birder 0.4.0__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- birder/adversarial/base.py +1 -1
- birder/adversarial/simba.py +4 -4
- birder/common/cli.py +1 -1
- birder/common/fs_ops.py +11 -11
- birder/common/lib.py +2 -2
- birder/common/masking.py +3 -3
- birder/common/training_cli.py +24 -2
- birder/common/training_utils.py +28 -4
- birder/data/collators/detection.py +9 -1
- birder/data/transforms/detection.py +27 -8
- birder/data/transforms/mosaic.py +1 -1
- birder/datahub/classification.py +3 -3
- birder/inference/classification.py +3 -3
- birder/inference/data_parallel.py +1 -1
- birder/inference/detection.py +5 -5
- birder/inference/wbf.py +1 -1
- birder/introspection/attention_rollout.py +5 -5
- birder/introspection/feature_pca.py +4 -4
- birder/introspection/gradcam.py +1 -1
- birder/introspection/guided_backprop.py +2 -2
- birder/introspection/transformer_attribution.py +3 -3
- birder/layers/attention_pool.py +2 -2
- birder/model_registry/model_registry.py +2 -1
- birder/net/__init__.py +2 -0
- birder/net/_rope_vit_configs.py +5 -0
- birder/net/_vit_configs.py +0 -13
- birder/net/alexnet.py +5 -5
- birder/net/base.py +28 -3
- birder/net/biformer.py +17 -17
- birder/net/cait.py +2 -2
- birder/net/cas_vit.py +1 -1
- birder/net/coat.py +15 -15
- birder/net/convnext_v1.py +2 -10
- birder/net/convnext_v1_iso.py +198 -0
- birder/net/convnext_v2.py +2 -10
- birder/net/crossformer.py +9 -9
- birder/net/crossvit.py +1 -1
- birder/net/cspnet.py +1 -1
- birder/net/cswin_transformer.py +10 -10
- birder/net/davit.py +10 -10
- birder/net/deit.py +56 -3
- birder/net/deit3.py +27 -15
- birder/net/detection/__init__.py +4 -0
- birder/net/detection/{yolo_anchors.py → _yolo_anchors.py} +5 -5
- birder/net/detection/base.py +6 -5
- birder/net/detection/deformable_detr.py +26 -28
- birder/net/detection/detr.py +9 -9
- birder/net/detection/efficientdet.py +9 -28
- birder/net/detection/faster_rcnn.py +22 -22
- birder/net/detection/fcos.py +8 -8
- birder/net/detection/plain_detr.py +852 -0
- birder/net/detection/retinanet.py +4 -4
- birder/net/detection/rt_detr_v1.py +81 -25
- birder/net/detection/rt_detr_v2.py +1147 -0
- birder/net/detection/ssd.py +5 -5
- birder/net/detection/yolo_v2.py +12 -12
- birder/net/detection/yolo_v3.py +19 -19
- birder/net/detection/yolo_v4.py +16 -16
- birder/net/detection/yolo_v4_tiny.py +3 -3
- birder/net/edgenext.py +3 -3
- birder/net/edgevit.py +10 -14
- birder/net/efficientformer_v1.py +1 -1
- birder/net/efficientvim.py +9 -9
- birder/net/efficientvit_mit.py +2 -2
- birder/net/efficientvit_msft.py +3 -3
- birder/net/fasternet.py +1 -1
- birder/net/fastvit.py +5 -12
- birder/net/flexivit.py +28 -15
- birder/net/focalnet.py +5 -9
- birder/net/gc_vit.py +11 -11
- birder/net/ghostnet_v1.py +1 -1
- birder/net/ghostnet_v2.py +1 -1
- birder/net/groupmixformer.py +12 -12
- birder/net/hgnet_v1.py +1 -1
- birder/net/hgnet_v2.py +4 -4
- birder/net/hiera.py +6 -6
- birder/net/hieradet.py +9 -9
- birder/net/hornet.py +3 -3
- birder/net/iformer.py +4 -4
- birder/net/inception_next.py +4 -14
- birder/net/levit.py +3 -3
- birder/net/lit_v1.py +13 -15
- birder/net/lit_v1_tiny.py +9 -9
- birder/net/lit_v2.py +14 -15
- birder/net/maxvit.py +10 -22
- birder/net/metaformer.py +2 -2
- birder/net/mim/crossmae.py +5 -5
- birder/net/mim/fcmae.py +3 -5
- birder/net/mim/mae_hiera.py +7 -7
- birder/net/mim/mae_vit.py +3 -5
- birder/net/mim/simmim.py +2 -3
- birder/net/mobilenet_v4_hybrid.py +4 -4
- birder/net/mobileone.py +5 -12
- birder/net/mobilevit_v1.py +2 -2
- birder/net/mobilevit_v2.py +5 -9
- birder/net/mvit_v2.py +24 -24
- birder/net/nextvit.py +2 -2
- birder/net/pit.py +11 -26
- birder/net/pvt_v1.py +4 -4
- birder/net/pvt_v2.py +5 -11
- birder/net/regionvit.py +15 -15
- birder/net/regnet.py +1 -1
- birder/net/repghost.py +4 -5
- birder/net/repvgg.py +3 -5
- birder/net/repvit.py +2 -2
- birder/net/resnest.py +1 -1
- birder/net/rope_deit3.py +29 -15
- birder/net/rope_flexivit.py +28 -15
- birder/net/rope_vit.py +41 -23
- birder/net/sequencer2d.py +3 -4
- birder/net/shufflenet_v1.py +1 -1
- birder/net/shufflenet_v2.py +1 -1
- birder/net/simple_vit.py +47 -5
- birder/net/smt.py +7 -7
- birder/net/ssl/barlow_twins.py +1 -1
- birder/net/ssl/byol.py +2 -2
- birder/net/ssl/capi.py +3 -3
- birder/net/ssl/data2vec2.py +1 -1
- birder/net/ssl/dino_v2.py +11 -1
- birder/net/ssl/franca.py +26 -2
- birder/net/ssl/i_jepa.py +4 -4
- birder/net/ssl/mmcr.py +1 -1
- birder/net/swiftformer.py +1 -1
- birder/net/swin_transformer_v1.py +4 -5
- birder/net/swin_transformer_v2.py +4 -7
- birder/net/tiny_vit.py +3 -3
- birder/net/transnext.py +19 -19
- birder/net/uniformer.py +4 -4
- birder/net/vgg.py +1 -10
- birder/net/vit.py +38 -25
- birder/net/vit_parallel.py +35 -20
- birder/net/vit_sam.py +10 -10
- birder/net/vovnet_v2.py +1 -1
- birder/net/xcit.py +9 -7
- birder/ops/msda.py +4 -4
- birder/ops/swattention.py +10 -10
- birder/results/classification.py +3 -3
- birder/results/gui.py +8 -8
- birder/scripts/benchmark.py +37 -12
- birder/scripts/evaluate.py +1 -1
- birder/scripts/predict.py +3 -3
- birder/scripts/predict_detection.py +2 -2
- birder/scripts/train.py +63 -15
- birder/scripts/train_barlow_twins.py +10 -7
- birder/scripts/train_byol.py +10 -7
- birder/scripts/train_capi.py +15 -10
- birder/scripts/train_data2vec.py +10 -7
- birder/scripts/train_data2vec2.py +10 -7
- birder/scripts/train_detection.py +29 -14
- birder/scripts/train_dino_v1.py +13 -9
- birder/scripts/train_dino_v2.py +27 -14
- birder/scripts/train_dino_v2_dist.py +28 -15
- birder/scripts/train_franca.py +16 -9
- birder/scripts/train_i_jepa.py +12 -9
- birder/scripts/train_ibot.py +15 -11
- birder/scripts/train_kd.py +64 -17
- birder/scripts/train_mim.py +11 -8
- birder/scripts/train_mmcr.py +11 -8
- birder/scripts/train_rotnet.py +11 -7
- birder/scripts/train_simclr.py +10 -7
- birder/scripts/train_vicreg.py +10 -7
- birder/tools/adversarial.py +4 -4
- birder/tools/auto_anchors.py +5 -5
- birder/tools/avg_model.py +1 -1
- birder/tools/convert_model.py +30 -22
- birder/tools/det_results.py +1 -1
- birder/tools/download_model.py +1 -1
- birder/tools/ensemble_model.py +1 -1
- birder/tools/introspection.py +11 -2
- birder/tools/labelme_to_coco.py +2 -2
- birder/tools/model_info.py +12 -14
- birder/tools/pack.py +8 -8
- birder/tools/quantize_model.py +53 -4
- birder/tools/results.py +2 -2
- birder/tools/show_det_iterator.py +19 -6
- birder/tools/show_iterator.py +2 -2
- birder/tools/similarity.py +5 -5
- birder/tools/stats.py +4 -6
- birder/tools/voc_to_coco.py +1 -1
- birder/version.py +1 -1
- {birder-0.4.0.dist-info → birder-0.4.1.dist-info}/METADATA +3 -3
- birder-0.4.1.dist-info/RECORD +300 -0
- {birder-0.4.0.dist-info → birder-0.4.1.dist-info}/WHEEL +1 -1
- birder-0.4.0.dist-info/RECORD +0 -297
- {birder-0.4.0.dist-info → birder-0.4.1.dist-info}/entry_points.txt +0 -0
- {birder-0.4.0.dist-info → birder-0.4.1.dist-info}/licenses/LICENSE +0 -0
- {birder-0.4.0.dist-info → birder-0.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1147 @@
|
|
|
1
|
+
"""
|
|
2
|
+
RT-DETR v2 (Real-Time DEtection TRansformer), adapted from
|
|
3
|
+
https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetrv2_pytorch
|
|
4
|
+
|
|
5
|
+
Paper "RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer",
|
|
6
|
+
https://arxiv.org/abs/2407.17140
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# Reference license: Apache-2.0
|
|
10
|
+
|
|
11
|
+
import copy
|
|
12
|
+
import math
|
|
13
|
+
from typing import Any
|
|
14
|
+
from typing import Literal
|
|
15
|
+
from typing import Optional
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
import torch.nn.functional as F
|
|
19
|
+
from torch import nn
|
|
20
|
+
from torchvision.ops import MLP
|
|
21
|
+
from torchvision.ops import boxes as box_ops
|
|
22
|
+
|
|
23
|
+
from birder.common import training_utils
|
|
24
|
+
from birder.model_registry import registry
|
|
25
|
+
from birder.net.base import DetectorBackbone
|
|
26
|
+
from birder.net.detection.base import DetectionBaseNet
|
|
27
|
+
from birder.net.detection.deformable_detr import HungarianMatcher
|
|
28
|
+
from birder.net.detection.deformable_detr import inverse_sigmoid
|
|
29
|
+
from birder.net.detection.rt_detr_v1 import HybridEncoder
|
|
30
|
+
from birder.net.detection.rt_detr_v1 import get_contrastive_denoising_training_group
|
|
31
|
+
from birder.net.detection.rt_detr_v1 import varifocal_loss
|
|
32
|
+
from birder.ops.msda import MultiScaleDeformableAttention as MSDA
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def _get_clones(module: nn.Module, N: int) -> nn.ModuleList:
|
|
36
|
+
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class MultiheadAttention(nn.Module):
|
|
40
|
+
def __init__(self, d_model: int, num_heads: int, attn_drop: float = 0.0, proj_drop: float = 0.0) -> None:
|
|
41
|
+
super().__init__()
|
|
42
|
+
assert d_model % num_heads == 0, "d_model should be divisible by num_heads"
|
|
43
|
+
|
|
44
|
+
self.num_heads = num_heads
|
|
45
|
+
self.head_dim = d_model // num_heads
|
|
46
|
+
self.scale = self.head_dim**-0.5
|
|
47
|
+
|
|
48
|
+
self.q_proj = nn.Linear(d_model, d_model)
|
|
49
|
+
self.k_proj = nn.Linear(d_model, d_model)
|
|
50
|
+
self.v_proj = nn.Linear(d_model, d_model)
|
|
51
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
52
|
+
self.proj = nn.Linear(d_model, d_model)
|
|
53
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
54
|
+
|
|
55
|
+
self.reset_parameters()
|
|
56
|
+
|
|
57
|
+
def reset_parameters(self) -> None:
|
|
58
|
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
|
59
|
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
|
60
|
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
|
61
|
+
nn.init.xavier_uniform_(self.proj.weight)
|
|
62
|
+
if self.q_proj.bias is not None:
|
|
63
|
+
nn.init.zeros_(self.q_proj.bias)
|
|
64
|
+
nn.init.zeros_(self.k_proj.bias)
|
|
65
|
+
nn.init.zeros_(self.v_proj.bias)
|
|
66
|
+
nn.init.zeros_(self.proj.bias)
|
|
67
|
+
|
|
68
|
+
def forward(
|
|
69
|
+
self,
|
|
70
|
+
query: torch.Tensor,
|
|
71
|
+
key: torch.Tensor,
|
|
72
|
+
value: torch.Tensor,
|
|
73
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
74
|
+
) -> torch.Tensor:
|
|
75
|
+
B, l_q, C = query.shape
|
|
76
|
+
q = self.q_proj(query).reshape(B, l_q, self.num_heads, self.head_dim).transpose(1, 2)
|
|
77
|
+
k = self.k_proj(key).reshape(B, key.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
|
78
|
+
v = self.v_proj(value).reshape(B, value.size(1), self.num_heads, self.head_dim).transpose(1, 2)
|
|
79
|
+
|
|
80
|
+
if attn_mask is not None:
|
|
81
|
+
# attn_mask is (L, S) boolean where True = masked
|
|
82
|
+
# SDPA expects True = attend, so we invert
|
|
83
|
+
mask = ~attn_mask
|
|
84
|
+
else:
|
|
85
|
+
mask = None
|
|
86
|
+
|
|
87
|
+
attn = F.scaled_dot_product_attention( # pylint: disable=not-callable
|
|
88
|
+
q, k, v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0.0, scale=self.scale
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
attn = attn.transpose(1, 2).reshape(B, l_q, C)
|
|
92
|
+
x = self.proj(attn)
|
|
93
|
+
x = self.proj_drop(x)
|
|
94
|
+
|
|
95
|
+
return x
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
class MultiScaleDeformableAttention(nn.Module):
|
|
99
|
+
"""
|
|
100
|
+
Multi-Scale Deformable Attention with per-level point counts
|
|
101
|
+
"""
|
|
102
|
+
|
|
103
|
+
def __init__(
|
|
104
|
+
self,
|
|
105
|
+
d_model: int,
|
|
106
|
+
n_levels: int,
|
|
107
|
+
n_heads: int,
|
|
108
|
+
n_points: list[int],
|
|
109
|
+
method: Literal["default", "discrete"] = "default",
|
|
110
|
+
offset_scale: float = 0.5,
|
|
111
|
+
) -> None:
|
|
112
|
+
super().__init__()
|
|
113
|
+
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
|
|
114
|
+
assert len(n_points) == n_levels, f"n_points list length must equal n_levels ({n_levels})"
|
|
115
|
+
assert method in ("default", "discrete"), "method must be 'default' or 'discrete'"
|
|
116
|
+
|
|
117
|
+
dim_per_head = d_model // n_heads
|
|
118
|
+
if ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0) is False:
|
|
119
|
+
raise ValueError(
|
|
120
|
+
"Set d_model in MultiScaleDeformableAttention to make the dimension of each attention head a power of 2"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
self.im2col_step = 64
|
|
124
|
+
self.d_model = d_model
|
|
125
|
+
self.n_levels = n_levels
|
|
126
|
+
self.n_heads = n_heads
|
|
127
|
+
self.method = method
|
|
128
|
+
self.offset_scale = offset_scale
|
|
129
|
+
|
|
130
|
+
self.num_points = n_points
|
|
131
|
+
num_points_scale = [1.0 / n for n in self.num_points for _ in range(n)]
|
|
132
|
+
self.num_points_scale = nn.Buffer(torch.tensor(num_points_scale, dtype=torch.float32))
|
|
133
|
+
self.total_points = sum(self.num_points)
|
|
134
|
+
self.uniform_points = len(set(self.num_points)) == 1
|
|
135
|
+
|
|
136
|
+
self.msda = MSDA()
|
|
137
|
+
|
|
138
|
+
self.sampling_offsets = nn.Linear(d_model, n_heads * self.total_points * 2)
|
|
139
|
+
self.attention_weights = nn.Linear(d_model, n_heads * self.total_points)
|
|
140
|
+
self.value_proj = nn.Linear(d_model, d_model)
|
|
141
|
+
self.output_proj = nn.Linear(d_model, d_model)
|
|
142
|
+
|
|
143
|
+
self.reset_parameters()
|
|
144
|
+
|
|
145
|
+
if method == "discrete":
|
|
146
|
+
for param in self.sampling_offsets.parameters():
|
|
147
|
+
param.requires_grad_(False)
|
|
148
|
+
|
|
149
|
+
def reset_parameters(self) -> None:
|
|
150
|
+
nn.init.constant_(self.sampling_offsets.weight, 0.0)
|
|
151
|
+
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
|
152
|
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
153
|
+
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True)[0]
|
|
154
|
+
grid_init = grid_init.view(self.n_heads, 1, 2).repeat(1, self.total_points, 1)
|
|
155
|
+
scaling = torch.concat([torch.arange(1, n + 1, dtype=torch.float32) for n in self.num_points]).view(1, -1, 1)
|
|
156
|
+
grid_init = grid_init * scaling
|
|
157
|
+
|
|
158
|
+
with torch.no_grad():
|
|
159
|
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
|
160
|
+
|
|
161
|
+
nn.init.constant_(self.attention_weights.weight, 0.0)
|
|
162
|
+
nn.init.constant_(self.attention_weights.bias, 0.0)
|
|
163
|
+
nn.init.xavier_uniform_(self.value_proj.weight)
|
|
164
|
+
nn.init.constant_(self.value_proj.bias, 0.0)
|
|
165
|
+
nn.init.xavier_uniform_(self.output_proj.weight)
|
|
166
|
+
nn.init.constant_(self.output_proj.bias, 0.0)
|
|
167
|
+
|
|
168
|
+
def forward(
|
|
169
|
+
self,
|
|
170
|
+
query: torch.Tensor,
|
|
171
|
+
reference_points: torch.Tensor,
|
|
172
|
+
input_flatten: torch.Tensor,
|
|
173
|
+
input_spatial_shapes: torch.Tensor,
|
|
174
|
+
input_level_start_index: torch.Tensor,
|
|
175
|
+
input_padding_mask: Optional[torch.Tensor] = None,
|
|
176
|
+
) -> torch.Tensor:
|
|
177
|
+
N, num_queries, _ = query.size()
|
|
178
|
+
N, sequence_length, _ = input_flatten.size()
|
|
179
|
+
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == sequence_length
|
|
180
|
+
|
|
181
|
+
value = self.value_proj(input_flatten)
|
|
182
|
+
if input_padding_mask is not None:
|
|
183
|
+
value = value.masked_fill(input_padding_mask[..., None], float(0))
|
|
184
|
+
|
|
185
|
+
value = value.view(N, sequence_length, self.n_heads, self.d_model // self.n_heads)
|
|
186
|
+
|
|
187
|
+
sampling_offsets = self.sampling_offsets(query).view(N, num_queries, self.n_heads, self.total_points, 2)
|
|
188
|
+
attention_weights = self.attention_weights(query).view(N, num_queries, self.n_heads, self.total_points)
|
|
189
|
+
attention_weights = F.softmax(attention_weights, dim=-1)
|
|
190
|
+
|
|
191
|
+
if reference_points.shape[2] != self.n_levels:
|
|
192
|
+
if reference_points.shape[2] == 1:
|
|
193
|
+
reference_points = reference_points.expand(-1, -1, self.n_levels, -1)
|
|
194
|
+
else:
|
|
195
|
+
raise ValueError(
|
|
196
|
+
f"reference_points must have {self.n_levels} levels, but got {reference_points.shape[2]}"
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
if reference_points.shape[-1] == 2:
|
|
200
|
+
offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
|
|
201
|
+
sampling_locations_list = []
|
|
202
|
+
offset_idx = 0
|
|
203
|
+
for lvl in range(self.n_levels):
|
|
204
|
+
n_pts = self.num_points[lvl]
|
|
205
|
+
ref = reference_points[:, :, None, lvl : lvl + 1, :].expand(-1, -1, self.n_heads, n_pts, -1)
|
|
206
|
+
off = sampling_offsets[:, :, :, offset_idx : offset_idx + n_pts, :]
|
|
207
|
+
norm = offset_normalizer[lvl : lvl + 1].view(1, 1, 1, 1, 2)
|
|
208
|
+
sampling_locations_list.append(ref + off / norm)
|
|
209
|
+
offset_idx += n_pts
|
|
210
|
+
|
|
211
|
+
sampling_locations = torch.concat(sampling_locations_list, dim=3)
|
|
212
|
+
|
|
213
|
+
elif reference_points.shape[-1] == 4:
|
|
214
|
+
sampling_locations_list = []
|
|
215
|
+
offset_idx = 0
|
|
216
|
+
num_points_scale = self.num_points_scale.to(dtype=query.dtype)
|
|
217
|
+
for lvl in range(self.n_levels):
|
|
218
|
+
n_pts = self.num_points[lvl]
|
|
219
|
+
ref = reference_points[:, :, None, lvl : lvl + 1, :].expand(-1, -1, self.n_heads, n_pts, -1)
|
|
220
|
+
off = sampling_offsets[:, :, :, offset_idx : offset_idx + n_pts, :]
|
|
221
|
+
scale = num_points_scale[offset_idx : offset_idx + n_pts].view(1, 1, 1, n_pts, 1)
|
|
222
|
+
sampling_locations_list.append(ref[..., :2] + off * scale * ref[..., 2:] * self.offset_scale)
|
|
223
|
+
offset_idx += n_pts
|
|
224
|
+
|
|
225
|
+
sampling_locations = torch.concat(sampling_locations_list, dim=3)
|
|
226
|
+
|
|
227
|
+
else:
|
|
228
|
+
raise ValueError(
|
|
229
|
+
f"Last dim of reference_points must be 2 or 4, but get {reference_points.shape[-1]} instead"
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
if self.method == "discrete":
|
|
233
|
+
output = self._forward_fallback(
|
|
234
|
+
value, input_spatial_shapes, sampling_locations, attention_weights, method="discrete"
|
|
235
|
+
)
|
|
236
|
+
else:
|
|
237
|
+
if self.uniform_points is True:
|
|
238
|
+
n_pts = self.num_points[0]
|
|
239
|
+
sampling_locations = sampling_locations.view(N, num_queries, self.n_heads, self.n_levels, n_pts, 2)
|
|
240
|
+
attention_weights = attention_weights.view(N, num_queries, self.n_heads, self.n_levels, n_pts)
|
|
241
|
+
output = self.msda(
|
|
242
|
+
value,
|
|
243
|
+
input_spatial_shapes,
|
|
244
|
+
input_level_start_index,
|
|
245
|
+
sampling_locations,
|
|
246
|
+
attention_weights,
|
|
247
|
+
self.im2col_step,
|
|
248
|
+
)
|
|
249
|
+
else:
|
|
250
|
+
output = self._forward_fallback(
|
|
251
|
+
value, input_spatial_shapes, sampling_locations, attention_weights, method="default"
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
output = self.output_proj(output)
|
|
255
|
+
return output
|
|
256
|
+
|
|
257
|
+
def _forward_fallback(
|
|
258
|
+
self,
|
|
259
|
+
value: torch.Tensor,
|
|
260
|
+
spatial_shapes: torch.Tensor,
|
|
261
|
+
sampling_locations: torch.Tensor,
|
|
262
|
+
attention_weights: torch.Tensor,
|
|
263
|
+
method: str = "default",
|
|
264
|
+
) -> torch.Tensor:
|
|
265
|
+
B, _, n_heads, head_dim = value.size()
|
|
266
|
+
num_queries = sampling_locations.size(1)
|
|
267
|
+
|
|
268
|
+
sampling_grids = 2 * sampling_locations - 1
|
|
269
|
+
split_shape: list[int] = (spatial_shapes[:, 0] * spatial_shapes[:, 1]).tolist()
|
|
270
|
+
value_list = value.permute(0, 2, 3, 1).flatten(0, 1).split(split_shape, dim=-1)
|
|
271
|
+
sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
|
272
|
+
sampling_locations_list = sampling_grids.split(self.num_points, dim=-2)
|
|
273
|
+
|
|
274
|
+
sampling_value_list = []
|
|
275
|
+
spatial_shapes_list: list[list[int]] = spatial_shapes.tolist()
|
|
276
|
+
for level, (H, W) in enumerate(spatial_shapes_list):
|
|
277
|
+
value_l = value_list[level].reshape(B * n_heads, head_dim, H, W)
|
|
278
|
+
sampling_grid_l = sampling_locations_list[level]
|
|
279
|
+
|
|
280
|
+
if method == "default":
|
|
281
|
+
sampling_value_l = F.grid_sample(
|
|
282
|
+
value_l,
|
|
283
|
+
sampling_grid_l,
|
|
284
|
+
mode="bilinear",
|
|
285
|
+
padding_mode="zeros",
|
|
286
|
+
align_corners=False,
|
|
287
|
+
)
|
|
288
|
+
else:
|
|
289
|
+
sampling_grid_l = sampling_grid_l.clone()
|
|
290
|
+
sampling_grid_l[..., 0] += 1.0 / W
|
|
291
|
+
sampling_grid_l[..., 1] += 1.0 / H
|
|
292
|
+
sampling_value_l = F.grid_sample(
|
|
293
|
+
value_l,
|
|
294
|
+
sampling_grid_l,
|
|
295
|
+
mode="nearest",
|
|
296
|
+
padding_mode="border",
|
|
297
|
+
align_corners=False,
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
# Original upstream code (expected grid of [0, 1])
|
|
301
|
+
# e.g. without the 'sampling_grids = 2 * sampling_locations - 1'
|
|
302
|
+
#
|
|
303
|
+
# n_pts = self.num_points[level]
|
|
304
|
+
# sampling_coord = (sampling_grid_l * torch.tensor([[W, H]], device=value.device) + 0.5).to(torch.int64)
|
|
305
|
+
# sampling_coord[..., 0] = sampling_coord[..., 0].clamp(0, W - 1)
|
|
306
|
+
# sampling_coord[..., 1] = sampling_coord[..., 1].clamp(0, H - 1)
|
|
307
|
+
# sampling_coord = sampling_coord.reshape(B * n_heads, num_queries * n_pts, 2)
|
|
308
|
+
# s_idx = (
|
|
309
|
+
# torch.arange(sampling_coord.shape[0], device=value.device)
|
|
310
|
+
# .unsqueeze(-1)
|
|
311
|
+
# .repeat(1, sampling_coord.shape[1])
|
|
312
|
+
# )
|
|
313
|
+
# sampling_value_l = value_l[s_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]]
|
|
314
|
+
# ... = sampling_value_l.permute(0, 2, 1).reshape(B * n_heads, head_dim, num_queries, n_pts)
|
|
315
|
+
|
|
316
|
+
sampling_value_list.append(sampling_value_l)
|
|
317
|
+
|
|
318
|
+
attn_weights = attention_weights.permute(0, 2, 1, 3).reshape(B * n_heads, 1, num_queries, sum(self.num_points))
|
|
319
|
+
output = torch.concat(sampling_value_list, dim=-1) * attn_weights
|
|
320
|
+
output = output.sum(-1).reshape(B, n_heads * head_dim, num_queries)
|
|
321
|
+
|
|
322
|
+
return output.permute(0, 2, 1)
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
class TransformerDecoderLayer(nn.Module):
|
|
326
|
+
def __init__(
|
|
327
|
+
self,
|
|
328
|
+
d_model: int,
|
|
329
|
+
d_ffn: int,
|
|
330
|
+
dropout: float,
|
|
331
|
+
n_levels: int,
|
|
332
|
+
n_heads: int,
|
|
333
|
+
n_points: list[int],
|
|
334
|
+
method: Literal["default", "discrete"] = "default",
|
|
335
|
+
offset_scale: float = 0.5,
|
|
336
|
+
) -> None:
|
|
337
|
+
super().__init__()
|
|
338
|
+
|
|
339
|
+
# Self attention
|
|
340
|
+
self.self_attn = MultiheadAttention(d_model, n_heads, attn_drop=dropout)
|
|
341
|
+
self.norm1 = nn.LayerNorm(d_model)
|
|
342
|
+
|
|
343
|
+
# Cross attention
|
|
344
|
+
self.cross_attn = MultiScaleDeformableAttention(
|
|
345
|
+
d_model, n_levels, n_heads, n_points, method=method, offset_scale=offset_scale
|
|
346
|
+
)
|
|
347
|
+
self.norm2 = nn.LayerNorm(d_model)
|
|
348
|
+
|
|
349
|
+
# FFN
|
|
350
|
+
self.linear1 = nn.Linear(d_model, d_ffn)
|
|
351
|
+
self.linear2 = nn.Linear(d_ffn, d_model)
|
|
352
|
+
self.norm3 = nn.LayerNorm(d_model)
|
|
353
|
+
|
|
354
|
+
self.activation = nn.ReLU()
|
|
355
|
+
self.dropout = nn.Dropout(dropout)
|
|
356
|
+
|
|
357
|
+
def forward(
|
|
358
|
+
self,
|
|
359
|
+
tgt: torch.Tensor,
|
|
360
|
+
query_pos: torch.Tensor,
|
|
361
|
+
reference_points: torch.Tensor,
|
|
362
|
+
src: torch.Tensor,
|
|
363
|
+
src_spatial_shapes: torch.Tensor,
|
|
364
|
+
level_start_index: torch.Tensor,
|
|
365
|
+
src_padding_mask: Optional[torch.Tensor],
|
|
366
|
+
self_attn_mask: Optional[torch.Tensor] = None,
|
|
367
|
+
) -> torch.Tensor:
|
|
368
|
+
# Self attention
|
|
369
|
+
q = tgt + query_pos
|
|
370
|
+
k = tgt + query_pos
|
|
371
|
+
|
|
372
|
+
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)
|
|
373
|
+
tgt = tgt + self.dropout(tgt2)
|
|
374
|
+
tgt = self.norm1(tgt)
|
|
375
|
+
|
|
376
|
+
# Cross attention
|
|
377
|
+
tgt2 = self.cross_attn(
|
|
378
|
+
tgt + query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask
|
|
379
|
+
)
|
|
380
|
+
tgt = tgt + self.dropout(tgt2)
|
|
381
|
+
tgt = self.norm2(tgt)
|
|
382
|
+
|
|
383
|
+
# FFN
|
|
384
|
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
|
385
|
+
tgt = tgt + self.dropout(tgt2)
|
|
386
|
+
tgt = self.norm3(tgt)
|
|
387
|
+
|
|
388
|
+
return tgt
|
|
389
|
+
|
|
390
|
+
|
|
391
|
+
# pylint: disable=invalid-name
|
|
392
|
+
class RT_DETRDecoder(nn.Module):
|
|
393
|
+
"""
|
|
394
|
+
RT-DETR v2 Decoder with top-k query selection
|
|
395
|
+
"""
|
|
396
|
+
|
|
397
|
+
def __init__(
|
|
398
|
+
self,
|
|
399
|
+
hidden_dim: int,
|
|
400
|
+
num_classes: int,
|
|
401
|
+
num_queries: int,
|
|
402
|
+
num_decoder_layers: int,
|
|
403
|
+
num_levels: int,
|
|
404
|
+
num_heads: int,
|
|
405
|
+
dim_feedforward: int,
|
|
406
|
+
dropout: float,
|
|
407
|
+
num_decoder_points: list[int],
|
|
408
|
+
method: Literal["default", "discrete"] = "default",
|
|
409
|
+
offset_scale: float = 0.5,
|
|
410
|
+
) -> None:
|
|
411
|
+
super().__init__()
|
|
412
|
+
self.hidden_dim = hidden_dim
|
|
413
|
+
self.num_queries = num_queries
|
|
414
|
+
self.num_levels = num_levels
|
|
415
|
+
|
|
416
|
+
self.enc_output = nn.Sequential(
|
|
417
|
+
nn.Linear(hidden_dim, hidden_dim),
|
|
418
|
+
nn.LayerNorm(hidden_dim),
|
|
419
|
+
)
|
|
420
|
+
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
|
|
421
|
+
self.enc_bbox_head = MLP(hidden_dim, [hidden_dim, hidden_dim, 4], activation_layer=nn.ReLU)
|
|
422
|
+
|
|
423
|
+
decoder_layer = TransformerDecoderLayer(
|
|
424
|
+
hidden_dim,
|
|
425
|
+
dim_feedforward,
|
|
426
|
+
dropout,
|
|
427
|
+
num_levels,
|
|
428
|
+
num_heads,
|
|
429
|
+
num_decoder_points,
|
|
430
|
+
method=method,
|
|
431
|
+
offset_scale=offset_scale,
|
|
432
|
+
)
|
|
433
|
+
self.layers = _get_clones(decoder_layer, num_decoder_layers)
|
|
434
|
+
|
|
435
|
+
self.query_pos_head = MLP(4, [2 * hidden_dim, hidden_dim], activation_layer=nn.ReLU)
|
|
436
|
+
self.class_embed = nn.ModuleList([nn.Linear(hidden_dim, num_classes) for _ in range(num_decoder_layers)])
|
|
437
|
+
self.bbox_embed = nn.ModuleList(
|
|
438
|
+
[MLP(hidden_dim, [hidden_dim, hidden_dim, 4], activation_layer=nn.ReLU) for _ in range(num_decoder_layers)]
|
|
439
|
+
)
|
|
440
|
+
self.use_cache = True
|
|
441
|
+
self._anchor_cache: dict[str, tuple[torch.Tensor, torch.Tensor]] = {}
|
|
442
|
+
|
|
443
|
+
# Weights initialization
|
|
444
|
+
prior_prob = 0.01
|
|
445
|
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|
446
|
+
nn.init.xavier_uniform_(self.enc_output[0].weight)
|
|
447
|
+
nn.init.xavier_uniform_(self.enc_score_head.weight)
|
|
448
|
+
nn.init.constant_(self.enc_score_head.bias, bias_value)
|
|
449
|
+
nn.init.zeros_(self.enc_bbox_head[-2].weight)
|
|
450
|
+
nn.init.zeros_(self.enc_bbox_head[-2].bias)
|
|
451
|
+
for class_embed in self.class_embed:
|
|
452
|
+
nn.init.constant_(class_embed.bias, bias_value)
|
|
453
|
+
|
|
454
|
+
for bbox_embed in self.bbox_embed:
|
|
455
|
+
nn.init.zeros_(bbox_embed[-2].weight)
|
|
456
|
+
nn.init.zeros_(bbox_embed[-2].bias)
|
|
457
|
+
|
|
458
|
+
def set_cache_enabled(self, enabled: bool) -> None:
|
|
459
|
+
self.use_cache = enabled
|
|
460
|
+
if enabled is False:
|
|
461
|
+
self.clear_cache()
|
|
462
|
+
|
|
463
|
+
def clear_cache(self) -> None:
|
|
464
|
+
self._anchor_cache.clear()
|
|
465
|
+
|
|
466
|
+
def _generate_anchors(
|
|
467
|
+
self,
|
|
468
|
+
spatial_shapes: list[list[int]],
|
|
469
|
+
grid_size: float = 0.05,
|
|
470
|
+
device: torch.device = torch.device("cpu"),
|
|
471
|
+
dtype: torch.dtype = torch.float32,
|
|
472
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
473
|
+
cache_key: Optional[str] = None
|
|
474
|
+
use_cache = self.use_cache is True and torch.jit.is_tracing() is False and torch.jit.is_scripting() is False
|
|
475
|
+
if use_cache is True:
|
|
476
|
+
spatial_key = ",".join(f"{int(h)}x{int(w)}" for h, w in spatial_shapes)
|
|
477
|
+
cache_key = f"{spatial_key}_{grid_size}_{device}_{dtype}"
|
|
478
|
+
cached = self._anchor_cache.get(cache_key)
|
|
479
|
+
if cached is not None:
|
|
480
|
+
return cached
|
|
481
|
+
|
|
482
|
+
anchors = []
|
|
483
|
+
for lvl, (h, w) in enumerate(spatial_shapes):
|
|
484
|
+
grid_y, grid_x = torch.meshgrid(
|
|
485
|
+
torch.arange(h, dtype=dtype, device=device),
|
|
486
|
+
torch.arange(w, dtype=dtype, device=device),
|
|
487
|
+
indexing="ij",
|
|
488
|
+
)
|
|
489
|
+
grid_xy = torch.stack([grid_x, grid_y], dim=-1)
|
|
490
|
+
valid_wh = torch.tensor([w, h], dtype=dtype, device=device)
|
|
491
|
+
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_wh
|
|
492
|
+
wh = torch.ones_like(grid_xy) * grid_size * (2.0**lvl)
|
|
493
|
+
anchors.append(torch.concat([grid_xy, wh], dim=-1).reshape(-1, h * w, 4))
|
|
494
|
+
|
|
495
|
+
anchors = torch.concat(anchors, dim=1)
|
|
496
|
+
eps = 0.01
|
|
497
|
+
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(dim=-1, keepdim=True)
|
|
498
|
+
anchors = torch.log(anchors / (1 - anchors))
|
|
499
|
+
anchors = torch.where(valid_mask, anchors, torch.inf)
|
|
500
|
+
|
|
501
|
+
if cache_key is not None:
|
|
502
|
+
self._anchor_cache[cache_key] = (anchors, valid_mask)
|
|
503
|
+
|
|
504
|
+
return (anchors, valid_mask)
|
|
505
|
+
|
|
506
|
+
def _get_decoder_input(
|
|
507
|
+
self,
|
|
508
|
+
memory: torch.Tensor,
|
|
509
|
+
spatial_shapes: list[list[int]],
|
|
510
|
+
memory_padding_mask: Optional[torch.Tensor] = None,
|
|
511
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
512
|
+
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device, dtype=memory.dtype)
|
|
513
|
+
if memory_padding_mask is not None:
|
|
514
|
+
valid_mask = valid_mask & ~memory_padding_mask.unsqueeze(-1)
|
|
515
|
+
|
|
516
|
+
memory = valid_mask.to(memory.dtype) * memory
|
|
517
|
+
output_memory = self.enc_output(memory)
|
|
518
|
+
enc_outputs_class = self.enc_score_head(output_memory)
|
|
519
|
+
if memory_padding_mask is not None:
|
|
520
|
+
enc_outputs_class = enc_outputs_class.masked_fill(memory_padding_mask[..., None], float("-inf"))
|
|
521
|
+
|
|
522
|
+
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
|
|
523
|
+
|
|
524
|
+
# Select top-k queries based on classification confidence
|
|
525
|
+
_, topk_ind = torch.topk(enc_outputs_class.max(dim=-1).values, self.num_queries, dim=1)
|
|
526
|
+
|
|
527
|
+
# Gather reference points
|
|
528
|
+
reference_points_unact = enc_outputs_coord_unact.gather(
|
|
529
|
+
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_unact.shape[-1])
|
|
530
|
+
)
|
|
531
|
+
|
|
532
|
+
enc_topk_bboxes = reference_points_unact.sigmoid()
|
|
533
|
+
|
|
534
|
+
# Gather encoder logits for loss computation
|
|
535
|
+
enc_topk_logits = enc_outputs_class.gather(
|
|
536
|
+
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1])
|
|
537
|
+
)
|
|
538
|
+
|
|
539
|
+
# Extract region features
|
|
540
|
+
target = output_memory.gather(dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
|
|
541
|
+
target = target.detach()
|
|
542
|
+
|
|
543
|
+
return (target, reference_points_unact.detach(), enc_topk_bboxes, enc_topk_logits)
|
|
544
|
+
|
|
545
|
+
def forward( # pylint: disable=too-many-locals
|
|
546
|
+
self,
|
|
547
|
+
feats: list[torch.Tensor],
|
|
548
|
+
spatial_shapes: list[list[int]],
|
|
549
|
+
level_start_index: list[int],
|
|
550
|
+
denoising_class: Optional[torch.Tensor] = None,
|
|
551
|
+
denoising_bbox_unact: Optional[torch.Tensor] = None,
|
|
552
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
553
|
+
padding_mask: Optional[list[torch.Tensor]] = None,
|
|
554
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
555
|
+
memory = []
|
|
556
|
+
mask_flatten = []
|
|
557
|
+
for idx, feat in enumerate(feats):
|
|
558
|
+
feat_flat = feat.flatten(2).permute(0, 2, 1) # (B, H*W, C)
|
|
559
|
+
memory.append(feat_flat)
|
|
560
|
+
if padding_mask is not None:
|
|
561
|
+
mask_flatten.append(padding_mask[idx].flatten(1))
|
|
562
|
+
|
|
563
|
+
memory = torch.concat(memory, dim=1)
|
|
564
|
+
memory_padding_mask = torch.concat(mask_flatten, dim=1) if mask_flatten else None
|
|
565
|
+
|
|
566
|
+
# Get decoder input (query selection)
|
|
567
|
+
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = self._get_decoder_input(
|
|
568
|
+
memory, spatial_shapes, memory_padding_mask
|
|
569
|
+
)
|
|
570
|
+
|
|
571
|
+
# Concatenate denoising queries if provided
|
|
572
|
+
if denoising_class is not None and denoising_bbox_unact is not None:
|
|
573
|
+
target = torch.concat([denoising_class, target], dim=1)
|
|
574
|
+
init_ref_points_unact = torch.concat([denoising_bbox_unact, init_ref_points_unact], dim=1)
|
|
575
|
+
|
|
576
|
+
# Prepare spatial shapes and level start index as tensors
|
|
577
|
+
spatial_shapes_tensor = torch.tensor(spatial_shapes, dtype=torch.long, device=memory.device)
|
|
578
|
+
level_start_index_tensor = torch.tensor(level_start_index, dtype=torch.long, device=memory.device)
|
|
579
|
+
|
|
580
|
+
# Decoder forward
|
|
581
|
+
out_bboxes = []
|
|
582
|
+
out_logits = []
|
|
583
|
+
reference_points = init_ref_points_unact.sigmoid()
|
|
584
|
+
for decoder_layer, bbox_head, class_head in zip(self.layers, self.bbox_embed, self.class_embed):
|
|
585
|
+
query_pos = self.query_pos_head(reference_points)
|
|
586
|
+
reference_points_input = reference_points.unsqueeze(2).repeat(1, 1, len(spatial_shapes), 1)
|
|
587
|
+
target = decoder_layer(
|
|
588
|
+
target,
|
|
589
|
+
query_pos,
|
|
590
|
+
reference_points_input,
|
|
591
|
+
memory,
|
|
592
|
+
spatial_shapes_tensor,
|
|
593
|
+
level_start_index_tensor,
|
|
594
|
+
memory_padding_mask,
|
|
595
|
+
attn_mask,
|
|
596
|
+
)
|
|
597
|
+
|
|
598
|
+
bbox_delta = bbox_head(target)
|
|
599
|
+
new_reference_points = inverse_sigmoid(reference_points) + bbox_delta
|
|
600
|
+
new_reference_points = new_reference_points.sigmoid()
|
|
601
|
+
|
|
602
|
+
# Classification
|
|
603
|
+
class_logits = class_head(target)
|
|
604
|
+
|
|
605
|
+
out_bboxes.append(new_reference_points)
|
|
606
|
+
out_logits.append(class_logits)
|
|
607
|
+
|
|
608
|
+
# Update reference points for next layer
|
|
609
|
+
reference_points = new_reference_points.detach()
|
|
610
|
+
|
|
611
|
+
out_bboxes = torch.stack(out_bboxes)
|
|
612
|
+
out_logits = torch.stack(out_logits)
|
|
613
|
+
|
|
614
|
+
return (out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits)
|
|
615
|
+
|
|
616
|
+
|
|
617
|
+
# pylint: disable=invalid-name
|
|
618
|
+
class RT_DETR_v2(DetectionBaseNet):
|
|
619
|
+
default_size = (640, 640)
|
|
620
|
+
|
|
621
|
+
def __init__(
|
|
622
|
+
self,
|
|
623
|
+
num_classes: int,
|
|
624
|
+
backbone: DetectorBackbone,
|
|
625
|
+
*,
|
|
626
|
+
config: Optional[dict[str, Any]] = None,
|
|
627
|
+
size: Optional[tuple[int, int]] = None,
|
|
628
|
+
export_mode: bool = False,
|
|
629
|
+
) -> None:
|
|
630
|
+
super().__init__(num_classes, backbone, config=config, size=size, export_mode=export_mode)
|
|
631
|
+
assert self.config is not None, "must set config"
|
|
632
|
+
|
|
633
|
+
self.reparameterized = False
|
|
634
|
+
|
|
635
|
+
# Sigmoid based classification (no background class in predictions)
|
|
636
|
+
self.num_classes = self.num_classes - 1
|
|
637
|
+
|
|
638
|
+
hidden_dim = self.config.get("hidden_dim", 256)
|
|
639
|
+
num_heads = self.config.get("num_heads", 8)
|
|
640
|
+
dim_feedforward = self.config.get("dim_feedforward", 1024)
|
|
641
|
+
dropout: float = self.config.get("dropout", 0.0)
|
|
642
|
+
num_encoder_layers: int = self.config.get("num_encoder_layers", 1)
|
|
643
|
+
num_decoder_layers: int = self.config["num_decoder_layers"]
|
|
644
|
+
num_queries: int = self.config.get("num_queries", 300)
|
|
645
|
+
expansion: float = self.config.get("expansion", 1.0)
|
|
646
|
+
depth_multiplier: float = self.config.get("depth_multiplier", 1.0)
|
|
647
|
+
use_giou: bool = self.config.get("use_giou", True)
|
|
648
|
+
num_denoising: int = self.config.get("num_denoising", 100)
|
|
649
|
+
label_noise_ratio: float = self.config.get("label_noise_ratio", 0.5)
|
|
650
|
+
box_noise_scale: float = self.config.get("box_noise_scale", 1.0)
|
|
651
|
+
num_decoder_points: list[int] = self.config.get("num_decoder_points", [4, 4, 4])
|
|
652
|
+
method: Literal["default", "discrete"] = self.config.get("method", "default")
|
|
653
|
+
offset_scale: float = self.config.get("offset_scale", 0.5)
|
|
654
|
+
|
|
655
|
+
self.hidden_dim = hidden_dim
|
|
656
|
+
self.num_queries = num_queries
|
|
657
|
+
self.num_denoising = num_denoising
|
|
658
|
+
self.label_noise_ratio = label_noise_ratio
|
|
659
|
+
self.box_noise_scale = box_noise_scale
|
|
660
|
+
|
|
661
|
+
self.backbone.return_channels = self.backbone.return_channels[-3:]
|
|
662
|
+
self.backbone.return_stages = self.backbone.return_stages[-3:]
|
|
663
|
+
self.num_levels = len(self.backbone.return_channels)
|
|
664
|
+
|
|
665
|
+
self.encoder = HybridEncoder(
|
|
666
|
+
in_channels=self.backbone.return_channels,
|
|
667
|
+
hidden_dim=hidden_dim,
|
|
668
|
+
num_encoder_layers=num_encoder_layers,
|
|
669
|
+
dim_feedforward=dim_feedforward,
|
|
670
|
+
dropout=dropout,
|
|
671
|
+
num_heads=num_heads,
|
|
672
|
+
expansion=expansion,
|
|
673
|
+
depth_multiplier=depth_multiplier,
|
|
674
|
+
)
|
|
675
|
+
self.decoder = RT_DETRDecoder(
|
|
676
|
+
hidden_dim=hidden_dim,
|
|
677
|
+
num_classes=self.num_classes,
|
|
678
|
+
num_queries=num_queries,
|
|
679
|
+
num_decoder_layers=num_decoder_layers,
|
|
680
|
+
num_levels=self.num_levels,
|
|
681
|
+
num_heads=num_heads,
|
|
682
|
+
dim_feedforward=dim_feedforward,
|
|
683
|
+
dropout=dropout,
|
|
684
|
+
num_decoder_points=num_decoder_points,
|
|
685
|
+
method=method,
|
|
686
|
+
offset_scale=offset_scale,
|
|
687
|
+
)
|
|
688
|
+
|
|
689
|
+
self.matcher = HungarianMatcher(cost_class=2.0, cost_bbox=5.0, cost_giou=2.0, use_giou=use_giou)
|
|
690
|
+
|
|
691
|
+
# Denoising class embedding for Contrastive denoising (CDN) training
|
|
692
|
+
if self.num_denoising > 0:
|
|
693
|
+
self.denoising_class_embed = nn.Embedding(self.num_classes + 1, hidden_dim, padding_idx=self.num_classes)
|
|
694
|
+
|
|
695
|
+
if self.export_mode is False:
|
|
696
|
+
self.forward = torch.compiler.disable(recursive=False)(self.forward) # type: ignore[method-assign]
|
|
697
|
+
|
|
698
|
+
def _set_cache_enabled(self, enabled: bool) -> None:
|
|
699
|
+
self.encoder.set_cache_enabled(enabled)
|
|
700
|
+
self.decoder.set_cache_enabled(enabled)
|
|
701
|
+
|
|
702
|
+
def clear_cache(self) -> None:
|
|
703
|
+
self.encoder.clear_cache()
|
|
704
|
+
self.decoder.clear_cache()
|
|
705
|
+
|
|
706
|
+
def adjust_size(self, new_size: tuple[int, int]) -> None:
|
|
707
|
+
if new_size == self.size:
|
|
708
|
+
return
|
|
709
|
+
|
|
710
|
+
super().adjust_size(new_size)
|
|
711
|
+
self.clear_cache()
|
|
712
|
+
|
|
713
|
+
def set_dynamic_size(self, dynamic_size: bool = True) -> None:
|
|
714
|
+
super().set_dynamic_size(dynamic_size)
|
|
715
|
+
self._set_cache_enabled(dynamic_size is False)
|
|
716
|
+
|
|
717
|
+
def reset_classifier(self, num_classes: int) -> None:
|
|
718
|
+
self.num_classes = num_classes
|
|
719
|
+
|
|
720
|
+
self.decoder.enc_score_head = nn.Linear(self.hidden_dim, num_classes)
|
|
721
|
+
self.decoder.class_embed = nn.ModuleList(
|
|
722
|
+
[nn.Linear(self.hidden_dim, num_classes) for _ in range(len(self.decoder.layers))]
|
|
723
|
+
)
|
|
724
|
+
|
|
725
|
+
if self.num_denoising > 0:
|
|
726
|
+
self.denoising_class_embed = nn.Embedding(num_classes + 1, self.hidden_dim, padding_idx=num_classes)
|
|
727
|
+
|
|
728
|
+
prior_prob = 0.01
|
|
729
|
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|
730
|
+
nn.init.constant_(self.decoder.enc_score_head.bias, bias_value)
|
|
731
|
+
for class_embed in self.decoder.class_embed:
|
|
732
|
+
nn.init.constant_(class_embed.bias, bias_value)
|
|
733
|
+
|
|
734
|
+
def freeze(self, freeze_classifier: bool = True) -> None:
|
|
735
|
+
for param in self.parameters():
|
|
736
|
+
param.requires_grad_(False)
|
|
737
|
+
|
|
738
|
+
if freeze_classifier is False:
|
|
739
|
+
for param in self.decoder.class_embed.parameters():
|
|
740
|
+
param.requires_grad_(True)
|
|
741
|
+
for param in self.decoder.enc_score_head.parameters():
|
|
742
|
+
param.requires_grad_(True)
|
|
743
|
+
if self.num_denoising > 0:
|
|
744
|
+
for param in self.denoising_class_embed.parameters():
|
|
745
|
+
param.requires_grad_(True)
|
|
746
|
+
|
|
747
|
+
def _get_src_permutation_idx(self, indices: list[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor]:
|
|
748
|
+
batch_idx = torch.concat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
|
749
|
+
src_idx = torch.concat([src for (src, _) in indices])
|
|
750
|
+
return (batch_idx, src_idx)
|
|
751
|
+
|
|
752
|
+
def _class_loss(
|
|
753
|
+
self,
|
|
754
|
+
cls_logits: torch.Tensor,
|
|
755
|
+
box_output: torch.Tensor,
|
|
756
|
+
targets: list[dict[str, torch.Tensor]],
|
|
757
|
+
indices: list[torch.Tensor],
|
|
758
|
+
num_boxes: float,
|
|
759
|
+
) -> torch.Tensor:
|
|
760
|
+
idx = self._get_src_permutation_idx(indices)
|
|
761
|
+
target_classes_o = torch.concat([t["labels"][J] for t, (_, J) in zip(targets, indices)], dim=0)
|
|
762
|
+
target_classes = torch.full(cls_logits.shape[:2], self.num_classes, dtype=torch.int64, device=cls_logits.device)
|
|
763
|
+
target_classes[idx] = target_classes_o
|
|
764
|
+
|
|
765
|
+
target_classes_onehot = torch.zeros(
|
|
766
|
+
[cls_logits.shape[0], cls_logits.shape[1], cls_logits.shape[2] + 1],
|
|
767
|
+
dtype=cls_logits.dtype,
|
|
768
|
+
layout=cls_logits.layout,
|
|
769
|
+
device=cls_logits.device,
|
|
770
|
+
)
|
|
771
|
+
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
|
|
772
|
+
target_classes_onehot = target_classes_onehot[:, :, :-1]
|
|
773
|
+
|
|
774
|
+
src_boxes = box_output[idx]
|
|
775
|
+
target_boxes = torch.concat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
|
776
|
+
ious = torch.diag(
|
|
777
|
+
box_ops.box_iou(
|
|
778
|
+
box_ops.box_convert(src_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
779
|
+
box_ops.box_convert(target_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
780
|
+
)
|
|
781
|
+
).detach()
|
|
782
|
+
|
|
783
|
+
target_score_o = torch.zeros(cls_logits.shape[:2], dtype=cls_logits.dtype, device=cls_logits.device)
|
|
784
|
+
target_score_o[idx] = ious.to(cls_logits.dtype)
|
|
785
|
+
target_score = target_score_o.unsqueeze(-1) * target_classes_onehot
|
|
786
|
+
|
|
787
|
+
loss = varifocal_loss(cls_logits, target_score, target_classes_onehot, alpha=0.75, gamma=2.0)
|
|
788
|
+
loss_ce = (loss.mean(1).sum() / num_boxes) * cls_logits.shape[1]
|
|
789
|
+
|
|
790
|
+
return loss_ce
|
|
791
|
+
|
|
792
|
+
def _box_loss(
|
|
793
|
+
self,
|
|
794
|
+
box_output: torch.Tensor,
|
|
795
|
+
targets: list[dict[str, torch.Tensor]],
|
|
796
|
+
indices: list[torch.Tensor],
|
|
797
|
+
num_boxes: float,
|
|
798
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
799
|
+
idx = self._get_src_permutation_idx(indices)
|
|
800
|
+
src_boxes = box_output[idx]
|
|
801
|
+
target_boxes = torch.concat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
|
802
|
+
|
|
803
|
+
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")
|
|
804
|
+
loss_bbox = loss_bbox.sum() / num_boxes
|
|
805
|
+
|
|
806
|
+
loss_giou = 1 - torch.diag(
|
|
807
|
+
box_ops.generalized_box_iou(
|
|
808
|
+
box_ops.box_convert(src_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
809
|
+
box_ops.box_convert(target_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
|
|
810
|
+
)
|
|
811
|
+
)
|
|
812
|
+
loss_giou = loss_giou.sum() / num_boxes
|
|
813
|
+
|
|
814
|
+
return (loss_bbox, loss_giou)
|
|
815
|
+
|
|
816
|
+
def _compute_denoising_loss(
|
|
817
|
+
self,
|
|
818
|
+
dn_out_bboxes: torch.Tensor,
|
|
819
|
+
dn_out_logits: torch.Tensor,
|
|
820
|
+
targets: list[dict[str, torch.Tensor]],
|
|
821
|
+
dn_meta: dict[str, Any],
|
|
822
|
+
num_boxes: float,
|
|
823
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
824
|
+
dn_positive_idx = dn_meta["dn_positive_idx"]
|
|
825
|
+
num_groups = dn_meta["dn_num_group"]
|
|
826
|
+
|
|
827
|
+
loss_ce_list = []
|
|
828
|
+
loss_bbox_list = []
|
|
829
|
+
loss_giou_list = []
|
|
830
|
+
|
|
831
|
+
dn_num_boxes = max(num_boxes * num_groups, 1.0)
|
|
832
|
+
for layer_idx in range(dn_out_logits.shape[0]):
|
|
833
|
+
# Construct indices from denoising metadata
|
|
834
|
+
indices = []
|
|
835
|
+
for batch_idx, pos_idx in enumerate(dn_positive_idx):
|
|
836
|
+
if len(pos_idx) > 0:
|
|
837
|
+
src_idx = pos_idx
|
|
838
|
+
num_gt = len(targets[batch_idx]["labels"])
|
|
839
|
+
tgt_idx = torch.arange(num_gt, device=pos_idx.device).repeat(num_groups)
|
|
840
|
+
indices.append((src_idx, tgt_idx))
|
|
841
|
+
else:
|
|
842
|
+
indices.append(
|
|
843
|
+
(
|
|
844
|
+
torch.tensor([], dtype=torch.long, device=dn_out_logits.device),
|
|
845
|
+
torch.tensor([], dtype=torch.long, device=dn_out_logits.device),
|
|
846
|
+
)
|
|
847
|
+
)
|
|
848
|
+
|
|
849
|
+
loss_ce = self._class_loss(
|
|
850
|
+
dn_out_logits[layer_idx], dn_out_bboxes[layer_idx], targets, indices, dn_num_boxes
|
|
851
|
+
)
|
|
852
|
+
loss_bbox, loss_giou = self._box_loss(dn_out_bboxes[layer_idx], targets, indices, dn_num_boxes)
|
|
853
|
+
|
|
854
|
+
loss_ce_list.append(loss_ce)
|
|
855
|
+
loss_bbox_list.append(loss_bbox)
|
|
856
|
+
loss_giou_list.append(loss_giou)
|
|
857
|
+
|
|
858
|
+
loss_ce_dn = torch.stack(loss_ce_list).sum()
|
|
859
|
+
loss_bbox_dn = torch.stack(loss_bbox_list).sum()
|
|
860
|
+
loss_giou_dn = torch.stack(loss_giou_list).sum()
|
|
861
|
+
|
|
862
|
+
return (loss_ce_dn, loss_bbox_dn, loss_giou_dn)
|
|
863
|
+
|
|
864
|
+
@torch.jit.unused # type: ignore[untyped-decorator]
|
|
865
|
+
@torch.compiler.disable() # type: ignore[untyped-decorator]
|
|
866
|
+
def _compute_loss_from_outputs( # pylint: disable=too-many-locals
|
|
867
|
+
self,
|
|
868
|
+
targets: list[dict[str, torch.Tensor]],
|
|
869
|
+
out_bboxes: torch.Tensor,
|
|
870
|
+
out_logits: torch.Tensor,
|
|
871
|
+
enc_topk_bboxes: torch.Tensor,
|
|
872
|
+
enc_topk_logits: torch.Tensor,
|
|
873
|
+
dn_out_bboxes: Optional[torch.Tensor] = None,
|
|
874
|
+
dn_out_logits: Optional[torch.Tensor] = None,
|
|
875
|
+
dn_meta: Optional[dict[str, Any]] = None,
|
|
876
|
+
) -> dict[str, torch.Tensor]:
|
|
877
|
+
# Compute the average number of target boxes across all nodes
|
|
878
|
+
num_boxes = sum(len(t["labels"]) for t in targets)
|
|
879
|
+
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=out_logits.device)
|
|
880
|
+
if training_utils.is_dist_available_and_initialized() is True:
|
|
881
|
+
torch.distributed.all_reduce(num_boxes)
|
|
882
|
+
|
|
883
|
+
num_boxes = torch.clamp(num_boxes / training_utils.get_world_size(), min=1).item()
|
|
884
|
+
|
|
885
|
+
loss_ce_list = []
|
|
886
|
+
loss_bbox_list = []
|
|
887
|
+
loss_giou_list = []
|
|
888
|
+
|
|
889
|
+
# Decoder losses (all layers)
|
|
890
|
+
for layer_idx in range(out_logits.shape[0]):
|
|
891
|
+
indices = self.matcher(out_logits[layer_idx], out_bboxes[layer_idx], targets)
|
|
892
|
+
loss_ce = self._class_loss(out_logits[layer_idx], out_bboxes[layer_idx], targets, indices, num_boxes)
|
|
893
|
+
loss_bbox, loss_giou = self._box_loss(out_bboxes[layer_idx], targets, indices, num_boxes)
|
|
894
|
+
loss_ce_list.append(loss_ce)
|
|
895
|
+
loss_bbox_list.append(loss_bbox)
|
|
896
|
+
loss_giou_list.append(loss_giou)
|
|
897
|
+
|
|
898
|
+
# Encoder auxiliary loss
|
|
899
|
+
enc_indices = self.matcher(enc_topk_logits, enc_topk_bboxes, targets)
|
|
900
|
+
loss_ce_enc = self._class_loss(enc_topk_logits, enc_topk_bboxes, targets, enc_indices, num_boxes)
|
|
901
|
+
loss_bbox_enc, loss_giou_enc = self._box_loss(enc_topk_bboxes, targets, enc_indices, num_boxes)
|
|
902
|
+
loss_ce_list.append(loss_ce_enc)
|
|
903
|
+
loss_bbox_list.append(loss_bbox_enc)
|
|
904
|
+
loss_giou_list.append(loss_giou_enc)
|
|
905
|
+
|
|
906
|
+
loss_ce = torch.stack(loss_ce_list).sum() # VFL weight is 1
|
|
907
|
+
loss_bbox = torch.stack(loss_bbox_list).sum() * 5
|
|
908
|
+
loss_giou = torch.stack(loss_giou_list).sum() * 2
|
|
909
|
+
|
|
910
|
+
# Add denoising loss if available
|
|
911
|
+
if dn_out_bboxes is not None and dn_out_logits is not None and dn_meta is not None:
|
|
912
|
+
loss_ce_dn, loss_bbox_dn, loss_giou_dn = self._compute_denoising_loss(
|
|
913
|
+
dn_out_bboxes, dn_out_logits, targets, dn_meta, num_boxes
|
|
914
|
+
)
|
|
915
|
+
loss_ce = loss_ce + loss_ce_dn
|
|
916
|
+
loss_bbox = loss_bbox + loss_bbox_dn * 5
|
|
917
|
+
loss_giou = loss_giou + loss_giou_dn * 2
|
|
918
|
+
|
|
919
|
+
losses = {
|
|
920
|
+
"labels": loss_ce,
|
|
921
|
+
"boxes": loss_bbox,
|
|
922
|
+
"giou": loss_giou,
|
|
923
|
+
}
|
|
924
|
+
|
|
925
|
+
return losses
|
|
926
|
+
|
|
927
|
+
@torch.jit.unused # type: ignore[untyped-decorator]
|
|
928
|
+
@torch.compiler.disable() # type: ignore[untyped-decorator]
|
|
929
|
+
def compute_loss(
|
|
930
|
+
self,
|
|
931
|
+
encoder_features: list[torch.Tensor],
|
|
932
|
+
spatial_shapes: list[list[int]],
|
|
933
|
+
level_start_index: list[int],
|
|
934
|
+
targets: list[dict[str, torch.Tensor]],
|
|
935
|
+
images: Any,
|
|
936
|
+
masks: Optional[list[torch.Tensor]] = None,
|
|
937
|
+
) -> dict[str, torch.Tensor]:
|
|
938
|
+
device = encoder_features[0].device
|
|
939
|
+
for idx, target in enumerate(targets):
|
|
940
|
+
boxes = target["boxes"]
|
|
941
|
+
boxes = box_ops.box_convert(boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
|
942
|
+
boxes = boxes / torch.tensor(images.image_sizes[idx][::-1] * 2, dtype=torch.float32, device=device)
|
|
943
|
+
targets[idx]["boxes"] = boxes
|
|
944
|
+
targets[idx]["labels"] = target["labels"] - 1 # No background
|
|
945
|
+
|
|
946
|
+
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = self._prepare_cdn_queries(targets)
|
|
947
|
+
|
|
948
|
+
out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits = self.decoder(
|
|
949
|
+
encoder_features,
|
|
950
|
+
spatial_shapes,
|
|
951
|
+
level_start_index,
|
|
952
|
+
denoising_class,
|
|
953
|
+
denoising_bbox_unact,
|
|
954
|
+
attn_mask,
|
|
955
|
+
masks,
|
|
956
|
+
)
|
|
957
|
+
|
|
958
|
+
if dn_meta is not None:
|
|
959
|
+
dn_num_split, _num_queries = dn_meta["dn_num_split"]
|
|
960
|
+
dn_out_bboxes = out_bboxes[:, :, :dn_num_split]
|
|
961
|
+
dn_out_logits = out_logits[:, :, :dn_num_split]
|
|
962
|
+
out_bboxes = out_bboxes[:, :, dn_num_split:]
|
|
963
|
+
out_logits = out_logits[:, :, dn_num_split:]
|
|
964
|
+
else:
|
|
965
|
+
dn_out_bboxes = None
|
|
966
|
+
dn_out_logits = None
|
|
967
|
+
|
|
968
|
+
losses: dict[str, torch.Tensor] = self._compute_loss_from_outputs(
|
|
969
|
+
targets, out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits, dn_out_bboxes, dn_out_logits, dn_meta
|
|
970
|
+
)
|
|
971
|
+
|
|
972
|
+
return losses
|
|
973
|
+
|
|
974
|
+
def postprocess_detections(
|
|
975
|
+
self, class_logits: torch.Tensor, box_regression: torch.Tensor, image_shapes: list[tuple[int, int]]
|
|
976
|
+
) -> list[dict[str, torch.Tensor]]:
|
|
977
|
+
prob = class_logits.sigmoid()
|
|
978
|
+
topk_values, topk_indexes = torch.topk(prob.view(class_logits.shape[0], -1), k=self.decoder.num_queries, dim=1)
|
|
979
|
+
scores = topk_values
|
|
980
|
+
topk_boxes = topk_indexes // class_logits.shape[2]
|
|
981
|
+
labels = topk_indexes % class_logits.shape[2]
|
|
982
|
+
labels += 1 # Background offset
|
|
983
|
+
|
|
984
|
+
target_sizes = torch.tensor(image_shapes, device=class_logits.device)
|
|
985
|
+
|
|
986
|
+
# Convert to [x0, y0, x1, y1] format
|
|
987
|
+
boxes = box_ops.box_convert(box_regression, in_fmt="cxcywh", out_fmt="xyxy")
|
|
988
|
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
|
989
|
+
|
|
990
|
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
|
991
|
+
img_h, img_w = target_sizes.unbind(1)
|
|
992
|
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
|
993
|
+
boxes = boxes * scale_fct[:, None, :]
|
|
994
|
+
|
|
995
|
+
detections: list[dict[str, torch.Tensor]] = []
|
|
996
|
+
for s, l, b in zip(scores, labels, boxes):
|
|
997
|
+
detections.append(
|
|
998
|
+
{
|
|
999
|
+
"boxes": b,
|
|
1000
|
+
"scores": s,
|
|
1001
|
+
"labels": l,
|
|
1002
|
+
}
|
|
1003
|
+
)
|
|
1004
|
+
|
|
1005
|
+
return detections
|
|
1006
|
+
|
|
1007
|
+
@torch.jit.unused # type: ignore[untyped-decorator]
|
|
1008
|
+
def _prepare_cdn_queries(
|
|
1009
|
+
self, targets: list[dict[str, torch.Tensor]]
|
|
1010
|
+
) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor], Optional[dict[str, Any]]]:
|
|
1011
|
+
if self.num_denoising > 0:
|
|
1012
|
+
result: tuple[
|
|
1013
|
+
Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor], Optional[dict[str, Any]]
|
|
1014
|
+
] = get_contrastive_denoising_training_group(
|
|
1015
|
+
targets,
|
|
1016
|
+
self.num_classes,
|
|
1017
|
+
self.num_queries,
|
|
1018
|
+
self.denoising_class_embed,
|
|
1019
|
+
num_denoising_queries=self.num_denoising,
|
|
1020
|
+
label_noise_ratio=self.label_noise_ratio,
|
|
1021
|
+
box_noise_scale=self.box_noise_scale,
|
|
1022
|
+
)
|
|
1023
|
+
return result
|
|
1024
|
+
|
|
1025
|
+
return (None, None, None, None)
|
|
1026
|
+
|
|
1027
|
+
def forward(
|
|
1028
|
+
self,
|
|
1029
|
+
x: torch.Tensor,
|
|
1030
|
+
targets: Optional[list[dict[str, torch.Tensor]]] = None,
|
|
1031
|
+
masks: Optional[torch.Tensor] = None,
|
|
1032
|
+
image_sizes: Optional[list[list[int]]] = None,
|
|
1033
|
+
) -> tuple[list[dict[str, torch.Tensor]], dict[str, torch.Tensor]]:
|
|
1034
|
+
self._input_check(targets)
|
|
1035
|
+
images = self._to_img_list(x, image_sizes)
|
|
1036
|
+
|
|
1037
|
+
# Backbone features
|
|
1038
|
+
features: dict[str, torch.Tensor] = self.backbone.detection_features(x)
|
|
1039
|
+
feature_list = list(features.values())
|
|
1040
|
+
|
|
1041
|
+
# Hybrid encoder
|
|
1042
|
+
mask_list: list[torch.Tensor] = []
|
|
1043
|
+
for feat in feature_list:
|
|
1044
|
+
if masks is not None:
|
|
1045
|
+
mask_size = feat.shape[-2:]
|
|
1046
|
+
m = F.interpolate(masks[None].float(), size=mask_size, mode="nearest").to(torch.bool)[0]
|
|
1047
|
+
else:
|
|
1048
|
+
B, _, H, W = feat.size()
|
|
1049
|
+
m = torch.zeros(B, H, W, dtype=torch.bool, device=x.device)
|
|
1050
|
+
mask_list.append(m)
|
|
1051
|
+
|
|
1052
|
+
encoder_features = self.encoder(feature_list, masks=mask_list)
|
|
1053
|
+
|
|
1054
|
+
# Prepare spatial shapes and level start index
|
|
1055
|
+
spatial_shapes: list[list[int]] = []
|
|
1056
|
+
level_start_index: list[int] = [0]
|
|
1057
|
+
for feat in encoder_features:
|
|
1058
|
+
H = feat.shape[2]
|
|
1059
|
+
W = feat.shape[3]
|
|
1060
|
+
spatial_shapes.append([H, W])
|
|
1061
|
+
level_start_index.append(H * W + level_start_index[-1])
|
|
1062
|
+
|
|
1063
|
+
level_start_index.pop()
|
|
1064
|
+
|
|
1065
|
+
detections: list[dict[str, torch.Tensor]] = []
|
|
1066
|
+
losses: dict[str, torch.Tensor] = {}
|
|
1067
|
+
if self.training is True:
|
|
1068
|
+
assert targets is not None, "targets should not be None when in training mode"
|
|
1069
|
+
losses = self.compute_loss(encoder_features, spatial_shapes, level_start_index, targets, images, mask_list)
|
|
1070
|
+
else:
|
|
1071
|
+
# Inference path - no CDN
|
|
1072
|
+
out_bboxes, out_logits, _, _ = self.decoder(
|
|
1073
|
+
encoder_features, spatial_shapes, level_start_index, padding_mask=mask_list
|
|
1074
|
+
)
|
|
1075
|
+
detections = self.postprocess_detections(out_logits[-1], out_bboxes[-1], images.image_sizes)
|
|
1076
|
+
|
|
1077
|
+
return (detections, losses)
|
|
1078
|
+
|
|
1079
|
+
@torch.no_grad() # type: ignore[untyped-decorator]
|
|
1080
|
+
def reparameterize_model(self) -> None:
|
|
1081
|
+
if self.reparameterized is True:
|
|
1082
|
+
return
|
|
1083
|
+
|
|
1084
|
+
for module in self.modules():
|
|
1085
|
+
if hasattr(module, "reparameterize") is True:
|
|
1086
|
+
module.reparameterize()
|
|
1087
|
+
|
|
1088
|
+
self.reparameterized = True
|
|
1089
|
+
|
|
1090
|
+
|
|
1091
|
+
registry.register_model_config(
|
|
1092
|
+
"rt_detr_v2_s",
|
|
1093
|
+
RT_DETR_v2,
|
|
1094
|
+
config={
|
|
1095
|
+
"num_decoder_layers": 3,
|
|
1096
|
+
"expansion": 0.5,
|
|
1097
|
+
},
|
|
1098
|
+
)
|
|
1099
|
+
registry.register_model_config(
|
|
1100
|
+
"rt_detr_v2_s_dsp",
|
|
1101
|
+
RT_DETR_v2,
|
|
1102
|
+
config={
|
|
1103
|
+
"num_decoder_layers": 3,
|
|
1104
|
+
"expansion": 0.5,
|
|
1105
|
+
"method": "discrete",
|
|
1106
|
+
},
|
|
1107
|
+
)
|
|
1108
|
+
registry.register_model_config(
|
|
1109
|
+
"rt_detr_v2",
|
|
1110
|
+
RT_DETR_v2,
|
|
1111
|
+
config={
|
|
1112
|
+
"num_decoder_layers": 6,
|
|
1113
|
+
},
|
|
1114
|
+
)
|
|
1115
|
+
registry.register_model_config(
|
|
1116
|
+
"rt_detr_v2_dsp",
|
|
1117
|
+
RT_DETR_v2,
|
|
1118
|
+
config={
|
|
1119
|
+
"num_decoder_layers": 6,
|
|
1120
|
+
"method": "discrete",
|
|
1121
|
+
},
|
|
1122
|
+
)
|
|
1123
|
+
registry.register_model_config(
|
|
1124
|
+
"rt_detr_v2_l",
|
|
1125
|
+
RT_DETR_v2,
|
|
1126
|
+
config={
|
|
1127
|
+
"num_decoder_layers": 6,
|
|
1128
|
+
"expansion": 1.0,
|
|
1129
|
+
"depth_multiplier": 1.0,
|
|
1130
|
+
"num_heads": 12, # Deviates from upstream to keep head_dim=32 (power of 2) for MSDA kernel
|
|
1131
|
+
"hidden_dim": 384,
|
|
1132
|
+
"dim_feedforward": 2048,
|
|
1133
|
+
},
|
|
1134
|
+
)
|
|
1135
|
+
registry.register_model_config(
|
|
1136
|
+
"rt_detr_v2_l_dsp",
|
|
1137
|
+
RT_DETR_v2,
|
|
1138
|
+
config={
|
|
1139
|
+
"num_decoder_layers": 6,
|
|
1140
|
+
"expansion": 1.0,
|
|
1141
|
+
"depth_multiplier": 1.0,
|
|
1142
|
+
"num_heads": 12, # Deviates from upstream to keep head_dim=32 (power of 2) for MSDA kernel
|
|
1143
|
+
"hidden_dim": 384,
|
|
1144
|
+
"dim_feedforward": 2048,
|
|
1145
|
+
"method": "discrete",
|
|
1146
|
+
},
|
|
1147
|
+
)
|