birder 0.3.2__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- birder/common/fs_ops.py +2 -2
- birder/introspection/attention_rollout.py +1 -1
- birder/introspection/transformer_attribution.py +1 -1
- birder/layers/layer_scale.py +1 -1
- birder/net/__init__.py +2 -10
- birder/net/_rope_vit_configs.py +430 -0
- birder/net/_vit_configs.py +479 -0
- birder/net/biformer.py +1 -0
- birder/net/cait.py +5 -5
- birder/net/coat.py +12 -12
- birder/net/conv2former.py +3 -3
- birder/net/convmixer.py +1 -1
- birder/net/convnext_v1.py +1 -1
- birder/net/crossvit.py +5 -5
- birder/net/davit.py +1 -1
- birder/net/deit.py +12 -26
- birder/net/deit3.py +42 -189
- birder/net/densenet.py +9 -8
- birder/net/detection/deformable_detr.py +5 -2
- birder/net/detection/detr.py +5 -2
- birder/net/detection/efficientdet.py +1 -1
- birder/net/dpn.py +1 -2
- birder/net/edgenext.py +2 -1
- birder/net/edgevit.py +3 -0
- birder/net/efficientformer_v1.py +2 -1
- birder/net/efficientformer_v2.py +18 -31
- birder/net/efficientnet_v2.py +3 -0
- birder/net/efficientvit_mit.py +5 -5
- birder/net/fasternet.py +2 -2
- birder/net/flexivit.py +22 -43
- birder/net/groupmixformer.py +1 -1
- birder/net/hgnet_v1.py +5 -5
- birder/net/hiera.py +3 -3
- birder/net/hieradet.py +116 -28
- birder/net/inception_next.py +1 -1
- birder/net/inception_resnet_v1.py +3 -3
- birder/net/inception_resnet_v2.py +7 -4
- birder/net/inception_v3.py +3 -0
- birder/net/inception_v4.py +3 -0
- birder/net/maxvit.py +1 -1
- birder/net/metaformer.py +3 -3
- birder/net/mim/crossmae.py +1 -1
- birder/net/mim/mae_vit.py +1 -1
- birder/net/mim/simmim.py +1 -1
- birder/net/mobilenet_v1.py +0 -9
- birder/net/mobilenet_v2.py +38 -44
- birder/net/{mobilenet_v3_large.py → mobilenet_v3.py} +37 -10
- birder/net/mobilevit_v1.py +5 -32
- birder/net/mobilevit_v2.py +1 -45
- birder/net/moganet.py +8 -5
- birder/net/mvit_v2.py +6 -6
- birder/net/nfnet.py +4 -0
- birder/net/pit.py +1 -1
- birder/net/pvt_v1.py +5 -5
- birder/net/pvt_v2.py +5 -5
- birder/net/repghost.py +1 -30
- birder/net/resmlp.py +2 -2
- birder/net/resnest.py +3 -0
- birder/net/resnet_v1.py +125 -1
- birder/net/resnet_v2.py +75 -1
- birder/net/resnext.py +35 -1
- birder/net/rope_deit3.py +33 -136
- birder/net/rope_flexivit.py +18 -18
- birder/net/rope_vit.py +3 -735
- birder/net/simple_vit.py +22 -16
- birder/net/smt.py +1 -1
- birder/net/squeezenet.py +5 -12
- birder/net/squeezenext.py +0 -24
- birder/net/ssl/capi.py +1 -1
- birder/net/ssl/data2vec.py +1 -1
- birder/net/ssl/dino_v2.py +2 -2
- birder/net/ssl/franca.py +2 -2
- birder/net/ssl/i_jepa.py +1 -1
- birder/net/ssl/ibot.py +1 -1
- birder/net/swiftformer.py +12 -2
- birder/net/swin_transformer_v2.py +1 -1
- birder/net/tiny_vit.py +3 -16
- birder/net/van.py +2 -2
- birder/net/vit.py +35 -963
- birder/net/vit_sam.py +13 -38
- birder/net/xcit.py +7 -6
- birder/scripts/train.py +17 -15
- birder/scripts/train_kd.py +17 -16
- birder/tools/introspection.py +1 -1
- birder/tools/model_info.py +3 -1
- birder/tools/show_iterator.py +16 -2
- birder/version.py +1 -1
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/METADATA +1 -1
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/RECORD +93 -95
- birder/net/mobilenet_v3_small.py +0 -43
- birder/net/se_resnet_v1.py +0 -105
- birder/net/se_resnet_v2.py +0 -59
- birder/net/se_resnext.py +0 -30
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/WHEEL +0 -0
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/entry_points.txt +0 -0
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/licenses/LICENSE +0 -0
- {birder-0.3.2.dist-info → birder-0.4.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,479 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ViT model configuration registrations
|
|
3
|
+
|
|
4
|
+
This file contains *only* model variant definitions and their registration
|
|
5
|
+
with the global model registry. The actual ViT implementation lives in vit.py.
|
|
6
|
+
|
|
7
|
+
Naming:
|
|
8
|
+
- All model names must follow the ViT / RoPE ViT naming convention documented in rope_vit_configs.py.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from birder.model_registry import registry
|
|
12
|
+
from birder.net.base import BaseNet
|
|
13
|
+
|
|
14
|
+
TINY = {"num_layers": 12, "num_heads": 3, "hidden_dim": 192, "mlp_dim": 768, "drop_path_rate": 0.0}
|
|
15
|
+
SMALL = {"num_layers": 12, "num_heads": 6, "hidden_dim": 384, "mlp_dim": 1536, "drop_path_rate": 0.0}
|
|
16
|
+
MEDIUM = {"num_layers": 12, "num_heads": 8, "hidden_dim": 512, "mlp_dim": 2048, "drop_path_rate": 0.0}
|
|
17
|
+
BASE = {"num_layers": 12, "num_heads": 12, "hidden_dim": 768, "mlp_dim": 3072, "drop_path_rate": 0.1}
|
|
18
|
+
LARGE = {"num_layers": 24, "num_heads": 16, "hidden_dim": 1024, "mlp_dim": 4096, "drop_path_rate": 0.1}
|
|
19
|
+
HUGE = {"num_layers": 32, "num_heads": 16, "hidden_dim": 1280, "mlp_dim": 5120, "drop_path_rate": 0.1}
|
|
20
|
+
|
|
21
|
+
# From "Getting vit in Shape: Scaling Laws for Compute-Optimal Model Design"
|
|
22
|
+
# Shape-optimized vision transformer (SoViT)
|
|
23
|
+
SO150 = {
|
|
24
|
+
"num_layers": 18,
|
|
25
|
+
"num_heads": 16,
|
|
26
|
+
"hidden_dim": 896, # Changed from 880 for RoPE divisibility
|
|
27
|
+
"mlp_dim": 2320,
|
|
28
|
+
"drop_path_rate": 0.1,
|
|
29
|
+
}
|
|
30
|
+
SO400 = {
|
|
31
|
+
"num_layers": 27,
|
|
32
|
+
"num_heads": 16,
|
|
33
|
+
"hidden_dim": 1152,
|
|
34
|
+
"mlp_dim": 4304,
|
|
35
|
+
"drop_path_rate": 0.1,
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
# From "Scaling Vision Transformers"
|
|
39
|
+
GIANT = {"num_layers": 40, "num_heads": 16, "hidden_dim": 1408, "mlp_dim": 6144, "drop_path_rate": 0.1}
|
|
40
|
+
GIGANTIC = {"num_layers": 48, "num_heads": 16, "hidden_dim": 1664, "mlp_dim": 8192, "drop_path_rate": 0.1}
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def register_vit_configs(vit: type[BaseNet]) -> None:
|
|
44
|
+
registry.register_model_config(
|
|
45
|
+
"vit_t32",
|
|
46
|
+
vit,
|
|
47
|
+
config={"patch_size": 32, **TINY},
|
|
48
|
+
)
|
|
49
|
+
registry.register_model_config(
|
|
50
|
+
"vit_t16",
|
|
51
|
+
vit,
|
|
52
|
+
config={"patch_size": 16, **TINY},
|
|
53
|
+
)
|
|
54
|
+
registry.register_model_config(
|
|
55
|
+
"vit_t14",
|
|
56
|
+
vit,
|
|
57
|
+
config={"patch_size": 14, **TINY},
|
|
58
|
+
)
|
|
59
|
+
registry.register_model_config(
|
|
60
|
+
"vit_s32",
|
|
61
|
+
vit,
|
|
62
|
+
config={"patch_size": 32, **SMALL},
|
|
63
|
+
)
|
|
64
|
+
registry.register_model_config(
|
|
65
|
+
"vit_s16",
|
|
66
|
+
vit,
|
|
67
|
+
config={"patch_size": 16, **SMALL},
|
|
68
|
+
)
|
|
69
|
+
registry.register_model_config(
|
|
70
|
+
"vit_s16_ls",
|
|
71
|
+
vit,
|
|
72
|
+
config={"patch_size": 16, **SMALL, "layer_scale_init_value": 1e-5},
|
|
73
|
+
)
|
|
74
|
+
registry.register_model_config(
|
|
75
|
+
"vit_s16_pn",
|
|
76
|
+
vit,
|
|
77
|
+
config={"patch_size": 16, **SMALL, "pre_norm": True, "norm_layer_eps": 1e-5},
|
|
78
|
+
)
|
|
79
|
+
registry.register_model_config(
|
|
80
|
+
"vit_s14",
|
|
81
|
+
vit,
|
|
82
|
+
config={"patch_size": 14, **SMALL},
|
|
83
|
+
)
|
|
84
|
+
registry.register_model_config(
|
|
85
|
+
"vit_m32",
|
|
86
|
+
vit,
|
|
87
|
+
config={"patch_size": 32, **MEDIUM},
|
|
88
|
+
)
|
|
89
|
+
registry.register_model_config(
|
|
90
|
+
"vit_m16",
|
|
91
|
+
vit,
|
|
92
|
+
config={"patch_size": 16, **MEDIUM},
|
|
93
|
+
)
|
|
94
|
+
registry.register_model_config(
|
|
95
|
+
"vit_m14",
|
|
96
|
+
vit,
|
|
97
|
+
config={"patch_size": 14, **MEDIUM},
|
|
98
|
+
)
|
|
99
|
+
registry.register_model_config(
|
|
100
|
+
"vit_b32",
|
|
101
|
+
vit,
|
|
102
|
+
config={"patch_size": 32, **BASE, "drop_path_rate": 0.0}, # Override the BASE definition
|
|
103
|
+
)
|
|
104
|
+
registry.register_model_config(
|
|
105
|
+
"vit_b16",
|
|
106
|
+
vit,
|
|
107
|
+
config={"patch_size": 16, **BASE},
|
|
108
|
+
)
|
|
109
|
+
registry.register_model_config(
|
|
110
|
+
"vit_b16_ls",
|
|
111
|
+
vit,
|
|
112
|
+
config={"patch_size": 16, **BASE, "layer_scale_init_value": 1e-5},
|
|
113
|
+
)
|
|
114
|
+
registry.register_model_config(
|
|
115
|
+
"vit_b16_qkn_ls",
|
|
116
|
+
vit,
|
|
117
|
+
config={"patch_size": 16, **BASE, "layer_scale_init_value": 1e-5, "qk_norm": True},
|
|
118
|
+
)
|
|
119
|
+
registry.register_model_config(
|
|
120
|
+
"vit_b16_pn_quick_gelu",
|
|
121
|
+
vit,
|
|
122
|
+
config={"patch_size": 16, **BASE, "pre_norm": True, "norm_layer_eps": 1e-5, "act_layer_type": "quick_gelu"},
|
|
123
|
+
)
|
|
124
|
+
registry.register_model_config(
|
|
125
|
+
"vit_b14",
|
|
126
|
+
vit,
|
|
127
|
+
config={"patch_size": 14, **BASE},
|
|
128
|
+
)
|
|
129
|
+
registry.register_model_config(
|
|
130
|
+
"vit_so150m_p14_avg",
|
|
131
|
+
vit,
|
|
132
|
+
config={"patch_size": 14, **SO150, "class_token": False},
|
|
133
|
+
)
|
|
134
|
+
registry.register_model_config(
|
|
135
|
+
"vit_so150m_p14_ap",
|
|
136
|
+
vit,
|
|
137
|
+
config={"patch_size": 14, **SO150, "class_token": False, "attn_pool_head": True},
|
|
138
|
+
)
|
|
139
|
+
registry.register_model_config(
|
|
140
|
+
"vit_l32",
|
|
141
|
+
vit,
|
|
142
|
+
config={"patch_size": 32, **LARGE},
|
|
143
|
+
)
|
|
144
|
+
registry.register_model_config(
|
|
145
|
+
"vit_l16",
|
|
146
|
+
vit,
|
|
147
|
+
config={"patch_size": 16, **LARGE},
|
|
148
|
+
)
|
|
149
|
+
registry.register_model_config(
|
|
150
|
+
"vit_l14",
|
|
151
|
+
vit,
|
|
152
|
+
config={"patch_size": 14, **LARGE},
|
|
153
|
+
)
|
|
154
|
+
registry.register_model_config(
|
|
155
|
+
"vit_l14_pn",
|
|
156
|
+
vit,
|
|
157
|
+
config={"patch_size": 14, **LARGE, "pre_norm": True, "norm_layer_eps": 1e-5},
|
|
158
|
+
)
|
|
159
|
+
registry.register_model_config(
|
|
160
|
+
"vit_l14_pn_quick_gelu",
|
|
161
|
+
vit,
|
|
162
|
+
config={"patch_size": 14, **LARGE, "pre_norm": True, "norm_layer_eps": 1e-5, "act_layer_type": "quick_gelu"},
|
|
163
|
+
)
|
|
164
|
+
registry.register_model_config(
|
|
165
|
+
"vit_so400m_p14_ap",
|
|
166
|
+
vit,
|
|
167
|
+
config={"patch_size": 14, **SO400, "class_token": False, "attn_pool_head": True},
|
|
168
|
+
)
|
|
169
|
+
registry.register_model_config(
|
|
170
|
+
"vit_h16",
|
|
171
|
+
vit,
|
|
172
|
+
config={"patch_size": 16, **HUGE},
|
|
173
|
+
)
|
|
174
|
+
registry.register_model_config(
|
|
175
|
+
"vit_h14",
|
|
176
|
+
vit,
|
|
177
|
+
config={"patch_size": 14, **HUGE},
|
|
178
|
+
)
|
|
179
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
180
|
+
"vit_g16",
|
|
181
|
+
vit,
|
|
182
|
+
config={"patch_size": 16, **GIANT},
|
|
183
|
+
)
|
|
184
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
185
|
+
"vit_g14",
|
|
186
|
+
vit,
|
|
187
|
+
config={"patch_size": 14, **GIANT},
|
|
188
|
+
)
|
|
189
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
190
|
+
"vit_gigantic14",
|
|
191
|
+
vit,
|
|
192
|
+
config={"patch_size": 14, **GIGANTIC},
|
|
193
|
+
)
|
|
194
|
+
registry.register_model_config( # From "PaLI: A Jointly-Scaled Multilingual Language-Image Model"
|
|
195
|
+
"vit_e14",
|
|
196
|
+
vit,
|
|
197
|
+
config={
|
|
198
|
+
"patch_size": 14,
|
|
199
|
+
"num_layers": 56,
|
|
200
|
+
"num_heads": 16,
|
|
201
|
+
"hidden_dim": 1792,
|
|
202
|
+
"mlp_dim": 15360,
|
|
203
|
+
"drop_path_rate": 0.1,
|
|
204
|
+
},
|
|
205
|
+
)
|
|
206
|
+
registry.register_model_config( # From "Scaling Language-Free Visual Representation Learning"
|
|
207
|
+
"vit_1b_p16", # AKA vit_giant2 from DINOv2
|
|
208
|
+
vit,
|
|
209
|
+
config={
|
|
210
|
+
"patch_size": 16,
|
|
211
|
+
"num_layers": 40,
|
|
212
|
+
"num_heads": 24,
|
|
213
|
+
"hidden_dim": 1536,
|
|
214
|
+
"mlp_dim": 6144,
|
|
215
|
+
"drop_path_rate": 0.1,
|
|
216
|
+
},
|
|
217
|
+
)
|
|
218
|
+
registry.register_model_config( # From "Scaling Vision Transformers to 22 Billion Parameters"
|
|
219
|
+
"vit_22b_p16_qkn",
|
|
220
|
+
vit,
|
|
221
|
+
config={
|
|
222
|
+
"patch_size": 16,
|
|
223
|
+
"num_layers": 48,
|
|
224
|
+
"num_heads": 48,
|
|
225
|
+
"hidden_dim": 6144,
|
|
226
|
+
"mlp_dim": 24576,
|
|
227
|
+
"qk_norm": True,
|
|
228
|
+
"drop_path_rate": 0.1,
|
|
229
|
+
},
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
# With registers
|
|
233
|
+
####################
|
|
234
|
+
|
|
235
|
+
registry.register_model_config(
|
|
236
|
+
"vit_reg1_t32",
|
|
237
|
+
vit,
|
|
238
|
+
config={"patch_size": 32, **TINY, "num_reg_tokens": 1},
|
|
239
|
+
)
|
|
240
|
+
registry.register_model_config(
|
|
241
|
+
"vit_reg1_t16",
|
|
242
|
+
vit,
|
|
243
|
+
config={"patch_size": 16, **TINY, "num_reg_tokens": 1},
|
|
244
|
+
)
|
|
245
|
+
registry.register_model_config(
|
|
246
|
+
"vit_reg1_t14",
|
|
247
|
+
vit,
|
|
248
|
+
config={"patch_size": 14, **TINY, "num_reg_tokens": 1},
|
|
249
|
+
)
|
|
250
|
+
registry.register_model_config(
|
|
251
|
+
"vit_reg1_s32",
|
|
252
|
+
vit,
|
|
253
|
+
config={"patch_size": 32, **SMALL, "num_reg_tokens": 1},
|
|
254
|
+
)
|
|
255
|
+
registry.register_model_config(
|
|
256
|
+
"vit_reg1_s16",
|
|
257
|
+
vit,
|
|
258
|
+
config={"patch_size": 16, **SMALL, "num_reg_tokens": 1},
|
|
259
|
+
)
|
|
260
|
+
registry.register_model_config(
|
|
261
|
+
"vit_reg1_s16_ls",
|
|
262
|
+
vit,
|
|
263
|
+
config={"patch_size": 16, **SMALL, "layer_scale_init_value": 1e-5, "num_reg_tokens": 1},
|
|
264
|
+
)
|
|
265
|
+
registry.register_model_config(
|
|
266
|
+
"vit_reg1_s16_rms_ls",
|
|
267
|
+
vit,
|
|
268
|
+
config={
|
|
269
|
+
"patch_size": 16,
|
|
270
|
+
**SMALL,
|
|
271
|
+
"layer_scale_init_value": 1e-5,
|
|
272
|
+
"num_reg_tokens": 1,
|
|
273
|
+
"norm_layer_type": "RMSNorm",
|
|
274
|
+
},
|
|
275
|
+
)
|
|
276
|
+
registry.register_model_config(
|
|
277
|
+
"vit_reg1_s14",
|
|
278
|
+
vit,
|
|
279
|
+
config={"patch_size": 14, **SMALL, "num_reg_tokens": 1},
|
|
280
|
+
)
|
|
281
|
+
registry.register_model_config(
|
|
282
|
+
"vit_reg4_m32",
|
|
283
|
+
vit,
|
|
284
|
+
config={"patch_size": 32, **MEDIUM, "num_reg_tokens": 4},
|
|
285
|
+
)
|
|
286
|
+
registry.register_model_config(
|
|
287
|
+
"vit_reg4_m16",
|
|
288
|
+
vit,
|
|
289
|
+
config={"patch_size": 16, **MEDIUM, "num_reg_tokens": 4},
|
|
290
|
+
)
|
|
291
|
+
registry.register_model_config(
|
|
292
|
+
"vit_reg4_m16_rms_avg",
|
|
293
|
+
vit,
|
|
294
|
+
config={"patch_size": 16, **MEDIUM, "num_reg_tokens": 4, "class_token": False, "norm_layer_type": "RMSNorm"},
|
|
295
|
+
)
|
|
296
|
+
registry.register_model_config(
|
|
297
|
+
"vit_reg4_m14",
|
|
298
|
+
vit,
|
|
299
|
+
config={"patch_size": 14, **MEDIUM, "num_reg_tokens": 4},
|
|
300
|
+
)
|
|
301
|
+
registry.register_model_config(
|
|
302
|
+
"vit_reg4_b32",
|
|
303
|
+
vit,
|
|
304
|
+
config={"patch_size": 32, **BASE, "num_reg_tokens": 4, "drop_path_rate": 0.0}, # Override the BASE definition
|
|
305
|
+
)
|
|
306
|
+
registry.register_model_config(
|
|
307
|
+
"vit_reg4_b16",
|
|
308
|
+
vit,
|
|
309
|
+
config={"patch_size": 16, **BASE, "num_reg_tokens": 4},
|
|
310
|
+
)
|
|
311
|
+
registry.register_model_config(
|
|
312
|
+
"vit_reg4_b16_avg",
|
|
313
|
+
vit,
|
|
314
|
+
config={"patch_size": 16, **BASE, "num_reg_tokens": 4, "class_token": False},
|
|
315
|
+
)
|
|
316
|
+
registry.register_model_config(
|
|
317
|
+
"vit_reg4_b14",
|
|
318
|
+
vit,
|
|
319
|
+
config={"patch_size": 14, **BASE, "num_reg_tokens": 4},
|
|
320
|
+
)
|
|
321
|
+
registry.register_model_config(
|
|
322
|
+
"vit_reg8_b14_ap",
|
|
323
|
+
vit,
|
|
324
|
+
config={"patch_size": 14, **BASE, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
325
|
+
)
|
|
326
|
+
registry.register_model_config(
|
|
327
|
+
"vit_reg4_so150m_p16_avg",
|
|
328
|
+
vit,
|
|
329
|
+
config={"patch_size": 16, **SO150, "num_reg_tokens": 4, "class_token": False},
|
|
330
|
+
)
|
|
331
|
+
registry.register_model_config(
|
|
332
|
+
"vit_reg8_so150m_p16_swiglu_ap",
|
|
333
|
+
vit,
|
|
334
|
+
config={
|
|
335
|
+
"patch_size": 16,
|
|
336
|
+
**SO150,
|
|
337
|
+
"num_reg_tokens": 8,
|
|
338
|
+
"class_token": False,
|
|
339
|
+
"attn_pool_head": True,
|
|
340
|
+
"mlp_layer_type": "SwiGLU_FFN",
|
|
341
|
+
},
|
|
342
|
+
)
|
|
343
|
+
registry.register_model_config(
|
|
344
|
+
"vit_reg4_so150m_p14_avg",
|
|
345
|
+
vit,
|
|
346
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 4, "class_token": False},
|
|
347
|
+
)
|
|
348
|
+
registry.register_model_config(
|
|
349
|
+
"vit_reg4_so150m_p14_ls",
|
|
350
|
+
vit,
|
|
351
|
+
config={"patch_size": 14, **SO150, "layer_scale_init_value": 1e-5, "num_reg_tokens": 4},
|
|
352
|
+
)
|
|
353
|
+
registry.register_model_config(
|
|
354
|
+
"vit_reg4_so150m_p14_ap",
|
|
355
|
+
vit,
|
|
356
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 4, "class_token": False, "attn_pool_head": True},
|
|
357
|
+
)
|
|
358
|
+
registry.register_model_config(
|
|
359
|
+
"vit_reg4_so150m_p14_aps",
|
|
360
|
+
vit,
|
|
361
|
+
config={
|
|
362
|
+
"patch_size": 14,
|
|
363
|
+
**SO150,
|
|
364
|
+
"num_reg_tokens": 4,
|
|
365
|
+
"class_token": False,
|
|
366
|
+
"attn_pool_head": True,
|
|
367
|
+
"attn_pool_special_tokens": True,
|
|
368
|
+
},
|
|
369
|
+
)
|
|
370
|
+
registry.register_model_config(
|
|
371
|
+
"vit_reg8_so150m_p14_avg",
|
|
372
|
+
vit,
|
|
373
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False},
|
|
374
|
+
)
|
|
375
|
+
registry.register_model_config(
|
|
376
|
+
"vit_reg8_so150m_p14_swiglu",
|
|
377
|
+
vit,
|
|
378
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "mlp_layer_type": "SwiGLU_FFN"},
|
|
379
|
+
)
|
|
380
|
+
registry.register_model_config(
|
|
381
|
+
"vit_reg8_so150m_p14_swiglu_avg",
|
|
382
|
+
vit,
|
|
383
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False, "mlp_layer_type": "SwiGLU_FFN"},
|
|
384
|
+
)
|
|
385
|
+
registry.register_model_config(
|
|
386
|
+
"vit_reg8_so150m_p14_ap",
|
|
387
|
+
vit,
|
|
388
|
+
config={"patch_size": 14, **SO150, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
389
|
+
)
|
|
390
|
+
registry.register_model_config(
|
|
391
|
+
"vit_reg4_l32",
|
|
392
|
+
vit,
|
|
393
|
+
config={"patch_size": 32, **LARGE, "num_reg_tokens": 4},
|
|
394
|
+
)
|
|
395
|
+
registry.register_model_config(
|
|
396
|
+
"vit_reg4_l16",
|
|
397
|
+
vit,
|
|
398
|
+
config={"patch_size": 16, **LARGE, "num_reg_tokens": 4},
|
|
399
|
+
)
|
|
400
|
+
registry.register_model_config(
|
|
401
|
+
"vit_reg8_l16_avg",
|
|
402
|
+
vit,
|
|
403
|
+
config={"patch_size": 16, **LARGE, "num_reg_tokens": 8, "class_token": False},
|
|
404
|
+
)
|
|
405
|
+
registry.register_model_config(
|
|
406
|
+
"vit_reg8_l16_aps",
|
|
407
|
+
vit,
|
|
408
|
+
config={
|
|
409
|
+
"patch_size": 16,
|
|
410
|
+
**LARGE,
|
|
411
|
+
"num_reg_tokens": 8,
|
|
412
|
+
"class_token": False,
|
|
413
|
+
"attn_pool_head": True,
|
|
414
|
+
"attn_pool_special_tokens": True,
|
|
415
|
+
},
|
|
416
|
+
)
|
|
417
|
+
registry.register_model_config(
|
|
418
|
+
"vit_reg4_l14",
|
|
419
|
+
vit,
|
|
420
|
+
config={"patch_size": 14, **LARGE, "num_reg_tokens": 4},
|
|
421
|
+
)
|
|
422
|
+
registry.register_model_config( # DeiT III style
|
|
423
|
+
"vit_reg4_l14_nps_ls",
|
|
424
|
+
vit,
|
|
425
|
+
config={
|
|
426
|
+
"pos_embed_special_tokens": False,
|
|
427
|
+
"patch_size": 14,
|
|
428
|
+
**LARGE,
|
|
429
|
+
"layer_scale_init_value": 1e-5,
|
|
430
|
+
"num_reg_tokens": 4,
|
|
431
|
+
},
|
|
432
|
+
)
|
|
433
|
+
registry.register_model_config(
|
|
434
|
+
"vit_reg8_l14_ap",
|
|
435
|
+
vit,
|
|
436
|
+
config={"patch_size": 14, **LARGE, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
437
|
+
)
|
|
438
|
+
registry.register_model_config(
|
|
439
|
+
"vit_reg8_l14_rms_ap",
|
|
440
|
+
vit,
|
|
441
|
+
config={
|
|
442
|
+
"patch_size": 14,
|
|
443
|
+
**LARGE,
|
|
444
|
+
"num_reg_tokens": 8,
|
|
445
|
+
"class_token": False,
|
|
446
|
+
"attn_pool_head": True,
|
|
447
|
+
"norm_layer_type": "RMSNorm",
|
|
448
|
+
},
|
|
449
|
+
)
|
|
450
|
+
registry.register_model_config(
|
|
451
|
+
"vit_reg8_so400m_p14_ap",
|
|
452
|
+
vit,
|
|
453
|
+
config={"patch_size": 14, **SO400, "num_reg_tokens": 8, "class_token": False, "attn_pool_head": True},
|
|
454
|
+
)
|
|
455
|
+
registry.register_model_config(
|
|
456
|
+
"vit_reg4_h16",
|
|
457
|
+
vit,
|
|
458
|
+
config={"patch_size": 16, **HUGE, "num_reg_tokens": 4},
|
|
459
|
+
)
|
|
460
|
+
registry.register_model_config(
|
|
461
|
+
"vit_reg4_h14",
|
|
462
|
+
vit,
|
|
463
|
+
config={"patch_size": 14, **HUGE, "num_reg_tokens": 4},
|
|
464
|
+
)
|
|
465
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
466
|
+
"vit_reg4_g16",
|
|
467
|
+
vit,
|
|
468
|
+
config={"patch_size": 16, **GIANT, "num_reg_tokens": 4},
|
|
469
|
+
)
|
|
470
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
471
|
+
"vit_reg4_g14",
|
|
472
|
+
vit,
|
|
473
|
+
config={"patch_size": 14, **GIANT, "num_reg_tokens": 4},
|
|
474
|
+
)
|
|
475
|
+
registry.register_model_config( # From "Scaling Vision Transformers"
|
|
476
|
+
"vit_reg4_gigantic14",
|
|
477
|
+
vit,
|
|
478
|
+
config={"patch_size": 14, **GIGANTIC, "num_reg_tokens": 4},
|
|
479
|
+
)
|
birder/net/biformer.py
CHANGED
birder/net/cait.py
CHANGED
|
@@ -66,12 +66,12 @@ class ClassAttentionBlock(nn.Module):
|
|
|
66
66
|
self, dim: int, num_heads: int, mlp_ratio: float, qkv_bias: bool, proj_drop: float, drop_path: float, eta: float
|
|
67
67
|
) -> None:
|
|
68
68
|
super().__init__()
|
|
69
|
-
self.norm1 = nn.LayerNorm(dim)
|
|
69
|
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
|
70
70
|
|
|
71
71
|
self.attn = ClassAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_drop=proj_drop)
|
|
72
72
|
|
|
73
73
|
self.drop_path = StochasticDepth(drop_path, mode="row")
|
|
74
|
-
self.norm2 = nn.LayerNorm(dim)
|
|
74
|
+
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
|
75
75
|
self.mlp = MLP(dim, [int(dim * mlp_ratio), dim], activation_layer=nn.GELU, dropout=proj_drop)
|
|
76
76
|
|
|
77
77
|
self.gamma1 = nn.Parameter(eta * torch.ones(dim))
|
|
@@ -135,7 +135,7 @@ class LayerScaleBlock(nn.Module):
|
|
|
135
135
|
init_values: float,
|
|
136
136
|
) -> None:
|
|
137
137
|
super().__init__()
|
|
138
|
-
self.norm1 = nn.LayerNorm(dim)
|
|
138
|
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
|
139
139
|
self.attn = TalkingHeadAttn(
|
|
140
140
|
dim,
|
|
141
141
|
num_heads=num_heads,
|
|
@@ -144,7 +144,7 @@ class LayerScaleBlock(nn.Module):
|
|
|
144
144
|
proj_drop=proj_drop,
|
|
145
145
|
)
|
|
146
146
|
self.drop_path = StochasticDepth(drop_path, mode="row")
|
|
147
|
-
self.norm2 = nn.LayerNorm(dim)
|
|
147
|
+
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
|
148
148
|
self.mlp = MLP(dim, [int(dim * mlp_ratio), dim], activation_layer=nn.GELU, dropout=proj_drop)
|
|
149
149
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
|
|
150
150
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
|
|
@@ -221,7 +221,7 @@ class CaiT(BaseNet):
|
|
|
221
221
|
)
|
|
222
222
|
)
|
|
223
223
|
|
|
224
|
-
self.norm = nn.LayerNorm(embed_dim)
|
|
224
|
+
self.norm = nn.LayerNorm(embed_dim, eps=1e-6)
|
|
225
225
|
|
|
226
226
|
self.embedding_size = embed_dim
|
|
227
227
|
self.classifier = self.create_classifier()
|
birder/net/coat.py
CHANGED
|
@@ -21,7 +21,7 @@ from birder.net.base import DetectorBackbone
|
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
def insert_cls(x: torch.Tensor, cls_token: torch.Tensor) -> torch.Tensor:
|
|
24
|
-
cls_tokens = cls_token.expand(x.
|
|
24
|
+
cls_tokens = cls_token.expand(x.size(0), -1, -1)
|
|
25
25
|
x = torch.concat((cls_tokens, x), dim=1)
|
|
26
26
|
|
|
27
27
|
return x
|
|
@@ -170,7 +170,7 @@ class SerialBlock(nn.Module):
|
|
|
170
170
|
|
|
171
171
|
# Conv-attention
|
|
172
172
|
self.cpe = shared_cpe
|
|
173
|
-
self.norm1 = nn.LayerNorm(dim)
|
|
173
|
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
|
174
174
|
self.factor_attn_crpe = FactorAttnConvRelPosEnc(
|
|
175
175
|
dim,
|
|
176
176
|
num_heads=num_heads,
|
|
@@ -181,7 +181,7 @@ class SerialBlock(nn.Module):
|
|
|
181
181
|
self.drop_path = StochasticDepth(drop_path, mode="row")
|
|
182
182
|
|
|
183
183
|
# MLP
|
|
184
|
-
self.norm2 = nn.LayerNorm(dim)
|
|
184
|
+
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
|
185
185
|
self.mlp = MLP(dim, [int(dim * mlp_ratio), dim], activation_layer=nn.GELU, dropout=proj_drop)
|
|
186
186
|
|
|
187
187
|
def forward(self, x: torch.Tensor, size: tuple[int, int]) -> torch.Tensor:
|
|
@@ -213,9 +213,9 @@ class ParallelBlock(nn.Module):
|
|
|
213
213
|
super().__init__()
|
|
214
214
|
|
|
215
215
|
# Conv-attention
|
|
216
|
-
self.norm12 = nn.LayerNorm(dims[1])
|
|
217
|
-
self.norm13 = nn.LayerNorm(dims[2])
|
|
218
|
-
self.norm14 = nn.LayerNorm(dims[3])
|
|
216
|
+
self.norm12 = nn.LayerNorm(dims[1], eps=1e-6)
|
|
217
|
+
self.norm13 = nn.LayerNorm(dims[2], eps=1e-6)
|
|
218
|
+
self.norm14 = nn.LayerNorm(dims[3], eps=1e-6)
|
|
219
219
|
self.factor_attn_crpe2 = FactorAttnConvRelPosEnc(
|
|
220
220
|
dims[1], num_heads=num_heads, qkv_bias=qkv_bias, proj_drop=proj_drop, shared_crpe=shared_crpes[1]
|
|
221
221
|
)
|
|
@@ -228,9 +228,9 @@ class ParallelBlock(nn.Module):
|
|
|
228
228
|
self.drop_path = StochasticDepth(drop_path, mode="row")
|
|
229
229
|
|
|
230
230
|
# MLP
|
|
231
|
-
self.norm22 = nn.LayerNorm(dims[1])
|
|
232
|
-
self.norm23 = nn.LayerNorm(dims[2])
|
|
233
|
-
self.norm24 = nn.LayerNorm(dims[3])
|
|
231
|
+
self.norm22 = nn.LayerNorm(dims[1], eps=1e-6)
|
|
232
|
+
self.norm23 = nn.LayerNorm(dims[2], eps=1e-6)
|
|
233
|
+
self.norm24 = nn.LayerNorm(dims[3], eps=1e-6)
|
|
234
234
|
|
|
235
235
|
# In the parallel block, we assume dimensions are the same and share the linear transformation
|
|
236
236
|
assert dims[1] == dims[2] == dims[3]
|
|
@@ -447,13 +447,13 @@ class CoaT(DetectorBackbone):
|
|
|
447
447
|
|
|
448
448
|
# Norms
|
|
449
449
|
if self.parallel_blocks is not None:
|
|
450
|
-
self.norm2 = nn.LayerNorm(embed_dims[1])
|
|
451
|
-
self.norm3 = nn.LayerNorm(embed_dims[2])
|
|
450
|
+
self.norm2 = nn.LayerNorm(embed_dims[1], eps=1e-6)
|
|
451
|
+
self.norm3 = nn.LayerNorm(embed_dims[2], eps=1e-6)
|
|
452
452
|
else:
|
|
453
453
|
self.norm2 = None
|
|
454
454
|
self.norm3 = None
|
|
455
455
|
|
|
456
|
-
self.norm4 = nn.LayerNorm(embed_dims[3])
|
|
456
|
+
self.norm4 = nn.LayerNorm(embed_dims[3], eps=1e-6)
|
|
457
457
|
|
|
458
458
|
# Head
|
|
459
459
|
if parallel_depth > 0:
|
birder/net/conv2former.py
CHANGED
|
@@ -64,7 +64,7 @@ class SpatialAttention(nn.Module):
|
|
|
64
64
|
dim,
|
|
65
65
|
kernel_size=kernel_size,
|
|
66
66
|
stride=(1, 1),
|
|
67
|
-
padding=(kernel_size[0] // 2, kernel_size[1] // 2),
|
|
67
|
+
padding=((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2),
|
|
68
68
|
groups=dim,
|
|
69
69
|
),
|
|
70
70
|
)
|
|
@@ -87,8 +87,8 @@ class Conv2FormerBlock(nn.Module):
|
|
|
87
87
|
self.mlp = MLP(dim, mlp_ratio)
|
|
88
88
|
|
|
89
89
|
layer_scale_init_value = 1e-6
|
|
90
|
-
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((1, dim, 1, 1))
|
|
91
|
-
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((1, dim, 1, 1))
|
|
90
|
+
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((1, dim, 1, 1)))
|
|
91
|
+
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((1, dim, 1, 1)))
|
|
92
92
|
|
|
93
93
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
94
94
|
x = x + self.drop_path(self.layer_scale_1 * self.attn(x))
|
birder/net/convmixer.py
CHANGED
birder/net/convnext_v1.py
CHANGED
|
@@ -53,7 +53,7 @@ class ConvNeXtBlock(nn.Module):
|
|
|
53
53
|
nn.Linear(4 * channels, channels), # Same as 1x1 conv
|
|
54
54
|
Permute([0, 3, 1, 2]),
|
|
55
55
|
)
|
|
56
|
-
self.layer_scale = nn.Parameter(torch.ones(channels, 1, 1) * layer_scale
|
|
56
|
+
self.layer_scale = nn.Parameter(torch.ones(channels, 1, 1) * layer_scale)
|
|
57
57
|
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, mode="row")
|
|
58
58
|
|
|
59
59
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
birder/net/crossvit.py
CHANGED
|
@@ -97,7 +97,7 @@ class CrossAttentionBlock(nn.Module):
|
|
|
97
97
|
self, dim: int, num_heads: int, qkv_bias: bool, proj_drop: float, attn_drop: float, drop_path: float
|
|
98
98
|
) -> None:
|
|
99
99
|
super().__init__()
|
|
100
|
-
self.norm1 = nn.LayerNorm(dim)
|
|
100
|
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
|
101
101
|
self.attn = CrossAttention(
|
|
102
102
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop
|
|
103
103
|
)
|
|
@@ -146,7 +146,7 @@ class MultiScaleBlock(nn.Module):
|
|
|
146
146
|
for d in range(num_branches):
|
|
147
147
|
self.projs.append(
|
|
148
148
|
nn.Sequential(
|
|
149
|
-
nn.LayerNorm(dim[d]),
|
|
149
|
+
nn.LayerNorm(dim[d], eps=1e-6),
|
|
150
150
|
nn.GELU(),
|
|
151
151
|
nn.Linear(dim[d], dim[(d + 1) % num_branches]),
|
|
152
152
|
)
|
|
@@ -187,7 +187,7 @@ class MultiScaleBlock(nn.Module):
|
|
|
187
187
|
for d in range(num_branches):
|
|
188
188
|
self.revert_projs.append(
|
|
189
189
|
nn.Sequential(
|
|
190
|
-
nn.LayerNorm(dim[(d + 1) % num_branches]),
|
|
190
|
+
nn.LayerNorm(dim[(d + 1) % num_branches], eps=1e-6),
|
|
191
191
|
nn.GELU(),
|
|
192
192
|
nn.Linear(dim[(d + 1) % num_branches], dim[d]),
|
|
193
193
|
)
|
|
@@ -290,7 +290,7 @@ class CrossViT(BaseNet):
|
|
|
290
290
|
dpr_ptr += curr_depth
|
|
291
291
|
self.blocks.append(block)
|
|
292
292
|
|
|
293
|
-
self.norm = nn.ModuleList([nn.LayerNorm(embed_dim[i]) for i in range(self.num_branches)])
|
|
293
|
+
self.norm = nn.ModuleList([nn.LayerNorm(embed_dim[i], eps=1e-6) for i in range(self.num_branches)])
|
|
294
294
|
self.embedding_size = sum(self.embed_dim)
|
|
295
295
|
self.classifier = nn.ModuleList()
|
|
296
296
|
for i in range(self.num_branches):
|
|
@@ -482,7 +482,7 @@ registry.register_weights(
|
|
|
482
482
|
"formats": {
|
|
483
483
|
"pt": {
|
|
484
484
|
"file_size": 32.7,
|
|
485
|
-
"sha256": "
|
|
485
|
+
"sha256": "08f674d8165dc97cc535f8188a5c5361751a8d0bb85061454986a21541a6fe8e",
|
|
486
486
|
}
|
|
487
487
|
},
|
|
488
488
|
"net": {"network": "crossvit_9d", "tag": "il-common"},
|
birder/net/davit.py
CHANGED