_size is False, "Dynamic size not supported for this network"
|
|
415
|
-
|
|
416
458
|
def adjust_size(self, new_size: tuple[int, int]) -> None:
|
|
417
459
|
if new_size == self.size:
|
|
418
460
|
return
|
|
@@ -530,6 +572,11 @@ class ViT_SAM(DetectorBackbone):
|
|
|
530
572
|
|
|
531
573
|
|
|
532
574
|
# ViTDet (no neck)
|
|
575
|
+
registry.register_model_config(
|
|
576
|
+
"vit_det_s16",
|
|
577
|
+
ViT_SAM,
|
|
578
|
+
config={"patch_size": 16, **SMALL, "window_size": 14, "global_attn_indexes": [2, 5, 8, 11]},
|
|
579
|
+
)
|
|
533
580
|
registry.register_model_config(
|
|
534
581
|
"vit_det_m16_rms",
|
|
535
582
|
ViT_SAM,
|
|
@@ -541,7 +588,6 @@ registry.register_model_config(
|
|
|
541
588
|
"global_attn_indexes": [2, 5, 8, 11],
|
|
542
589
|
},
|
|
543
590
|
)
|
|
544
|
-
|
|
545
591
|
registry.register_model_config(
|
|
546
592
|
"vit_det_b16",
|
|
547
593
|
ViT_SAM,
|
birder/scripts/train.py
CHANGED
|
@@ -581,10 +581,12 @@ def train(args: argparse.Namespace) -> None:
|
|
|
581
581
|
if targets.ndim == 2:
|
|
582
582
|
targets = targets.argmax(dim=1)
|
|
583
583
|
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
584
|
+
if train_topk is None:
|
|
585
|
+
train_accuracy.update(training_utils.accuracy(targets, outputs.detach()))
|
|
586
|
+
else:
|
|
587
|
+
topk_values = training_utils.topk_accuracy(targets, outputs.detach(), topk=(1, top_k))
|
|
588
|
+
train_accuracy.update(topk_values[0])
|
|
589
|
+
train_topk.update(topk_values[1])
|
|
588
590
|
|
|
589
591
|
# Write statistics
|
|
590
592
|
if (i % args.log_interval == 0 and i > 0) or i == last_batch_idx:
|
|
@@ -682,10 +684,12 @@ def train(args: argparse.Namespace) -> None:
|
|
|
682
684
|
|
|
683
685
|
# Statistics
|
|
684
686
|
running_val_loss.update(val_loss.detach())
|
|
685
|
-
|
|
686
|
-
|
|
687
|
-
|
|
688
|
-
|
|
687
|
+
if val_topk is None:
|
|
688
|
+
val_accuracy.update(training_utils.accuracy(targets, outputs), n=outputs.size(0))
|
|
689
|
+
else:
|
|
690
|
+
topk_values = training_utils.topk_accuracy(targets, outputs, topk=(1, top_k))
|
|
691
|
+
val_accuracy.update(topk_values[0], n=outputs.size(0))
|
|
692
|
+
val_topk.update(topk_values[1], n=outputs.size(0))
|
|
689
693
|
|
|
690
694
|
# Update progress bar
|
|
691
695
|
progress.update(n=batch_size * args.world_size)
|
birder/scripts/train_capi.py
CHANGED
|
@@ -63,15 +63,21 @@ logger = logging.getLogger(__name__)
|
|
|
63
63
|
|
|
64
64
|
|
|
65
65
|
class TrainCollator:
|
|
66
|
-
def __init__(
|
|
66
|
+
def __init__(
|
|
67
|
+
self, mask_generator: Callable[[int], tuple[list[torch.Tensor], list[torch.Tensor]]], n_predict: int
|
|
68
|
+
) -> None:
|
|
67
69
|
self.mask_generator = mask_generator
|
|
70
|
+
self.n_predict = n_predict
|
|
68
71
|
|
|
69
|
-
def __call__(self, batch: Any) -> tuple[torch.Tensor, torch.Tensor]:
|
|
72
|
+
def __call__(self, batch: Any) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
70
73
|
B = len(batch)
|
|
71
74
|
collated_batch = torch.utils.data.default_collate(batch)
|
|
72
75
|
masks = self.mask_generator(B)
|
|
73
76
|
|
|
74
|
-
|
|
77
|
+
ids_keep = masking.get_ids_keep(masks)
|
|
78
|
+
predict_indices = masking.get_random_masked_indices(masks, self.n_predict)
|
|
79
|
+
|
|
80
|
+
return (collated_batch, ids_keep, predict_indices)
|
|
75
81
|
|
|
76
82
|
|
|
77
83
|
# pylint: disable=too-many-locals,too-many-branches,too-many-statements
|
|
@@ -183,7 +189,7 @@ def train(args: argparse.Namespace) -> None:
|
|
|
183
189
|
)
|
|
184
190
|
n_masked = int(seq_len * args.mask_ratio)
|
|
185
191
|
n_predict = int(n_masked * args.kept_mask_ratio)
|
|
186
|
-
mask_collator = TrainCollator(mask_generator)
|
|
192
|
+
mask_collator = TrainCollator(mask_generator, n_predict)
|
|
187
193
|
training_transform = training_utils.get_training_transform(args)
|
|
188
194
|
if args.use_fake_data is True:
|
|
189
195
|
logger.warning("Using fake data")
|
|
@@ -491,17 +497,14 @@ def train(args: argparse.Namespace) -> None:
|
|
|
491
497
|
else:
|
|
492
498
|
batch_iter = enumerate(training_loader)
|
|
493
499
|
|
|
494
|
-
for i, ((_, images, _),
|
|
500
|
+
for i, ((_, images, _), ids_keep, predict_indices) in batch_iter:
|
|
495
501
|
global_iter = ((epoch - 1) * epoch_num_batches) + i
|
|
496
502
|
images = images.to(device, dtype=model_dtype, non_blocking=True)
|
|
497
|
-
|
|
503
|
+
ids_keep = ids_keep.to(device, non_blocking=True)
|
|
504
|
+
predict_indices = predict_indices.to(device, non_blocking=True)
|
|
498
505
|
|
|
499
506
|
optimizer_update = (i == last_batch_idx) or ((i + 1) % grad_accum_steps == 0)
|
|
500
507
|
|
|
501
|
-
# Mask handling
|
|
502
|
-
ids_keep = masking.get_ids_keep(masks)
|
|
503
|
-
predict_indices = masking.get_random_masked_indices(masks, n_predict)
|
|
504
|
-
|
|
505
508
|
# Forward, backward and optimize
|
|
506
509
|
with torch.amp.autocast("cuda", enabled=args.amp, dtype=amp_dtype):
|
|
507
510
|
selected_assignments, clustering_loss = teacher(images, None, predict_indices)
|
|
@@ -373,6 +373,7 @@ def train(args: argparse.Namespace) -> None:
|
|
|
373
373
|
custom_keys_weight_decay=custom_keys_weight_decay,
|
|
374
374
|
custom_layer_weight_decay=args.custom_layer_wd,
|
|
375
375
|
layer_decay=args.layer_decay,
|
|
376
|
+
backbone_layer_decay=args.backbone_layer_decay,
|
|
376
377
|
layer_decay_min_scale=args.layer_decay_min_scale,
|
|
377
378
|
layer_decay_no_opt_scale=args.layer_decay_no_opt_scale,
|
|
378
379
|
bias_lr=args.bias_lr,
|
|
@@ -948,7 +949,7 @@ def get_args_parser() -> argparse.ArgumentParser:
|
|
|
948
949
|
help="treat all objects as a single class (binary detection: object vs background)",
|
|
949
950
|
)
|
|
950
951
|
training_cli.add_optimization_args(parser, default_batch_size=16)
|
|
951
|
-
training_cli.add_lr_wd_args(parser, backbone_lr=True)
|
|
952
|
+
training_cli.add_lr_wd_args(parser, backbone_lr=True, backbone_layer_decay=True)
|
|
952
953
|
training_cli.add_lr_scheduler_args(parser)
|
|
953
954
|
training_cli.add_training_schedule_args(parser)
|
|
954
955
|
training_cli.add_ema_args(parser, default_ema_steps=1, default_ema_decay=0.9998)
|
birder/scripts/train_kd.py
CHANGED
|
@@ -708,10 +708,12 @@ def train(args: argparse.Namespace) -> None:
|
|
|
708
708
|
if targets.ndim == 2:
|
|
709
709
|
targets = targets.argmax(dim=1)
|
|
710
710
|
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
711
|
+
if train_topk is None:
|
|
712
|
+
train_accuracy.update(training_utils.accuracy(targets, outputs.detach()))
|
|
713
|
+
else:
|
|
714
|
+
topk_values = training_utils.topk_accuracy(targets, outputs.detach(), topk=(1, top_k))
|
|
715
|
+
train_accuracy.update(topk_values[0])
|
|
716
|
+
train_topk.update(topk_values[1])
|
|
715
717
|
|
|
716
718
|
# Write statistics
|
|
717
719
|
if (i % args.log_interval == 0 and i > 0) or i == last_batch_idx:
|
|
@@ -804,10 +806,12 @@ def train(args: argparse.Namespace) -> None:
|
|
|
804
806
|
|
|
805
807
|
# Statistics
|
|
806
808
|
running_val_loss.update(val_loss.detach())
|
|
807
|
-
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
|
|
809
|
+
if val_topk is None:
|
|
810
|
+
val_accuracy.update(training_utils.accuracy(targets, outputs), n=outputs.size(0))
|
|
811
|
+
else:
|
|
812
|
+
topk_values = training_utils.topk_accuracy(targets, outputs, topk=(1, top_k))
|
|
813
|
+
val_accuracy.update(topk_values[0], n=outputs.size(0))
|
|
814
|
+
val_topk.update(topk_values[1], n=outputs.size(0))
|
|
811
815
|
|
|
812
816
|
# Update progress bar
|
|
813
817
|
progress.update(n=batch_size * args.world_size)
|
birder/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "v0.4.
|
|
1
|
+
__version__ = "v0.4.2"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: birder
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.2
|
|
4
4
|
Summary: An open-source computer vision framework for wildlife image analysis, featuring state-of-the-art models for species classification and detection.
|
|
5
5
|
Author: Ofer Hasson
|
|
6
6
|
License-Expression: Apache-2.0
|
|
@@ -26,7 +26,7 @@ License-File: LICENSE
|
|
|
26
26
|
Requires-Dist: matplotlib>=3.9.0
|
|
27
27
|
Requires-Dist: numpy>=2.2.0
|
|
28
28
|
Requires-Dist: onnx>=1.18.0
|
|
29
|
-
Requires-Dist: onnxscript~=0.
|
|
29
|
+
Requires-Dist: onnxscript~=0.6.0
|
|
30
30
|
Requires-Dist: Pillow>=12.0.0
|
|
31
31
|
Requires-Dist: polars>=1.31.0
|
|
32
32
|
Requires-Dist: pyarrow>=20.0.0
|
|
@@ -48,7 +48,7 @@ Requires-Dist: black~=26.1.0; extra == "dev"
|
|
|
48
48
|
Requires-Dist: build~=1.4.0; extra == "dev"
|
|
49
49
|
Requires-Dist: bumpver~=2025.1131; extra == "dev"
|
|
50
50
|
Requires-Dist: captum~=0.7.0; extra == "dev"
|
|
51
|
-
Requires-Dist: coverage~=7.13.
|
|
51
|
+
Requires-Dist: coverage~=7.13.2; extra == "dev"
|
|
52
52
|
Requires-Dist: debugpy; extra == "dev"
|
|
53
53
|
Requires-Dist: flake8-pep585~=0.1.7; extra == "dev"
|
|
54
54
|
Requires-Dist: flake8~=7.3.0; extra == "dev"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
birder/__init__.py,sha256=qmAq9DNEsHDtvTTXJhp8Vzfrtc6ZR_TUjwjeyDW6VWc,869
|
|
2
2
|
birder/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
-
birder/version.py,sha256=
|
|
3
|
+
birder/version.py,sha256=wir5g_QJ8Sj0VUgLyN6W--ATekZrCeDUAMMxqByjCgk,23
|
|
4
4
|
birder/adversarial/__init__.py,sha256=PBdshTpEvO-aYZtD9kjkOF7Zor5t-P2V0wBwPhFr8_o,308
|
|
5
5
|
birder/adversarial/base.py,sha256=CjUftBQjZTjDP-DW-Hgv5a81qOMPvf4V-pn0ZTsvwJU,3170
|
|
6
6
|
birder/adversarial/deepfool.py,sha256=Om7C2OFk_uF7QcO4AO0pgjId-N0mIsU9HitpiWxk45o,6305
|
|
@@ -12,8 +12,8 @@ birder/common/cli.py,sha256=lOkAnp0L2YA8hAQk0orjluOHxEEK-CDJoRpeFKdyvWI,5427
|
|
|
12
12
|
birder/common/fs_ops.py,sha256=Jshd7UdUSmQ7EJUaFm3ThlOKuSROm0qNC6Elt-DRc1Y,43410
|
|
13
13
|
birder/common/lib.py,sha256=5w2YnQSvV-6b_k3j8U7XnY-_YzgTVEXkGGDg84mg6TQ,5907
|
|
14
14
|
birder/common/masking.py,sha256=lsW1s5zm89A4LCQoVtq_7zc6Kg0A4j629wXnvpG12hs,14060
|
|
15
|
-
birder/common/training_cli.py,sha256=
|
|
16
|
-
birder/common/training_utils.py,sha256=
|
|
15
|
+
birder/common/training_cli.py,sha256=REv_U3FUqgRVl9f5y1ghqTwCt3DGjyzfRGIVkCo3ZPk,32050
|
|
16
|
+
birder/common/training_utils.py,sha256=3c3HP47WlQ9Oiq6rsgLrs6NqCfbgwSaFC69e6eqs-6U,53261
|
|
17
17
|
birder/conf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
18
18
|
birder/conf/settings.py,sha256=tfrE4mo_gGqtIfXm243tOZy69goYK5KA-VSBMhmw_WQ,1996
|
|
19
19
|
birder/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -76,13 +76,13 @@ birder/model_registry/manifest.py,sha256=6gKayTBmnBm45fDTXTxZMmXnowS7VNaHq3fZSFq
|
|
|
76
76
|
birder/model_registry/model_registry.py,sha256=myzRE4NMHqsVkokUO17FacJadHKKGxgjVIzFYAwqilk,9815
|
|
77
77
|
birder/net/__init__.py,sha256=s2hWVFw_NcGHsvdsvqphtMkEzSGBgr1tSXPurAU0Zlw,6804
|
|
78
78
|
birder/net/_rope_vit_configs.py,sha256=-mXwIwYTXAE0Umndjn1m4rdvaAGI9sq1Yh7tKF1kDn8,14018
|
|
79
|
-
birder/net/_vit_configs.py,sha256=
|
|
79
|
+
birder/net/_vit_configs.py,sha256=6so9JKLDbec-kFZknNoNJ16pXqii2XkfflRykDgE0Ro,14663
|
|
80
80
|
birder/net/alexnet.py,sha256=y1_KOnJyJWCQURin5DMu4wdJo3XGSzllBDwaariOW_c,2227
|
|
81
81
|
birder/net/base.py,sha256=oUTtsg2T6P2gQq2JR8pp9AXImS1TlPCqIMmuSr8o66U,11234
|
|
82
82
|
birder/net/biformer.py,sha256=ZGUGGGoZRSGAb7LwZ4VYyGPYJR1jkKGMnLEJVt29LUc,18978
|
|
83
|
-
birder/net/cait.py,sha256=
|
|
83
|
+
birder/net/cait.py,sha256=7K1y8R16Y61DWic8YygCA0Fv10G6EDEtnNik2LWKdJ8,11268
|
|
84
84
|
birder/net/cas_vit.py,sha256=BWewoedWGU_Hdp5mSqX1Zu3e_fNvbzPeKw8C8llT4eU,12165
|
|
85
|
-
birder/net/coat.py,sha256=
|
|
85
|
+
birder/net/coat.py,sha256=allIZJ6ggYETYgzgbTuIXRB9VcI1tiIlgjjKHIE2PxY,25281
|
|
86
86
|
birder/net/conv2former.py,sha256=2JBlsH6qy4Zj0wYyemSdXW1nBCd_nFQqiLLfOK1kJLo,10129
|
|
87
87
|
birder/net/convmixer.py,sha256=2y3yDj5OGZGEBVF5Mgm9GuVab9BptHJX5M-8C0a-1nc,3515
|
|
88
88
|
birder/net/convnext_v1.py,sha256=4b1FV3KoX2xV4kd_VW0AiYzh4kAqGcxkoNEwaZQZZ2Q,9247
|
|
@@ -94,12 +94,12 @@ birder/net/cspnet.py,sha256=0i3UO6f8PQlzBen0BJfdf1vhT2VjIvVrfRbZmUn6O7M,15465
|
|
|
94
94
|
birder/net/cswin_transformer.py,sha256=nNf6C94Gxr_Hu0w1_W9paWkMfW1K2YfOCPtsxxSEasA,15152
|
|
95
95
|
birder/net/darknet.py,sha256=oYbDi_HemdOzmwhLHKSQefEQ7fJmAdcoHqD2Rs1SAN8,4354
|
|
96
96
|
birder/net/davit.py,sha256=qurj-baUX_oahKk0lQUhRIFU3EbpMGJEdaPIpivgwVg,16079
|
|
97
|
-
birder/net/deit.py,sha256=
|
|
98
|
-
birder/net/deit3.py,sha256=
|
|
97
|
+
birder/net/deit.py,sha256=bxl4A4J28ThuUrfBmOZothJiAh73Py3CtWVPplYIZcs,10631
|
|
98
|
+
birder/net/deit3.py,sha256=WQk76_5dOrkz0wr-pC3a4Dy-x-2EYQ5E7YAOTUNqB48,18509
|
|
99
99
|
birder/net/densenet.py,sha256=9hSloWLMZiaZtrithIEiSg_EfOtOLQPHbBctVSW6pBY,5972
|
|
100
100
|
birder/net/dpn.py,sha256=OCIYOS30USJk-7L9geHD4kKQWS1stWXgh4atoX8KmDw,6685
|
|
101
101
|
birder/net/edgenext.py,sha256=tEV3UkNOSSBmB_oE7x97EOWCvS_llwvPKG52p0Wkyr4,13799
|
|
102
|
-
birder/net/edgevit.py,sha256=
|
|
102
|
+
birder/net/edgevit.py,sha256=aaT5o6BL6bo5O8E_cCkMrqwSJ5eOQSaN1YGtiuz2QLo,13117
|
|
103
103
|
birder/net/efficientformer_v1.py,sha256=Ya37V2DRIugYR8tVYPyxI0P2JWnHVmlZGExQiabMPd8,14291
|
|
104
104
|
birder/net/efficientformer_v2.py,sha256=Z4qKYyFCE4IxIVOfEgyFSrP-4lKTV8EulAUeBdP_dUo,24881
|
|
105
105
|
birder/net/efficientnet_lite.py,sha256=v6vTuG7p1Jit6fFfhieigxG_006V5zwpkDgf8oSpCF0,10991
|
|
@@ -107,10 +107,10 @@ birder/net/efficientnet_v1.py,sha256=xnmA0xJdE_1SCtHIeI3Y6Pb8qUmuVCmyWuN-bAg4LB0
|
|
|
107
107
|
birder/net/efficientnet_v2.py,sha256=GTnWN5OVTT7HfNLAR2bSpeQ-tRb_GiMkyIFlkobOPYQ,13538
|
|
108
108
|
birder/net/efficientvim.py,sha256=VlH6CHl3lz6JnwQidbLgzvsbIvwjmqT-VfQmVfFifXE,16858
|
|
109
109
|
birder/net/efficientvit_mit.py,sha256=t4QyU9Q6hM29EClkaKni3U4vQDviIus4arySgTyQWeA,24345
|
|
110
|
-
birder/net/efficientvit_msft.py,sha256=
|
|
110
|
+
birder/net/efficientvit_msft.py,sha256=Nz_5D4LlHKZH70QUYFdPwsSASGcFVO1TPybtKMwqHu0,20138
|
|
111
111
|
birder/net/fasternet.py,sha256=jEmAX8mvi939ocxk7XXKd5iatI1bgOee3vzR3YSfNvA,9019
|
|
112
112
|
birder/net/fastvit.py,sha256=hr0m6b-IwrMN9BMbVmjxyR4kYiir64PCViV7YAM-PcU,38039
|
|
113
|
-
birder/net/flexivit.py,sha256=
|
|
113
|
+
birder/net/flexivit.py,sha256=LW-7iWpP1K8FaNju6vl7qNWhAeBhFqrnJ2O9_gSqolM,24959
|
|
114
114
|
birder/net/focalnet.py,sha256=tIo8wvzv2LJhWzuRqXIkI6poRZZ3y-hJrXheT9zJzOo,20246
|
|
115
115
|
birder/net/gc_vit.py,sha256=ea0sVCYH3w5yUIaWU31lrkiYD8xcK6CbjPkozXOPws4,23849
|
|
116
116
|
birder/net/ghostnet_v1.py,sha256=P0dnO20evTd0-E7jvhb9RBRKOe5UgSygYfkmaYwoIP4,9048
|
|
@@ -119,7 +119,7 @@ birder/net/groupmixformer.py,sha256=DphJPX6nOavoQtMceNFAtlaA5iLd8v3qmRQDqSXOTOA,
|
|
|
119
119
|
birder/net/hgnet_v1.py,sha256=fvQJdHMJnzWDJlD1XEuFSqSEkTZbZNJOFF65c893Yrg,14538
|
|
120
120
|
birder/net/hgnet_v2.py,sha256=MUuJNEU2InsxeqFEp_xDljiH5ik27dx86mpsyZ-5gZc,10970
|
|
121
121
|
birder/net/hiera.py,sha256=DhUFC6qRuUia2-Z7TrBMFt1jNcLM3IBlNGgUo9k5UeQ,28062
|
|
122
|
-
birder/net/hieradet.py,sha256=
|
|
122
|
+
birder/net/hieradet.py,sha256=tJHdWX-_F-EmnObWLLgLidw7D4iAYd1uOskqCRWt2_w,20281
|
|
123
123
|
birder/net/hornet.py,sha256=E8F9Uljq71UtznHRTDrnYCBjhPVWjVHS6-Y3fT8Nfos,13907
|
|
124
124
|
birder/net/iformer.py,sha256=CsWI23qnBl0CIIagwiDle-i-4_XWAh0uICIlGrJfs6I,17925
|
|
125
125
|
birder/net/inception_next.py,sha256=PXVPeJszHZ7fJ2eOa3s1ChxpcOGSUjjnHi7qZ5WaZxE,10829
|
|
@@ -133,7 +133,7 @@ birder/net/lit_v1_tiny.py,sha256=FHndzM1lwMyWVjWINbb91ZB7hc_VgyaOlk2EUAFtZD8,118
|
|
|
133
133
|
birder/net/lit_v2.py,sha256=E7PiTSdJHXfpbosHT37rh2fQUGwr_Uzru0c1FLOJS8M,13940
|
|
134
134
|
birder/net/maxvit.py,sha256=w6BkzMfOESE9C9OOF2X1IQMbaODGHe5je9QQsju8S34,29762
|
|
135
135
|
birder/net/metaformer.py,sha256=mia7kdlmyFRXhcTQjHKKdNoIzRWr1xh69N-mJPKk4Zg,30412
|
|
136
|
-
birder/net/mnasnet.py,sha256=
|
|
136
|
+
birder/net/mnasnet.py,sha256=PH7YpOy1Va93oPickYwv4PN3NRr54gRLy-wfTTSbCGw,9889
|
|
137
137
|
birder/net/mobilenet_v1.py,sha256=gbqBkKvCadZAngvTP3psh1bN6zjmP3aQFfCkG3oB5qU,5325
|
|
138
138
|
birder/net/mobilenet_v2.py,sha256=cDTRkALF07OSc3xYUKqNsfrHnUqJTor0yQ_Hqtf3LJg,7698
|
|
139
139
|
birder/net/mobilenet_v3.py,sha256=YyWsbmMjGQ9Nwp5NkMdPB3ns3BwRTEdbHuQT3kkt5rw,13678
|
|
@@ -160,14 +160,14 @@ birder/net/resmlp.py,sha256=NVrTRCP4q_mWhbJOywX5f_lqNhqKvhwiloUEoBZZDGc,4687
|
|
|
160
160
|
birder/net/resnest.py,sha256=_ql3dcLkqkhT91E-9-M0SiGty9uknwfns3uy4KZ3GkE,10104
|
|
161
161
|
birder/net/resnet_v1.py,sha256=TIv8TjywneOFsYxJQhLrwCgnOTS1V-y_-pu2qjU4tu8,14546
|
|
162
162
|
birder/net/resnet_v2.py,sha256=0QnKggNzpIwhAdI4gLej04VjuJGNVwcW9rPrIdtbnfM,9286
|
|
163
|
-
birder/net/resnext.py,sha256=
|
|
164
|
-
birder/net/rope_deit3.py,sha256=
|
|
165
|
-
birder/net/rope_flexivit.py,sha256=
|
|
166
|
-
birder/net/rope_vit.py,sha256=
|
|
163
|
+
birder/net/resnext.py,sha256=ENa3pWL2mh_zYgk3OIYCBQiFltQLim27MfFRI2BBBNs,10252
|
|
164
|
+
birder/net/rope_deit3.py,sha256=txncunQ9XdKyfwgfDsNs0AigeF4P4y66xEHXuOkrIUo,22399
|
|
165
|
+
birder/net/rope_flexivit.py,sha256=YpBOjuvFImPU5uCna-Cl1KpWMtXs-xMBKsjJ93wdU_4,27426
|
|
166
|
+
birder/net/rope_vit.py,sha256=PCgmwIxJrrq5ctIwKF9MRtADKxSIb2ZncKi0EQY21zA,43293
|
|
167
167
|
birder/net/sequencer2d.py,sha256=WcPlqawg6oQ9gg6h-WJmM25uxnDXA1wsfvJP53UUj60,7416
|
|
168
168
|
birder/net/shufflenet_v1.py,sha256=BAJH4fb8R9CeqHqAcczPF94H9ipjsyPPl2Da_cbzir0,8129
|
|
169
169
|
birder/net/shufflenet_v2.py,sha256=HNF33OmFlLgPN-VilZ9-JF78NJ60MiV2GlSwV8myv7c,6822
|
|
170
|
-
birder/net/simple_vit.py,sha256=
|
|
170
|
+
birder/net/simple_vit.py,sha256=PadSMtNnMJdhB0hHaXSrHkXTR92sBvGrg0tFMQko1Rg,11019
|
|
171
171
|
birder/net/smt.py,sha256=wIY-RtKP6W_3WlAl-C0N_boybRJ4ZMxTSCXWDnS40-c,16198
|
|
172
172
|
birder/net/squeezenet.py,sha256=bUhtqQd9V43vKEcUJG03JkxxCX7iBS_QHFjz497MQP4,3505
|
|
173
173
|
birder/net/squeezenext.py,sha256=2nDG9E02UNlaquKgT-U6JgdyaRd_Hlwbesk81iIfbWc,6026
|
|
@@ -181,28 +181,29 @@ birder/net/uniformer.py,sha256=FYDzOAu4IvRiTVR6DQ1anooRQKiQTxyKFIIrzKAhsMc,12674
|
|
|
181
181
|
birder/net/van.py,sha256=IAymYsIEK3zzST4KS6iU689b29Gm8TCwLFV2BjPyM0g,10671
|
|
182
182
|
birder/net/vgg.py,sha256=-iTVoBXat_6jo8gnpA3Jk4yEBdMKLVbY4iMe_KJ-0Fw,3226
|
|
183
183
|
birder/net/vgg_reduced.py,sha256=1NmjS4KSMvSEU3U090gf82bvWkyYDssEglaXNauCw4A,3356
|
|
184
|
-
birder/net/vit.py,sha256=
|
|
185
|
-
birder/net/vit_parallel.py,sha256=
|
|
186
|
-
birder/net/vit_sam.py,sha256=
|
|
184
|
+
birder/net/vit.py,sha256=8C9wKcin0llrZTtArz2IiQBd5TqM2aj4No_u3fBel64,39971
|
|
185
|
+
birder/net/vit_parallel.py,sha256=GzGCs0_OFjZEuViJMqK6LBRNX6-PWMjWh8vwdNjkIr8,23685
|
|
186
|
+
birder/net/vit_sam.py,sha256=NMsUaiSyfahGQvMiMb-nFKwLlCHSr8gGPoKaHarNTMM,22930
|
|
187
187
|
birder/net/vovnet_v1.py,sha256=4Wgm1mALHpTJlhcrczKPVPkzDh3RNTGTty1FLzRK1EM,7685
|
|
188
188
|
birder/net/vovnet_v2.py,sha256=8kuLm3bURn_I3j0m9YmiJI4TohuWyB-UBlefWIa694g,9714
|
|
189
189
|
birder/net/wide_resnet.py,sha256=d6yn-Fb67zCGLMhQLV09gik5Otah6nCDronm4betcPA,5972
|
|
190
190
|
birder/net/xception.py,sha256=58rncfGZ2U3-aGZjBABhPenRBZl8cvttrtSc0iGMVck,6913
|
|
191
191
|
birder/net/xcit.py,sha256=0WH7Zex1dVpUbAZ7aiwyhhTNDiJd33KtFZGzno3cEQk,19747
|
|
192
|
-
birder/net/detection/__init__.py,sha256=
|
|
192
|
+
birder/net/detection/__init__.py,sha256=gkPYjk8x2L095DHRJPogYNCrzhIzoZaNwh6_AMPWZFE,1169
|
|
193
193
|
birder/net/detection/_yolo_anchors.py,sha256=mbSWosbgfvw6KJ4AcfXV7LoRgTuYgX3yg4VH2zajLD0,6911
|
|
194
194
|
birder/net/detection/base.py,sha256=tHyXyGggKPjUaDiKnftYe6fNjZBK2TokenvgMVYhLf8,26248
|
|
195
|
-
birder/net/detection/deformable_detr.py,sha256=
|
|
196
|
-
birder/net/detection/detr.py,sha256=
|
|
195
|
+
birder/net/detection/deformable_detr.py,sha256=lE8VZiONTYaDKlc-OU2PQbs9w49XUHJ4C1NnfBwkyMM,34616
|
|
196
|
+
birder/net/detection/detr.py,sha256=76AlLiljL9oFkNrJ3ZblxOkD5tAC7oGzwGFmqhuThYE,20680
|
|
197
197
|
birder/net/detection/efficientdet.py,sha256=1IrqoWbL6AX3g0jcdKqe010VHeD6GWEmEp9qmLxnNSE,29038
|
|
198
198
|
birder/net/detection/faster_rcnn.py,sha256=JOI4nlg5ss5_nvhklBhg7EBZu7e40zxmd-9i2avVCqg,34338
|
|
199
199
|
birder/net/detection/fcos.py,sha256=Qhe5y5ito4UZ9TtquWaVyslKWmv4xy56dKGRECkRf18,21867
|
|
200
|
-
birder/net/detection/
|
|
201
|
-
birder/net/detection/
|
|
202
|
-
birder/net/detection/
|
|
203
|
-
birder/net/detection/
|
|
200
|
+
birder/net/detection/lw_detr.py,sha256=sA0Uj6B-CYokt9yhufRf3Ks24yUWtcGi7L4IbruY2fk,50516
|
|
201
|
+
birder/net/detection/plain_detr.py,sha256=8DgpyYXX8P_s4gwPBhzkTYXwZZ5IBlRiDNqYcU-8Dd0,32916
|
|
202
|
+
birder/net/detection/retinanet.py,sha256=uTUPOmvHOJ9R_I4NRqUr92AMZIeb-3TP_3ZkNFNyHqs,19070
|
|
203
|
+
birder/net/detection/rt_detr_v1.py,sha256=-LU3ZdQuRled6Q2LWTk4hy4kKyu8sTMnHGk9TBkID48,46444
|
|
204
|
+
birder/net/detection/rt_detr_v2.py,sha256=f0Mqvo_se0dXypfm-3OYQYoPRPDHm4o8hJvE-tCSwHA,45502
|
|
204
205
|
birder/net/detection/ssd.py,sha256=SxTU151Fn8DmylFkqVp3_6F29BvZkQHejDDti3A554A,20339
|
|
205
|
-
birder/net/detection/ssdlite.py,sha256=
|
|
206
|
+
birder/net/detection/ssdlite.py,sha256=0LwDiiS20xNjkiLvEyyW-cBm32py6fdsIBqPDxkvsKc,7225
|
|
206
207
|
birder/net/detection/vitdet.py,sha256=bpyX0W_q0tBqxQ7hptHnn8Fm5y0DkXvRQQBiRcm-9RE,4424
|
|
207
208
|
birder/net/detection/yolo_v2.py,sha256=WpA5ZOtbzAFsUqPQDplXAJxMmDpVVGnBO7KTvzaEgrs,19949
|
|
208
209
|
birder/net/detection/yolo_v3.py,sha256=INTX3ciZ678PighKN6sNp8Xs3iWZT4aXYcP4ANjS8mo,27777
|
|
@@ -250,20 +251,20 @@ birder/scripts/benchmark.py,sha256=BNxrZDSs9bf7xH0AManKPJk9RTGmCqiUP95jBYx8wUw,1
|
|
|
250
251
|
birder/scripts/evaluate.py,sha256=CbCWK2TR19bEdH0wPO3iCbS0EjZWxfsBAJ42hDD6fKI,6791
|
|
251
252
|
birder/scripts/predict.py,sha256=ryaWcy8xVN16MnLxf2fgxSMa6Wyb7CHi76HgVMCGoA4,30314
|
|
252
253
|
birder/scripts/predict_detection.py,sha256=n3-EJ3Lyg1cLOAgEEj1uyfqHGJRJlkMKKU28WY3i7Ts,17563
|
|
253
|
-
birder/scripts/train.py,sha256=
|
|
254
|
+
birder/scripts/train.py,sha256=u46D7MDApmTg9GR0g4ANAbMWiEbO6MDwvzq5WwtZysY,38325
|
|
254
255
|
birder/scripts/train_barlow_twins.py,sha256=pUIAoS4ZbVnL7nuA-uQFHfxwnuJrZtM1xe0RC-C8uRs,23240
|
|
255
256
|
birder/scripts/train_byol.py,sha256=cD3ItGOSmF2-EvVzt7qHNO95wk0YVWusN05wnXPs18k,24207
|
|
256
|
-
birder/scripts/train_capi.py,sha256=
|
|
257
|
+
birder/scripts/train_capi.py,sha256=agED-24MMOCsgtlebG8KEl05l17WFDadLFCPLbgWCQA,32286
|
|
257
258
|
birder/scripts/train_data2vec.py,sha256=6UC3TDcnelz2R2sJcdiBsRv_rLtAs0rs79Am1EqgLuM,24651
|
|
258
259
|
birder/scripts/train_data2vec2.py,sha256=OnagbpMyr4YHW6Cuo5I7oW2bY-877MlUs0w5PxZ9z_k,25812
|
|
259
|
-
birder/scripts/train_detection.py,sha256=
|
|
260
|
+
birder/scripts/train_detection.py,sha256=Jv4oUH-zfEpLtH7ysnLuK3_i8p1rdlVpxALI6vDi9Cw,41639
|
|
260
261
|
birder/scripts/train_dino_v1.py,sha256=atZjI_51RX0rWWO7ptKfduti3CF5F-6SNpPRhVdKOzM,32189
|
|
261
262
|
birder/scripts/train_dino_v2.py,sha256=7V3SuyMpcQvLyeBQmriNFCguG2w3aYSRQq9z7pBr6eM,48251
|
|
262
263
|
birder/scripts/train_dino_v2_dist.py,sha256=eOr52W4rROpQScPrg03LhTuAAXRrCCaHzIvHmCsPoD8,49635
|
|
263
264
|
birder/scripts/train_franca.py,sha256=-OcEjPzOYWEVeFfGr4Dl1_Cee7hFNeBWzKctrHJ9VJc,43736
|
|
264
265
|
birder/scripts/train_i_jepa.py,sha256=_C3N32gFFTF512eQgGsZ8tqSsz1vsCauot5bPq9aqrE,28127
|
|
265
266
|
birder/scripts/train_ibot.py,sha256=Pw-LZs2_-PWJj9iyidgdNdbCGj3QoIrQmlLDLctlkS8,33635
|
|
266
|
-
birder/scripts/train_kd.py,sha256=
|
|
267
|
+
birder/scripts/train_kd.py,sha256=1_ynCs0vDln57Om3YLw4txlExrYOLWQ7I5uojSPVyqA,44661
|
|
267
268
|
birder/scripts/train_mim.py,sha256=Hu63BxHjGoOUgPPNElSuCdNT2-QYOoE0wWrR3E3fPxs,24251
|
|
268
269
|
birder/scripts/train_mmcr.py,sha256=laXYFvHTNwB1r--4elKG__7_IOkIQQkrZYzY6PrZsnA,24230
|
|
269
270
|
birder/scripts/train_rotnet.py,sha256=Td7WDkPmooP2TaedcDp1mIvQzRQHQmwA0TQN1wh2Zy4,24474
|
|
@@ -292,9 +293,9 @@ birder/tools/stats.py,sha256=TapTDidm4Vhtb_q9Wm_v7V9VHchC0qaOmtPtLuoLaAk,8375
|
|
|
292
293
|
birder/tools/verify_coco.py,sha256=lMCc9X-P-odMEN6GkNpV_TDY7grze11RkPMs-Z_Uy-4,3717
|
|
293
294
|
birder/tools/verify_directory.py,sha256=KbA97CX2HrwdL97HoKmSO8o3vFdP19TT7zHkulMp8L4,3284
|
|
294
295
|
birder/tools/voc_to_coco.py,sha256=ktCviq1Bu9un27mWWPzsr5RolrOpwbFNID5EubY2C1k,5249
|
|
295
|
-
birder-0.4.
|
|
296
|
-
birder-0.4.
|
|
297
|
-
birder-0.4.
|
|
298
|
-
birder-0.4.
|
|
299
|
-
birder-0.4.
|
|
300
|
-
birder-0.4.
|
|
296
|
+
birder-0.4.2.dist-info/licenses/LICENSE,sha256=tQ5GIY23TCjwH64fidwWBp8JdK2QbPVl1UePNd-5m5U,11341
|
|
297
|
+
birder-0.4.2.dist-info/METADATA,sha256=IrahFdkSe2V4zwqbT6ZmKNTuG18vBbtlTKuoDJqbvp4,12696
|
|
298
|
+
birder-0.4.2.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
299
|
+
birder-0.4.2.dist-info/entry_points.txt,sha256=nikWKO1k2GISDo1hsv2T-37NCwD4dtb3PXRwPkOZ86w,128
|
|
300
|
+
birder-0.4.2.dist-info/top_level.txt,sha256=ZRzmYwYDWwwOKFYgW4k0vUysaazrAJDLnpIjVH6cwtY,7
|
|
301
|
+
birder-0.4.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|